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ABSTRACT: The effort to experimentally test glued laminated timber (GLT) beams is tremendous, especially for large 
beams. Such beams are increasingly used to realise wide-span timber structures, but experimental investigations of large 
beams are missing. In the literature, numerical simulation studies can be found instead to estimate the influence of the 
beam size. However, these studies come to partly different conclusions regarding the size effect, which confirms the high 
influence of the modelling strategy. Therefore, we conducted an extensive simulation program covering more than 8000 
simulations to research the size effect, including large GLT beams of up to 3300 mm depth.

The developed modelling concept considered the morphology of timber boards deterministically and accounts for discrete 
cracking to simulate the bending strengths of GLT beams subjected to four-point bending tests. We predicted the size 
effect on the characteristic bending strength for two commonly used strength classes. We found that the strength decreased
with increasing beam size. The results showed that the strength decrease is not only caused by the beam depth but also 
the length. Furthermore, the influence of different global failure criteria was investigated, with which the results from the 
existing studies could successfully be reproduced.
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1 INTRODUCTION
Glued laminated timber (GLT) is a building material 
suitable to realise a large variety of wide-span structures, 
e.g., hall constructions as well as office or apartment 
buildings. In recent decades, the dimensions, especially 
the beam depth, of GLT beams have increased 
continuously. The versatile use of GLT requires a 
comprehensive understanding of the mechanical 
behaviour and effective properties of the material.
However, there is a debate among experts about the 
influence of the size of GLT beams on their bending
strength.
This so-called size effect on the characteristic bending 
strength can be described by applying the commonly 
used factor to a characteristic reference bending 
strength :

(1)

Figure 1: Four-point bending test setup for a GLT beam 
according to DIN EN 408 [1] with the depth h and length .
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According to DIN EN 1995-1-1 [2], is provided in 
DIN EN 14080 [3] ( ) for beams with the reference 
beam depth of individual strength 
classes. The experimental test setup for GLT beams,
according to DIN EN 408 [1], is a four-point bending test 
(Fig. 1), where the beam length is always proportional to 
the beam depth. Further, the factor kh in [2] is only 
applicable for smaller beams, reading:

(2)

with a maximum strength increase that is limited to 10 %.
The power law given in Eq. (2) is consistent with the one 
for wooden members presented by Bohannan [4] based on 
Weibull’s strength theory [5]. Colling [6] also proposed 
considering the beam volume V and the loading 
configuration. Here we focus on the size effect kh based 
on the volumes that reads as:

(3)

where Vref is the reference Volume.
The effort involved in the experimental testing of larger 
GLT beams is tremendous. Thus, experimental 
investigations on the size effect in the literature [7–9]
focused on smaller GLT beams with depths up to
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600 mm. For the larger sizes, numerical studies were 
conducted, e.g., by Frese and Blaß [10] and 
Fink et al. [11], covering beam depths up to 3000 mm and 
1200 mm, respectively. These studies, however, provided 
partly contradictory results.
Therefore, we conducted an extensive simulation 
campaign to study the size effect for beams having depths 
up to 3300 mm [12]. The applied approach was based on 
a previous approach that simulates the entire loading 
process of GLT beams subjected to four-point bending 
tests [13]. Herein, we present the modelling concept that 
enabled us to predict the size effect for different beam 
depths and lengths. Furthermore, global failure criteria
similar to the ones used in the literature [10, 11] could be 
implemented and investigated, which will be presented in
detail in [14].
The present paper gives an overview of these studies. The 
structure is as follows: Section 2 presents the modelling 
concept to simulate the bending strength of GLT beams 
subjected to four-point bending tests. The investigation of 
the size effect and different global failure criteria is 
presented in Section 3. The paper closes with conclusions 
and an outlook.

2 MODELLING CONCEPT
The modelling concept builds upon a set of virtual boards 
to assemble GLT beams (Fig. 2). An experimental 
study [8] on GLT beams provided the morphological 
details of real wooden boards based on surface laser scans
(Fig. 2a). This enabled the virtual replication of each 
individual board with deterministic material properties, as 
outlaid in [15]. The approaches by Frese and Blaß [10]
and Fink et al. [11] used, in contrast, stochastic methods 
to construct the boards and their material properties. 
Vida et al. [13] presented a modelling approach to 
simulate the entire loading course of GLT beams 
subjected to four-point bending tests (Fig. 2b). For the 
study on the size effect [12], the approach was adjusted to
suit the research scope and its efficiency was increased by 
reducing its model size (Fig. 2c). There, only a beam 
section anywhere between the two loading points of a 
four-point bending test was considered, which allowed 
applying the constant bending moment M directly.
An overview of the procedure deriving the used material 
properties is presented in Section 2.1. Section 2.2
describes the modelling approach for beam sections

before Section 2.3 continues with its validation. The 
realisation of different beam lengths is discussed in 
Section 2.4.

2.1 MATERIAL PROPERTIES
The material properties were based on the deterministic 
estimation procedure presented by Kandler et al. [15]. 
Therein, the boards were virtually reconstructed and 
parted in sections. The section length was based on the 
corresponding knot configuration in the real wooden 
board, and thus the sections were of individual size
(Fig. 3). Each section refers either to defect-free wood, so-
called clear wood, or to sections with single large knots or 
knot clusters, referred to as knot sections.

Figure 3: Board section with homogeneous material 
properties. [13]

The material properties of each section were constant, and 
the material behaviour was orthotropic. The stiffness 
properties for the clear wood sections were based on a 
micromechanical multiscale model proposed by 
Hofstetter et al. [16]. The model used density and 
moisture content as the primary input parameters. 
Consequently, each board had its own individual stiffness 
tensor . A separate FE approach [15] estimated the 
longitudinal modulus of elasticity (MOE) EL,i for each 
knot section i individually. The stiffness tensor was then 
modified along the board by EL,i. The tensile strength in 
longitudinal direction ft,i was assumed to be 
for the clear wood sections of all boards. However, the 
clear wood strength represents an upper strength limit 
having only a minor influence on the load-bearing
capacity [13]. Within knot sections, ft,i was estimated by 
the knot-area ratio according to the study presented by 
Lukacevic et al. [17]. Finally, the section-wise constant
effective MOE EL,i and tensile strength ft,i in the 
longitudinal direction were provided for each board by 
two material property profiles (Fig. 4a,d). Two strength 
classes, T14 and T22, were considered.

Figure 2: Modelling concept that was based on (a) GLT beams assembled by real timber boards [8], (b) GLT beams 
reconstructed by virtual boards using derived material property profiles of real wooden boards [13], and (c) GLT beam sections 
employed to estimate the size effect [12].
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In total, 140 boards of each strength class were available. 
The board’s length was 5400 mm, the width 90 mm, and 
the thickness 33 mm. The longitudinal MOE of an entire 
board EL,l considered all sections i of the board as a chain 
of linear springs: 

 (4) 

where  is the length corresponding to the section-wise 
constant EL,i from its stiffness profile (Fig. 4a). 
Figure 4c,d shows the histograms and the fitted normal 
probability distribution functions (PDFs) of EL,l according 
to Eq. (4) for both strength classes T14 and T22, 
respectively. The board tensile strength ft,l is assumed as 
the lowest strength ft,i of section i within the strength 
profile of the considered board (Fig. 4b): 

 (5) 

Figure 2e,f shows the histograms and the fitted log-
normal PDFs of ft,l according to Eq. (5) again for both 
strength classes, respectively. A comparison of the 
characteristic tensile board strength and the mean 
longitudinal board MOE to the values according to 
DIN EN 14080 [3] is given in Tab. 1. Generally, the 
simulated values are lower than those specified in the 
standard. The underestimation could be due to different 
board lengths in the test setup, especially regarding the 
strengths.  
 
2.2 MODELLING APPROACH 
We used a non-linear FE approach to simulate GLT beam 
sections (Fig. 5) by employing the FE software 

Abaqus [18]. Details about the approach are published 
in [12]. The beam layout was assembled by the virtually 
reconstructed boards from Section 2.1, and the beam 
structure was designed to be homogeneous. 
Consequently, only boards corresponding to strength 
class T14 or T22 were used to simulate beams of strength 
class GL 24h or GL 30h, respectively. The boards within 
a beam were arranged by a uniformly distributed pseudo-
random process of the following steps: 

1. Random picking a full-length board from the entire 
pool of virtual boards. 

2. Random longitudinal displacement of the board 
within the GLT beam section to define the start and 
end positions of the lamella. 

3. Random choice of the lamella’s orientation in the 
GLT beam layout. 

Typically, restrictions on the length of boards are reversed 
by connecting individual boards with finger joints. 
Herein, weak points due to finger joints were neglected. 
We assumed that the structural behaviour and failure is 
covered by the random allocation of natural weak spots, 
as it was found by experimental studies [7, 19]. 
 

The beam section (Fig. 5) was modelled with the variable 
length-to-depth ratio , where  
depending on the number of laminations k. The 
length  was added on both ends to avoid 
disturbing the area of interest by load application effects. 
The constant bending moment M was applied at the 
reference points R1 and R2 by prescribing a reversed 
rotation. During the loading, the cross-sections at both 
beam ends stayed planar. The beam width b was 
according to the used boards, and the symmetry in the 

 

Figure 4: Example of a board’s property profiles providing (a) the effective longitudinal MOE L ( ) and (b) the effective tensile 
strength t ( ) as well as histograms considering all boards and PDFs fitted by maximum likelihood estimations for (c,d) the 
MOE L,l and (e,f) the tensile strengths t,l, separate for both strength classes T14 and T22. [13] 

Table 1: Comparison of the mean and characteristic values of the histograms in Fig. 2c–f to values according to 
DIN EN 14080 [3]. [13] 

Strength EL,l,mean EL,0,l,mean ft,0,l,k ft,0,l,k 
class (N/mm2) (N/mm2) (N/mm2) (N/mm2) 
T14 9 592 11 000 11.6 14.0 
T22 12 497 13 000 16.6 22.0 
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width direction was exploited to reduce the model size 
further. 
 

We considered different kinds of local failure 
mechanisms within the approach, i.e., discrete cracks in 
the vertical and horizontal direction as well as plastic 
deformations. All failure mechanisms could only take 
place within the region of the length  as marked in Fig. 5. 
 

The vertical cracks could occur within the lamellas on the 
tensile side, and the horizontal cracks between all adjacent 
laminations building up the beam section (Fig. 5). Both 
crack directions enabled the formation of a continuous 
crack over multiple laminations. Two vertical cracks with 
a horizontal offset and in adjacent laminations could be 
connected by a horizontal crack. Their implementation is 
briefly outlined in the following: 

 Vertical cracks were realised within the 
framework of XFEM, which was proposed by 
Tapia Camú and Aicher [20]. The application of 
XFEM enabled an element to split into two parts 
with planar and opposing crack surfaces. The 
split was initiated by an initiation criterion, i.e., 
the tensile stress in the centroid of an element 
exceeding the tensile strength ft,i. The maximum 
traction stress t  between the crack surfaces was, 
thus, ft,i. A linear traction–separation (t– ) law 
(Fig. 6a) governed the interaction between the 
crack surfaces in conjunction of a constant 
fracture energy . 

 Horizontal cracks were implemented with 
cohesive surfaces. The traction–separation (t– ) 
relation between the two parts was linear elastic 
until the initiation of damage and its evolution 
(Fig. 6b). The maximum traction stress t  is set 
to  and  for 
transversal tensile stresses and shear stresses, 
respectively. An uncoupled stiffness tensor 
defined the traction  between the surfaces and 
their separation . A constant fracture energy

. 
The applied constant properties were assumed because of 
the lack of available data, e.g., for the fracture energies. 
 

The plastic deformations in compressive zones were 
considered by implementing ideal plastic behaviour with 
a multisurface failure criterion [21–23]. The relevance of 
plastic deformations on the load-bearing capacity was 

assumed to be limited to smaller beam depths based on an 
experimental study [8]. Thus, ideal plasticity was only 
implemented for beams consisting of a maximum of 20 
lamellas corresponding to a depth of 660 mm (Fig. 5). 
 

The applied global failure criterion determined the load-
bearing capacity Mmax by the first load decline of at least 
3 % from the so far maximum total load M. Finally, the 
calculated bending strength of the beam reads as: 

 (6) 

where the dimensions b and h can be found in Fig. 5. 
 

Next is the validation of the approach. The influence of 
the element size and the plastic deformations on the 
bending strength are additionally discussed in [12]. 
 

 

Figure 6: Traction–separation ( – ) law with the area 
representing the fracture energy f for (a) vertical cracks and 
(b) horizontal cracks, where  and  are the traction and 
separation at damage initiation, respectively, and f is the 
separation at fully evolved damage. [13] 

2.3 VALIDATION 
To validate the approach, we compared the results of 40 
tested GLT beams with simulation results, i.e., the 
effective MOE EGLT and bending strength fb (Fig. 7). The 
experimental study [8] focused on GLT beams with well-
known knot morphology without containing any finger 
joints. The beams were manufactured using the same 
boards from the virtual reconstruction process presented 
in Section 2.1. Thus, it was possible to recreate each tested 
beam with the unique beam layout and material properties 
for the simulations. 
 

The validation covered two strength classes, i.e., GL 24h 
and GL 30h, and two beam sizes with 132 mm and 
330 mm depth. The different beam configurations were 
classified by four types, A, B, D, and E, designated 
according to their strength class and number of lamellas: 

 

Figure 5: Representative GLT beam section of length  as used for the numerical simulations with k lamellas resulting in the 
depth . The constant bending moment M and the bearing were applied at the reference points R1 and R2. [12] 
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A/T14-4, B/T22-4, D/T14-10, and E/T22-10. The test 
setup of the experiments was according to 
DIN EN 408 [1]. 
 

The simulations reconstructed the tested beams in the 
range between the two loading points with a dimensional 
ratio . The simulation results successfully 
reproduced the characteristics of the experimental results 
for the different strength classes and beam sizes, as shown 
in Fig. 7. 
 
2.4 CONSIDERATION OF DIFFERENT 

DIMENSIONAL RATIOS 
The ratio of beam length to depth , also referred to as 
dimensional ratio, influences the structural response, as 
presented in [12]. This was shown by simulating beam 
sections having ratios  of  and  for beam depths 
of h of 165 mm, 330 mm, and 660 mm. However, the 
larger dimensional ratio requires larger finite element 
models for which the computation time of the nonlinear 
calculations became quite long. Therefore, the bending 
strength prediction of different dimensional ratios based 
on models having only a ratio of  would be very 
valuable. 
 

The applied solution to this problem was to estimate the 
bending strength of larger dimensional ratios  in 
the following way: 

 (7) 

with , where n denotes the number of 
simulation results from models with  and  is 
the floor function that rounds the included number to the 
nearest smaller integer. 
 

A rough validation was done by comparing the PDFs 
(Fig. 8) corresponding to the simulation results having the 
ratio  of  and . The PDFs of fb were log-
normal distributions fitted by maximum likelihood 
estimations. Considering the simplicity of Eq. (7), the 
agreement with the simulation results was surprisingly 
good. The maximum deviation of the mean bending 
strength was 3.3 % and of the characteristic bending 
strength 2.2 %. Consequently, the influence of different 
dimensional ratios can be estimated by this method. 
 
3 COMPUTATIONAL STUDY ON THE 

SIZE EFFECT 
To study the size effect on the bending strength of large 
GLT beams, we carried out an extensive simulation 
campaign that is summarised in the following and 
presented in detail in [12]. The study covered beam sizes 
ranging from 165 mm up to 3300 mm for two strength 
classes, i.e., GL 24h and GL 30h. The number of 
simulations performed depended on the beam size but was 
the same for both strength classes (Tab. 2). All 
simulations were carried out with a dimensional ratio of 

 using the 140 virtually reconstructed wooden 
boards of each strength class from Section 2.1. 
 

 

Figure 7: Comparison of experimental results (subscript exp) to simulation results (subscript sim) for (a) the effective MOE 
EGLT and (b) bending strength fb. [12] 

 

Figure 8: Comparison of PDFs for the bending strength fb obtained from simulations with the dimensional ratios of 6.0 or 
4  1.5 covering both strength classes for three beam depths: (a) 165 mm, (b) 330 mm, and (c) 660 mm. [12] 
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The study [12] covered GLT beams having fixed 
dimensional ratios (Section 3.1) and variable dimensional 
ratios (Section 3.2). Additionally, the influence of the 
applied global failure criterion was investigated 
(Section 3.3), and the results will be published in [14].  

Table 2: Studied beam depths with the corresponding number 
of lamellas and simulations. [12] 

Depth h Lamellas k Sample sizea 
(mm) (–) (–) 

165 5 1600 
330 10 400 
660 20 400 

1320 40 400 
1980 60 300 
2640 80 200 
3000 100 200 

a For each strength class with  
 
3.1 BEAM SECTIONS WITH FIXED 

DIMENSIONAL RATIO 
The test setup, according to DIN EN 408 [1], always 
requires a dimensional ratio  for the maximum 
loaded range. Consequently, the beam length  increases 
when increasing the depth h. The effective bending 
strengths were calculated using the simulation results in 
conjunction with Eqs. (6) and (7) to obtain representative 
results for the required dimensional ratio .  
  

The effective bending strengths decreased for both 
strength classes with increasing beam size (Fig. 9a,b). The 
decrease was present for the mean and characteristic 
bending strength, fb,mean and fb,k, respectively. The mean 
and characteristic values were obtained from the two-
parameter log-normal PDFs, which were fitted to the 
entire sample by maximum likelihood estimations. 
Additionally, the PDFs showed a decreasing variation 
with increasing beam size. The decreasing variation 
results in a lower decrease of fb,k compared to fb,mean.  
 

On the level of fb,k, the size effect kh according to Eq. (3) 
was clearly present for the entire range of simulated beam 
sizes (Fig. 9c). For the analytical solution represented by 
Eq. (3), the characteristic reference bending strength fb,k,ref 
and the power law parameter m were fitted to the 
simulation results by the least squares method. The 

reference depth href was set to 600 mm according to 
DIN EN 14080 [3].  
 

The characteristic reference bending strengths fb,k,ref found 
through fitting overestimate the values provided in 
DIN EN 14080 [3] by about 7 % and 4 % for GL 24h and 
GL 30h, respectively (Tab. 3). The found parameter m is 
quite similar for both strength classes having a mean value 
of 26.2. 
 

Both strength classes showed about the same decrease. 
The largest simulated beams ( ) showed a 
reduced fb,k of about 12 % compared to fb,k,ref (Fig. 9c). For 
smaller beam depths than href, the predicted kh agrees well 
with the modification according to Eq. (2) from 
DIN EN 1995-1-1 [2]. Additionally, our results agreed 
very well with two experimental studies from the 
literature testing beams with depths of about 300 mm and 
600 mm. Aasheim and Solli [7] and Schickhofer [9] 
identified kh as 1.07 and 1.04, respectively. For the same 
beam depths, our approach predicted kh to be 1.05. The 
result was obtained using the mean value of the 
parameter m corresponding to both strength classes in 
Eq. (3). 

Table 3: Characteristic reference bending strength fb,k,ref and 
power law parameter m fitted to the simulation results. [12] 

 
GL 24h GL 30h 

fb,k,ref m fb,k,ref m 
(N/mm2) (N/mm2) (N/mm2) (N/mm2) 

Load 
drop 25.74 27.00 31.23 25.38 

 
3.2 BEAM SECTIONS WITH DIFFERENT 

DIMENSIONAL RATIO 
As already pointed out, the test setup, according to 
DIN EN 408 [1], defines a fixed ratio of the length  
between the two loading points and the beam depth h. 
However, the dimensional ratio  of GLT beams is 
determined during the design process and might not 
coincide with the fixed dimensional ratio of the 
experiments. Therefore, investigating the size effect on fb,k 
for different dimensional ratios  is highly relevant for 
practical application. 
 

 

Figure 9: Bending strength fb values and PDFs obtained from simulations with the beam depth h and a dimensional ratio of 
4  1.5 for strength classes (a) GL 24h and (b) GL 30h, which are used to derive (c) the factor kh commonly used to describe the 
size effect. [12] 
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The different ratios  were realised using the procedure 
presented in Section 2.4. The simulation results stemmed 
from the models having a dimensional ratio of 1.5. For 
each of the seven simulated beam depths h, five different 
lengths  were investigated, covering ratios  ranging 
from 1.5 to 9.0. The obtained characteristic bending 
strengths fb,k,h for each ratio of a specific beam depth h 
were normalised by fb,k,h,6.0 of the same beam depth h with 
a ratio  ( ). This normalised value is 
herein denoted as . 
 

The simulation results indicated that the ratio  heavily 
influences the bending strength of a GLT beam (Fig. 10). 
By changing the ratio for a specific beam depth h, the 
investigated beam length changes. When looking at a 
particular beam depth, the characteristic bending strength 
of a beam with a shorter length was smaller than that of a 
longer length. Especially beams with a depth smaller than 
660 mm showed a more pronounced influence of the 
dimensional ratio . For each individual ratio, the 
larger beams showed an almost constant factor . 
Consequently, the same size effect is present for only 
changing the beam length or depth. The horizontal lines 
in Fig. 10 render the results of Eq. (3) in conjunction with 
the results provided in Tab. 3. The simulation results 
agreed well with the analytical concept. 
 
3.3 INFLUENCE OF THE APPLIED GLOBAL 

FAILURE CRITERION 
The applied modelling approach enabled the investigation 
of different global failure criteria for each simulation. 
This was possible by simulating the entire loading process 
and determining the load-bearing capacity afterwards. 
The size effect on fb,k of large GLT beams had been 
estimated before by Fink et al. [11] and Frese and 
Blaß [10]. However, their results diverged from each 
other. To investigate the influence of applied global 
failure criteria, we implemented similar criteria within our 
approach. The modelling strategies of each approach were 
different, making a completely identical description of the 
failure criteria impossible, e.g., due to a different mesh 
size or the implementation of discrete cracking. 
Nevertheless, we tried to implement the criteria as closely 
to the proposed one as possible. The implementation of 
the global failure criteria and the main differences 
between the modelling strategies will be discussed in 
detail in [14]. 

 

The applied global failure criterion defined the simulated 
load-bearing capacity Mmax used to further calculate the 
corresponding bending strength fb according to Eq. (6). 
Additional to our already presented load drop criterion 
(Section 2.2), we implemented the following global 
failure criteria: 

 The global stiffness reduction criterion is met by 
the first global stiffness reduction of at least 1 % 
compared to the initial global stiffness of the first 
loading increment. The global stiffness is 
calculated in each increment with the current 
bending moment and rotation. The load-bearing 
capacity is then the maximum load during the 
loading before the criterion is fulfilled. This 
implementation is similar to the criterion applied 
by Fink et al. [11]. 

 The first crack initiation criterion focuses only 
on the initiation of the first crack in the outermost 
tensile lamination to identify the load-bearing 
capacity. The load-bearing capacity is then the 
maximum bending moment observed during the 
entire simulation up to this point. During the 
loading process, an arbitrary number of cracks 
can occur within the other laminations of the 
beam. This criterion is comparable with the one 
used by Frese and Blaß [10] and Frese [24]. 

 

The estimated individual trends of the size effect kh for 
each global failure criterion (Fig. 11) agreed very well 
with the results presented in the literature. The stiffness 
reduction criterion predicted basically no influence of the 
beam size on fb,k, which agrees with the result presented 
in Fink et al. [11]. The first crack initiation criterion 
resulted in a decrease only a bit larger than proposed by 
Frese and Blaß [10]. The characteristic bending strengths 
of all criteria were taken from fitted log-normal PDFs. 
 
4 CONCLUSION AND OUTLOOK 
The development of reliable modelling concepts is of 
significant importance to effectively investigate wood 
products such as GLT beams. In the present study, a 
comprehensive simulation campaign of more than 
8000 simulations could predict the size effect for large 
GLT beams of up to 3300 mm depth. It was further shown 
that not only the beam depth influences the characteristic 
bending strength but also the beam length. The size effect, 

 

Figure 10: Comparison of the normalised values  of each individual beam depth h: the scatters refer to the simulated results 
in conjunction with Eq. (7), and the horizontal lines are according to Eq. (3). [12] 
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including changes in beam length and depth, could 
adequately be described by the concept proposed by 
Colling [6], at least for beams with depths greater than 
660 mm. Additionally, results of numerical studies from 
the literature could be reproduced by using corresponding 
global failure criteria. 
 

Numerical simulations offer an efficient way to perform 
extensive parameter studies of different kinds to make 
reasonable predictions. Nevertheless, simulation results 
need to be carefully validated as they might heavily 
depend on their modelling strategy. Experimental testing 
of such large GLT beams is unfortunately missing, which 
would strengthen the value of such studies. 
 

As for future research focus, the aim is to obtain section-
wise constant fracture energies for individual knot 
sections, which then can be used to replace the for now 
constant one. This could be achieved by employing the 
so-called phase-field method [25, 26], which is one of our 
main current research focuses. 
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