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ABSTRACT: Modern timber engineering requires increasing application of the finite element method (FEM). In such 
analyses, the elastic constants including the Poisson´s ratios are required. The latter have mostly been neglected so far, 
since these vary to a great degree in related literature. Hence, an experimental method based on compression tests was 
developed and benchmarked on numerous preliminary tests in order to determine the Poisson´s ratios on spruce wood 
(Picea Abies). For the first time, the extended measurement uncertainty was taken into account. On the basis of these 
values, a comparison with values from literature was conducted. Several observations indicate that, in addition to the 
wood properties, the load application as well as the test setup have a significant influence on the Poisson´s ratios. In 
summary, all obtained values lie in the medium range of the literature values. Consequently, the developed test method 
for determining the Poisson´s ratios is considered to be suitable. In addition, an expanded Poisson's ratio was determined 
taking into account the measurement uncertainty in order to obtain a symmetrical compliance matrix.
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1 INTRODUCTION 456

For numerical calculation of increasingly complex timber 
structures and three-dimensional timber connections 
using the finite element method (FEM), the Poisson´s 
ratios are required. When loading a body in its axial 
direction this measure indicates the ratio between lateral 
( l) and axial strain ( a). The ratios published so far, vary 
greatly in their order of magnitude. Therefore, the 
Poisson´s ratios are often neglected in numerical 
calculations. Moreover, numerous studies leave 
uncertainty, which and why a certain test method was 
applied.
In the context of this work, an own test procedure was 
developed to clarify, what influences the Poisson´s ratios 
and what causes the great deviation in the published 
values. Within this process, the most suitable out of three 
available measurement techniques was selected. 
Depending on the measurement technique and the test 
procedure the extended measurement uncertainty was 
calculated as well. Thus, a range, in which the true mean 
value of the determined Poisson´s ratio lies can be stated 
with a confidence of approx. 95 %. Moreover, computer 
tomography (CT) measurements were conducted to verify 
the linear elastic range. 
Although there are several different wood species, this 
study only refers to spruce wood, as this, together with fir, 
makes up the largest share of construction timber in 
Central Europe.
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Preliminary literature on determining the Poisson's ratios 
predominantly applied tensile tests (e.g. [1]-7]). For the 
sake of simplicity and as is stated in [7] and [8] the load 
type was assumed to have no direct influence on the 
Poisson's ratio. Only compression tests were performed 
within this work.

2 MATERIALS AND METHODS
2.1 WOODEN SPECIMENS
All measurements on wood were performed on spruce 
wood (Picea). The source of the wood was near Iseltal in 
Austria. The specimens were conditioned in a climate 
chamber at a temperature of (20 ± 1)°C and a relative 
humidity of (65 ± 3) % according to [9] and [10]. A total, 
of three different specimen groups (L, R and T) were 
prepared in order to perform the preliminary tests and 
main tests for all six Poisson ́s ratios. To achieve the most 
accurate results, the fibre orientation should be as parallel 
to the specimen axes as possible. Therefore, the maximum 
specimen length was examined on the available wood, 
without having to accept a strong deviation of the fibre 
orientations. This resulted in specimen dimensions of 
l x h x b = 100 x 30 x 30 mm³ (Figure 1).
The specimen surfaces were sanded to straighten 
protruding fibres and saw edges. A total of a 150 
specimens per specimen group were manufactured. In this 
way, it was ensured that enough test specimens were 
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available for the preliminary tests and the 20 specimens 
for each Poisson ́s ratio for the main tests. 
 

 
Figure 1: Different specimen groups including dimensions in 
[mm] 

The test specimens had further to be pre-drilled on two 
opposite sides to realize the measurements using DD1 
displacement and strain transducers (Figure 2). 

 
Figure 2: Metal drilling template on a wooden specimen; left: 
top view, right: side view 

2.2 ALUMINIUM SPECIMEN 
In addition to the wooden test specimens, an aluminium 
specimen was prepared. This was used as part of the 
preliminary tests to select the measurement. It was made 
of the material EN AW-2007-T4 and its dimensions were 
l x h x b = 100 x 30 x 30 mm³. 
Like the wooden specimens, the aluminium specimen also 
had to be pre-drilled for the measurements using the strain 
gauged based DD1 displacement and strain transducers. 
 
2.3 MEASUREMENT TECHNIQUE 
The measurement technique was chosen based on 
comparative measurements preliminary to the main tests. 
In this regard, the most suitable out of three available 
measurement techniques including strain gauges, strain 
gauged based DD1 displacement and strain transducers 
and videoextensometry was to be selected. The 
repeatability was investigated by means of the aluminium 
specimen under compression. Aluminium was chosen as 
it was expected to not change its properties within the 
elastic range. The specimen was loaded eight times with 
each measurement technique. In between the individual 
loadings the aluminium specimen was removed and 
inserted into the testing machine again in order to simulate 
the subsequent test sequence on the wooden specimens as 
equal as possible. All measurement techniques led to 

nearly the same average Poisson´s ratio of alu = 0,356 but 
showed significantly different scattering (Figure 3). 
 

 
Figure 3: Comparison of the measurement signals obtained with 
the three measurement techniques on the aluminium specimen 

The DD1 displacement and strain transducers showed a 
comparably good repeatability with a standard deviation 
of 5,33 10-3 and a CoV of 1,49 %. As these also required 
considerably less time for specimen preparation, this 
technique was chosen for all further measurements. In 
case of the measurements determining RL and TL a 
combination of both DD1 displacement transducers and 
strain gauges was applied. Reason for this are the 
significantly smaller lateral strains in grain direction that 
cause higher signal noise. 
 
2.4 TEST SETUP USING DD1 DISPLACEMENT 

AND STRAIN TRANSDUCERS 
A Shimadzu Autograph with an EDC 580 control unit 
from DOLI Elektronik GmbH was used for all 
measurements. A spherical cap and a steel cube on top of 
the wooden specimen ensured uniform load application 
within all tests (Figure 4).  

 
Figure 4: Load application and strain measurement using DD1 
displacement and strain transducers 

The lateral displacement in R- and T-direction could only 
be recorded using one DD1 displacement and strain 
transducer. In order to measure the axial displacement two 
DD1 were attached to opposite sides of the specimen 
(Figure 5). Thus, possible bending effects could be 
eliminated. The axial DD1 displacement transducers were 
attached to the specimen using small nails. Further, two 
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metal prisms were attached to the upper part of the 
specimen on opposite sides using small nails as well. The 
probe tips of the displacement transducers for the axial 
measurement were in contact with these. The distance 
between the nails and thus the initial length l was set to 
60 mm. 
 

     
Figure 5: Test setup with DD1 displacement and strain 
transducers on wooden specimen; left: Front view; right: 
Oblique view 

Figure 6 shows the test setup for measuring RL and TL. 
For given reasons, two strain gauges were adhered on 
opposite sides of the specimen in order to measure the 
lateral displacement in grain direction.   
 

 
Figure 6: Measurement configuration used for determining μRL 
and μTL  

2.4.1 Test procedure 
All specimens were tested within one hour after removal 
from the climate chamber, as prescribed in [11]. 
Preceding the measurement, the specimens were prepared 
in the measurement room and the duration of the test itself 
was about 20 minutes. All tests were load-controlled, so 
that the theoretical compressive strength Fc,max would be 
reached in approx. 90 seconds [9]. Thus, the influence of 
creep deformations on the Poisson´s ratio are eliminated. 
The load was applied in such a way that the test specimens 
were only loaded in their linear-elastic range. Hence, the 
upper load limit within the preliminary tests was set to     
30 % of the compressive strength (fc,90,k resp. fc,0,k) given 
in [12] for spruce wood of class C24. The maximum load 
applied within the main tests is derived from the CT 

verification tests described in Section 3.1.3. All 
measurements were load controlled and started at a load 
level of 20 N.   
Within the determination of the Young ́s modulus on 
concrete, this is loaded in several cycles. Thus, an initial 
and a stabilized Young ́s modulus is defined [13]. 
Following this procedure, measurements consisting of 
numerous loading and unloading cycles were performed.  
 
2.4.2 Three-dimensional Hooke´s law for 

orthotropic materials  
The three-dimensional Hooke´s law is based on the 
assumption that stress ij and strain kl are linearly related. 
To describe the three-dimensional elastic behaviour of 
orthotropic materials 12 compliance coefficients S are 
necessary [14].  
Furthermore, it is valid for orthotropic materials that shear 
stresses that act in the main direction do not generate 
normal strains. Normal stresses do not generate shear 
strains either. Moreover, shear strains are only generated 
by shear stresses in the same plane. [15] Several 
compliance parameters of orthotropic materials are 
therefore zero and the three-dimensional Hooke´s law can 
be given in the following compliance form:  

 (1) 

where = strains [-],  = shear strains [-],  = normal 
stresses [N/mm²], τ = shear stresses [N/mm²],  for i = 
1,2,3: Strain numbers [mm²/N],  for i = 4,5,6: Shear 
strain numbers [mm²/N],  for i,j = 1,2,3: Poisson´s 
ratios; i   [mm²/N].  
Further, the compliance parameters can be replaced by the 
engineering parameters Young´s modulus E, Shear 
modulus G and Poisson´s ratio . The indices can be 
replaced with the common labels L, R and T. Hooke´s law 
then takes the form of Equation (2):  

(2) 

It is only applicable if the stresses and deformations are 
referred to the main axes [16]. If the main axes of the 
wood deviate from the reference system coordinate 
transformations as described e.g. in [14] and [17] must be 
applied. 
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The compliance matrix itself is symmetric. Due to this 
symmetry condition, only nine of the 12 parameters are 
independent of each other. It applies:  

 (3) 

(4) 

(5) 

Further requirements for the compliance matrix are given 
in [16] and [2]. 
 
2.4.3 Calculation of the Poisson´s ratio  
The Poisson´s ratio describes the lateral 
contraction/elongation (  of a body as it elongates or 
contracts normal to the force  (Equation (6)). Thus, it 
is also called passive deformation. The Poisson ́s ratio is 
always negative since compression is defined as negative 
tension.  

 (6) 

 
2.4.4 Calculation of the Young´s modulus  
The Young ́s moduli Ei,ij were examined on the basis of 
the tenth loading and unloading cycle between 20 % and        
55 % of the estimated upper load limit Fc,max,est using 
Equation (7): 

 (7) 

where i,j = Anatomical directions resp. load directions, 
each can attain independently L,R or T [-], i,20, i,55 = 
stress at 20 % resp. 55 % of Fc,max,est when loaded in i-
direction [N/mm²] , li,20, li,55 = Axial displacement in i-
direction at 20 % resp. 55 % of Fc,max,est. 
 
2.4.5 Data processing  
Within the scope of this work, the Poisson's ratios and 
Young´s moduli were determined on the basis of several 
loading and unloading paths. However, due to the 
dissipated energy during specimen deformation, the paths 
individually would lead to varying results. This effect is 
called hysteresis [18]. Hence, these were averaged. Figure 
7 shows this effect by means of a randomly selected 
loading and unloading path of a measurement on the 
aluminium specimen. This specimen was loaded and 
unloaded once in the stress range between 60 to 
105 N/mm². The red path, which is then used for further 
evaluation represents the average of the loading and the 
unloading path.  
 

Figure 7: Hysteresis effect on the basis of a loading and 
unloading path of the aluminium specimen measured with the 
DD1 displacement and strain transducers 

Those measurements that still exhibited signal noise 
after averaging were further denoised, using the 
Savitsky-Golay filter. 
 
2.4.6 Determination of the measurement uncertainty  
When specifying a physical variable, it is important to 
include the measurement uncertainty u(x), as all 
measurement results include errors. The calculation of the 
measurement uncertainty is described here in detail on the 
basis of the Poisson’s ratio. However, the measurement 
uncertainty for the Young´s modulus was calculated 
according to the same systematic. 
A physical variable can be given with   (absolute 
specification) or  (relative specification), where sm 
is the measurement uncertainty or the standard error.  
However, the average Poisson´s ratio does not result from 
a direct averaged measurement but from a function of 
several, as is shown in Equation (8). Therefore, the 
Poisson´s ratio depends on the average lateral 
displacement ∆b, the average axial displacement ∆l and 
both original average lengths l and b                       
( lb = f(∆b; ∆l; b; l)). 

 (8) 

Hence, the uncertainty of the Poisson´s ratio requires the 
calculation of a combined uncertainty using the Gaussian 
error propagation law. Therefore, all individual variables 
need to be normally distributed [19]. Using the Shapiro-
Wilk-test this was checked within this work. However, 
each individual variable given in Equation (8) is in turn 
also influenced by several factors. In case of the specimen 
width b for example, the inaccuracy of the calliper and the 
staff (the lab assistants who measure and prepare the 
specimens) already influence the variable. Hence, a 
combined standard error must already be determined for 
each individual variable included in Equation (8). 
The general Gaussian error propagation law is given 
with: 

 (9) 
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To determine the combined standard uncertainty of the 
Poisson´s ratio, this equation takes the following form 
when formulating the partial derivatives:  

 (10) 

The extended measurement uncertainty is calculated by 
multiplying the measurement uncertainty from Equation 
(10) by the coverage factor 1,96, which is often round up 
to 2,0. 

 (11) 

By indicating the respective extended measurement 
uncertainty of each test series a range of values is given. 
With a certainty of 95 % the true average Poisson´s ratio 
lies within this range. 
 
 
3 RESULTS AND DISCUSSION  
3.1 PRELIMINARY TESTS 
3.1.1 Hygric behaviour of wood as an influence on 

the Poisson´s ratio  
 
First tests consisted of 15 loading and unloading cycles. 
However, no convergence of the averaged Poisson´s 
ratios was noticeable. The hygric behaviour of wood was 
considered to be the reason for this since the specimens 
were measured in another climate after being conditioned 
at 20°C and 65% r.h. . In order to verify this, comparative 
tests were performed. 
Therefore, six RT-specimens were stored in two different 
climates. Three in the climatic chamber and three in the 
room, where the testing machine was located. The 
temperature in this measurement room was around 21°C 
with a relative humidity of approx. 40 %.  
In total three comparative tests were performed. Each 
measurement included two specimens, one that was 
conditioned in the climatic chamber (CC-specimen) and 
one that was conditioned in the measurement room (MR-
specimen).  
All three comparative tests showed very similar results. 
Figure 8 exemplarily shows one of the resulting graphs. 

Figure 8: Shrinkage and swelling deformations in [%] on the 
basis of comparative measurements 

The specimens conditioned in the climatic chamber show 
a significantly greater shrinkage in contrast to the 
specimens conditioned in the measurement room. On the 
basis of these comparative tests, it is apparent that the 
change in the ambient climate has a considerable impact 
measured within one hour after removal from the climatic 
chamber, as demanded in [11].  
Since it was not possible to move the testing machine to 
the climatic chamber within the scope of this work, all 
specimens were conditioned in the measurement room.  
Figure 9 shows the averaged paths of 15 loading and 
unloading cycles of two RT-specimens conditioned in the 
measurement room and of one specimen conditioned in 
the climate chamber. This clearly shows that testing the 
specimens in the same climate in which these where 
conditioned leads to a significantly lower dispersion. 
Hence, the shrinkage and swelling effects on the Poisson ́s 
ratios could be eliminated to a certain degree. Further, it 
is evident that the Poisson ́s ratios of the specimens 
conditioned and tested in the measurement room are more 
or less constant over the respective stress range and 
therefore already show a somewhat linear elastic 
behaviour. Moreover, a stronger convergence of the cycle 
paths from the tenth cycle onwards was noticeable for all 
specimen orientations. 
 

 
Figure 9: μRT-measurements in relation to the stress on the basis 
of two specimens preconditioned in the measurement room 

3.1.2 Impact of creep deformations on the Poisson's 
ratio 

Subsequently it was to be checked if creep deformations 
had an influence on the test procedure. For this reason, 
times of constant load of 20 seconds between loading and 
unloading were included. These were anticipated to lead 
to a faster convergence of the paths. Therefore, three 
specimens already tested without times of constant load 
were tested again including times of constant load within 
15 cycles. In addition, three, yet untested specimens were 
tested including times of constant load. Figure 10 shows 
the resulting averaged paths for each specimen over the 
applied stress range.  
The specimens measured for the second time including 
times of constant load show significantly smaller 
Poisson´s ratios than before. This is not inevitably due to 
creeping but could also be the result of compaction of the 
specimen during the previous measurements. However, 
this would also indicate that the linear elastic range had 
already been exceeded. 
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Figure 10: Poisson ́s ratios μTR over stress; TR1 to TR3 tested in 
15 load cycles without times of constant load; TR1,hold to TR3,hold 
tested with times of constant load; TR4,hold to TR6,hold not 
previously loaded specimens tested with times of constant load 

Considering the specimens that were not previously 
loaded (TR4,hold to TR6,hold) the Poisson´s ratios are 
approximately 30 % lower (μmean,4-6,hold = 0,213) compared 
to the specimens tested without constant loads                         
(μmean,1-3 = 0,358). The latter Poisson’s ratios measured 
without times of constant load fit better with the Poisson’s 
ratios measured on spruce wood in previous literature 
(e.g. [3],[4]).  
In conclusion, including times of constant load appears to 
have an influence on the Poisson ́s ratios. However, only 
few tests were carried out here including times of constant 
load. Similar tests in earlier literature are neither found for 
compression nor tensile loads. Therefore, the observed 
results would need to be verified in future studies using a 
significantly higher number of test specimens. Within this 
work, times of constant load are omitted.   
 
3.1.3 Verification of the linear elastic range 
A difficulty often mentioned in previous literature, 
regarding the Poisson ́s ratios, was the occurring 
asymmetry. Therefore, the assumed linear elastic range 
was checked prior to the main tests. In order to determine 
if micro cracks with a width of 10-20 μm occur in the 
assumed linear elastic range, the specimens were scanned 
before and after loading in a CT-scanner. Due to 
dimension restrictions only the middle part 
(30 x 30 x 30mm³) of the specimens was examined. 
Figure 11 explains the schematic procedure of the CT-
measurements. In order to estimate Fc,max  two “twin” 
specimens for each specimen group were taken from the 
same wooden log at adjacent locations and conditioned in 
the climate chamber. One of the twins was then loaded till 

failure. The other twin was used to detect occurring micro 
cracks following the procedure shown in Figure 11. In 
total, due to availability reasons of the CT-scanner, only 
three specimens were tested.  
The comparison of individual sections of the generated 
3D model, exemplarily shown in Figure 12, showed no 
noticeable changes at the micro level after loading the 
specimens up to 60 % of Fc,max in all three anatomical 
directions.  
In addition, due to availability reasons, only one specimen 
per load direction was examined. Concluding, the results 
obtained suggest that the linear elastic range is not 
exceeded up to 60 % of Fc,max. However, this needs to be 
verified on the basis of further measurements including a 
larger number of specimens and if possible, scanning a 
bigger part of the specimens. 
 

 
Figure 12: Exemplary CT-image of the 3D model of the 
specimen loaded in the tangential direction 

3.1.4 Preliminary tests – Conclusion  
The preliminary tests resulted in the following 
conclusions that were applied within the test procedure of 
the main tests.  

 Conditioning of the specimens in the 
measurement room as the hygroscopicity of 
wood makes it impossible to measure the 
Poisson´s ratios  

 The linear elastic range is verified for all three 
anatomical directions up to 60 % of Fc,max,est. 

 The Poisson´s ratio of each test specimen is 
evaluated in the range between 20 % and 55 % 
of the respective applied load  

 
 
 

Figure 11: Schematic procedure of the CT-measurements and the verification of the linear elastic range of spruce wood 
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3.2 MAIN TESTS 
After the test method and handling of samples was defined 
in several preliminary tests, the main tests were carried 
out to determine all Poisson's ratios by means of 
compression tests on spruce wood. The results are shown 
on the basis of boxplots in Figure 13 and are directly 
compared to the Poisson´s ratios found in literature 
(square markers, Figure 13). The different colours 
indicate the respective load types (red: tensile test, blue: 
compression test and green: bending test) that were 
applied in literature in order to measure the Poisson´s 
ratios. Table 1 summarizes all Poisson´s ratios and 
Youngs moduli including the measurement uncertainty 
and the associated average density and wood moisture 
contents of the respective test series.  
Examining the boxplots in Figure 13 it is evident that 
almost all Poisson´s ratios determined in Tripolt [7] and 
Kumpenza et al. [6] are higher than the ratios determined 
within this work. Both applied tensile tests and used 
optical measurement techniques (electronic speckle 
pattern interferometry (ESPI) and a combination of laser- 
and videoextensometry). For these measurement 
techniques, Kumpenza et al. [6] specifies the following 
measurement resolutions: ESPI 0,03 μm, video-
extensometry 0,2 μm and laserextensometry 0,11 μm. The 
Poisson´s ratios in both studies were determined on 

specimens with a higher wood moisture content (12 %) 
than present in this work (~7,4 %, Table 1). Further 
literature values, determined under the same conditions, 
though, do not show increased values (see NC [4] in 
Figure 13). As a consequence, neither the wood moisture 
content nor the load type appear to be responsible for the 
increased values. In fact, several indications lead to the 
assumption that the increased values in Kumpenza et al. 
[6] and Tripolt [7] resulted from strain measurements 
during the initial loading of the test specimens. 
Presumably this has to do with the residual stresses still 
present during the first loading [4].  
This was also evident during the preliminary tests realized 
in the work presented here.  
In case of the LT values the Poisson´s ratios given in 
Tripolt [7] lie within the inter-quartile range. Presumably, 
this is due to creep respectively shrinkage effects during 
capturing the images when using ESPI. That is why   
Kumpenza et al. did not give any values for μLT [6]. 
Furthermore, Tripolt mentions difficulties using ESPI on 
flat sawn where early and late wood alternate and thus, 
cause inhomogeneous stress conditions [7].  
Furthermore, the values determined in Kumpenza et al.  
[6], using a combination of laser- and videoextensometry, 
are all higher than the ratios determined within this work. 
As the strains were only recorded on one side of the 
specimen using this technique possible bending effects 

Figure 13: Boxplot of the Poisson ́s ratios of all test series on the basis of n specimens including the Poisson ́s ratios determined in 
previous studies; red: tension tests, blue: compression tests, green: bending tests  
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were neglected potentially influencing the resulting 
Poisson´s ratios.  
A quite good agreement of the values determined within 
in this work is seen regarding the Poisson´s ratios 
determined in Hörig [2], Wommelsdorff [3],  Niemz und 
Caduff [4] and Keunecke et al. [5]. Here, the test 
procedure also consisted of several load cycles. Almost all 
values lie within the inter-quartile range. Only for the RL-
series the Poisson´s ratios given in [2], [4] and [5] are 
below this range. It should be mentioned that the 
Poisson´s ratio given in Keunecke et al. [5] is a calculated 
value and not an outcome of a measurement. However, as 
already mentioned, the measurement of the lateral strain 
in longitudinal direction is generally problematic due to 
the higher stiffness in grain direction. Nevertheless, the 
Poisson´s ratio determined within this work shows a 
significantly lower deviation (CoV = 38 %) than stated in 
other studies (e.g.: CoV = 62 % [4], CoV = 59 % [6]). 
Moreover, the observed wood moisture contents of 
around 10 to 12 % given in these references are also 
higher than present in this work. Since the wood moisture 
content in radial direction has a greater influence, this 
might be the reason for the higher deviation of the values.  
Considering the values for μTL such a deviation cannot be 
observed which is probably due to the already higher 
outside temperatures at that time and thus a higher 
moisture content of around 9,5 % of the specimens.  Since 
the measurement uncertainty has not been a part in 
previous research further conclusions are difficult to 
draw. 
 
Table 1: Determined Poisson´s ratios and Young´s moduli 
including the measurement uncertainty and associated Density, 
Moisture content and Annual ring width of all test series 

Poisson´s ratio  [-] 
μRT 0,517 ± 0,085 
μTR 0,233 ± 0,044 
μTL 0,016 ± 0,005 
μLT 0,436 ± 0,085 
μRL 0,064 ± 0,017  
μLR 0,492 ± 0,123 

Young´s moduli [N/mm²] 
EL 12068 ± 1460 
ER 966 ± 103 
ET 302 ± 42 

Density [kg/m³] 
ρL 430 
ρR 428 
ρT 378 

Moisture content  [%] 
uL,mean 7,4 
uR,mean 7,4 
uT,mean 9,4 

Approx. annual ring width [mm] 
arw 2 

  
Also noteworthy is the resulting Poisson´s ratio μRT, that 
is above 0,5 (Table 1). As a matter of fact, this would 
indicate that a body under a hydrostatic pressure increases 
its volume [16]. However, this compressibility condition 

is only valid for isotropic materials. Wood is an 
anisotropic material with different Young´s moduli in the 
three main directions (L,R and T). Therefore, and since 
Poisson’s ratios above 0,5 have also been found in earlier 
studies, the Poisson’s ratio determined for the RT-series 
is feasible. 
The Young´s moduli result in the following ratio ET : ER : 
EL of 1 : 3,20 : 39,96. For comparison Niemz and Caduff 
[4]  state a ratio of 1 : 2,43 : 25,4, Tripolt [7] a ratio of                  
1 : 1,57 : 27,6, Kumpenza et al. [6] a ratio of 1: 3,69 : 
52,08 and the determined Young´s moduli in Keunecke et 
al. [5] correspond to a ratio of 1 : 1,57 : 32,24. Overall the 
determined orders of magnitude are therefore in 
agreement with the literature. The still persistent 
differences in the ratio of ER : ET can be traced back to the 
varying annual ring widths [4].  
The largest deviation from the literature values is evident 
regarding the Young´s modulus ET. This test series also 
shows a significantly lower density value and the highest 
moisture content. A possible reason for the lower density 
might be the small sample geometry combined with the 
annual ring width [4]. Since the Young´s modulus 
decreases with lower density [20], this might be the reason 
for the deviation. The lower moisture content of 9,4% 
compared to the literature values (~12%) should cause a 
higher Young´s modulus. Compared to the influence of 
the density, however, this seems to have less impact on 
the Young´s modulus. 
 
3.2.1 Symmetry condition  
When summarizing all obtained values and inserting these 
into the compliance matrix, the matrix should fulfil the 
symmetry condition. 

(12) 

It is seen, that at first glance, based on the presented 
compliance matrix in Equation (12) the symmetry 
condition is not identified as fulfilled. This is why the 
determined measurement uncertainties are additionally 
considered in the following. Thereby, the symmetry 
conditions are examined individually. 
First symmetry condition: 

 

 

[2,73; 5,88]  = [4,40; 9,39]  
 

(13) 

with: [min; max]. This results in an overlapping area of 
. Therefore, the 

symmetry condition can theoretically be fulfilled if both 
values lie within this range. Since the true average 
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Poisson´s ratio and the true Young´s modulus lie in the 
respective range with a 95 %-confidence, both values lie 
in the overlap range with a confidence of approx. 12 %. 
Following this example, the second symmetry condition 
(Equation (14)) is theoretically met on a confidence level 
of approx. 20 % and the third symmetry condition 
(Equation (15)) is met on a confidence level of approx. 13 
%. 

 (14) 

(15) 

In general, it can therefore be assumed that the 
compliance matrix determined here corresponds to the 
symmetry requirement. This supports the developed 
testing method and the applied measurement technique. 
The matrix given in Equation (12) can then take the 
following symmetrical form and may be applied in the 
context of FEM. 
 

(16) 

 
4 CONCLUSION AND OUTLOOK  
This paper takes the extended measurement uncertainty 
into account. As a result, the six determined average 
Poisson´s ratios can be stated with a 95 %-confidence. 
The results obtained seem to be consistent, since the 
average values lie in the middle range of the results stated 
in literature. This also includes the Young´s moduli and 
the density values.  
However, it was seen that measurements based on the first 
loading, lead to significantly higher Poisson´s ratios due 
to residual stresses. Within future studies it is therefore 
particularly important to provide more precise 
information on the test and load procedure. In this context, 
it is of interest whether measurements using ESPI or a 
combination of laser- and videoextensometry result in 
similar Poisson´s ratios as found within this work, when 
determining the Poisson´s ratio based on the 10th load 
cycle.  
Besides the load procedure, it also appears that the one- 
or two-sided measurements of the strains on a specimen 
influence the results. On the one hand this can be 
concluded from the values determined using laser- and 
videoextensometry in [6]. There, the strains were 
determined on only one side of the specimen and are 
above the determined average in all test series. On the 
other hand, a measurement on a TL-specimen in this work 
caused an extremely high Poisson´s ratio. This is why this 
measurement was eliminated within the evaluation here. 
Reason for this increased Poisson´s ratio was most likely 
the fact that one of the strain gauges was defective. Thus, 
the lateral strain was only recorded on one side of the 
specimen here as well.  

Additionally, it should be pointed out, that measuring TL 
and LT by means of optical measurement techniques is 
rather impractical. Difficulties due to different 
proportions of early- and latewood on the measuring 
surface were mentioned for example in [7]. Considering 
that these values, given in Tripolt [7] deviate significantly 
from the values determined here, this can be confirmed on 
the basis of this paper. 
What could not be confirmed within the present thesis is 
the stress dependence of individual Poisson´s ratios found 
in [3]. Prerequisite for an accurately constant Poisson’s 
ratio and thus a stress independent Poisson´s ratio is the 
accurately linear progression of the axial and lateral 
strain. On a random basis a linear regression was carried 
out on these strains over the stress. In each case, the strains 
run linearly, however, not perfectly. The resulting 
smallest deviations lead to a deviation of the Poisson’s 
ratio over the stress. As a consequence the partial stress 
dependence is more an artefact of the measurement 
fluctuations or measurement uncertainty than an actual 
stress dependence. This should be verified in detail in 
future studies, as the above finding is only based on a 
small sample number. In case it turns out that 
measurement fluctuations and the measurement 
uncertainty are not the reason for the partly recognisable 
stress dependence, the assumption of a rhombic-
crystalline behaviour of wood would have to be rejected, 
as was already mentioned by Wommelsdorff [3]. 
The present results of the preliminary tests further confirm 
that in the event of future studies investigating the 
influence of wood moisture on the Poisson’s ratios, 
special care needs to be taken to perform the 
measurements in the same climate in which the specimens 
are conditioned. Otherwise, shrinkage and swelling 
influences have already a considerable influence on the 
Poisson´s ratios within a short time periode. 
Significant correlations were only evident in a few cases. 
Moreover, these often differ from the correlations found 
in [7]. In addition, the Poisson’s ratios are not only 
dependent on the density and the Young’s modulus, but 
also on the microfibril angle and the cell shape angle [21]. 
These parameters were not recorded within the scope of 
this paper. Future studies should therefore examine 
correlations using a larger number of specimens and 
taking into account more wood properties such as the 
microfibril angle, the cell shape angle, etc.. 
Furthermore, creep also seems to have an influence on the 
measurement results of the Poisson’s ratio, as is apparent 
from the preliminary tests. In this context, it seems 
reasonable to determine Poisson’s ratios including the 
creep influence in future studies. These could be of 
particular importance for components subjected to long-
term stress. 
In summary, the determination of extended Poisson´s 
ratios of spruce wood has been achieved by integrating the 
measurement uncertainty. From an engineering 
perspective subsequent research should validate the 
Poisson´s ratios determined on clear wood specimens. For 
this purpose, a combination of finite element method 
(FEM) calculations in conjunction with associated 
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measurements on component-sized specimens suggests 
itself. 
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