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ABSTRACT: In Europe, fifth percentile values are required for the calculation of characteristic values of strength and 
density. The European standard EN 14358:2016 defined three ways to calculate a 75% lower confidence bound (LCB) 
for such fifth percentile values, based either on a lognormal parametric approach, on a normal parametric approach or on 
a non-parametric approach. Using simulated data with different sample sizes and with different underlying distributions, 
this paper studied the effects of using each of the three approaches of EN 14358. As the third approach in EN 14358 did 
not seem to be fully non-parametric, the simulation study included, as a fourth approach, a fully non-parametric 
calculation of the LCB for the fifth percentile. The simulation study confirmed that both non-parametric approaches led 
to acceptable results for some important distributions, although the non-parametric approach defined in EN 14358 seemed 
to be more conservative especially for data with a non-normal distribution. The study also confirmed that the use of an 
incorrect parametric assumption can lead to systematically misleading LCB values for the fifth percentile. The authors 
recommend replacing the non-parametric approach currently defined in EN 14358 by a fully non-parametric approach. 
This approach can easily be implemented in a standard. 
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1 INTRODUCTION 456 
Fifth percentile values are frequently required when 
assessing strength. Such values are also used for assessing 
the strength of timber, timber products and timber 
structures. In recent years, the European standard 
EN 14358 [1] has evolved towards encompassing a 
number of cases for calculating fifth percentile values. 
In its original form from 2006, the standard EN 14358 [2] 
contained instructions for calculating 75% lower 
confidence bounds (LCB) for the fifth percentile 
assuming a lognormal distribution; the purpose was to 
assess test results for connections and wood-based 
products. Construction timber was explicitly excluded 
and was dealt with in a separate standard (EN 384 [3]). 
The calculation in EN 384 differed from the one in 
EN 14358 in two important aspects: it was a 
nonparametric fifth percentile (in contrast to the 
parametric lognormal distribution assumption in 
EN 14358), and the fifth percentile itself was reported as 
the result (in contrast, EN 14358 required to report the 
75% LCB). With the revision of both standards in the year 
2016 [1, 4], the calculation of the fifth percentiles was 
completely moved from EN 384 to EN 14358. In the 
course of this revision, EN 14358 was extended to 
encompass, in addition to lognormal fifth percentiles, also 
fifth percentiles for normally distributed quantiles, 
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nonparametric fifth percentile calculation, and mean 
values of normally distributed quantities, all with a 75% 
LCB [1]. 
For the parametric quantities, the standard gives three 
options for calculation: using an exact formula, using a 
rational approximation, and using tabled coefficients. For 
the 75% LCB ݉௞  of the nonparametric fifth percentile ݕ଴,ହ, only an approximation formula is given [1]: ݉௞ = ଴,ହݕ ൬1− ݇଴,ହ,଴,଻ହܸ√݊ ൰ (1) 

where ݊ is the sample size, ܸ  is the coefficient of variation 
(CoV), and ݇଴,ହ,଴,଻ହ is a factor of which the standard 
claims that it leads to the 75% LCB [1]: ݇଴,ହ,଴,଻ହ = 0.49݊+ 170.28݊+ 7.1 (2) 

The authors could not trace the origins of these formulas 
and the underlying assumptions remained unclear. But the 
use of the coefficient of variation ܸ in formula (1) makes 
it clear that some parametric assumptions have to be 
involved. 
On the other hand, there is a well-known method to 
calculate a fully nonparametric LCB (see, for example 
[5]). This method is discussed in more detail in section 2.1 
below. 

3 Andreas Neumüller, Holzforschung Austria, Austria, 
a.neumueller@holzforschung.at 
 
 
 

735 https://doi.org/10.52202/069179-0101



 

 

How does this method perform in comparison to the 
approaches defined in EN 14358 [1]? 
In the long run (after, say, 1000 repetitions), we would 
expect that, in 75% of the cases, the true fifth percentile 
value is above the 75% LCB. This fact was used in the 
present paper to compare the 75% LCB calculation 
approaches from EN 14358 [1] and from the fully 
nonparametric approach with the true fifth percentile 
values for simulated data with a known distribution. 
 
2 MATERIAL AND METHODS 
 
2.1 FULLY NONPARAMETRIC 75% LOWER 

CONFIDENCE BOUND FOR THE FIFTH 
PERCENTILE 

To get a non-parametric LCB for the fifth percentile of a 
sample with ݊ measurement values, we order the 
measurement values by increasing value, so that ݔଵ is the 
smallest value, ݔଶ the second smallest value, and ݔ௡ the 
largest value. We say that these values have rank 1, 2 and ݊, respectively. 
The probability with which the measurement value ݔ௜ 
with rank ݅ underestimates the fifth percentile can be 
calculated using the binomial distribution [6]. 
This probability is independent of the actual values ݔ௜ – it 
only depends on the ranks ݅. Therefore, one can calculate 
a table which tells, for each sample size ݊, the maximum 
rank ݅௠௔௫ which fulfils the following condition: The 
probability that ݔ௜೘ೌೣ underestimates the fifth percentile 
is 75% or more. Underestimating the fifth percentile 
means that we get a conservative estimate of the fifth 
percentile. 
Table 1 lists such values ݅௠௔௫ (ranks) for selected values 
of ݊. Such a table could easily be incorporated in a 
standard. For intermediate values of ݊, one would have to 
pick the smaller rank value (e.g., for ݊ = 50, still the 
value ݔଵ with rank 1 would have to be picked as the 75% 
LCB). 
Table 1: Lowest sample size n for which the element with a 
given rank (counted from the smallest to the largest value) is a 
nonparametric 75% lower confidence bound (LCB) for the fifth 
percentile. 

rank n rank n rank n 
1 28 8 193 15 347 
2 53 9 215 16 368 
3 78 10 237 17 390 
4 102 11 259 18 412 
5 125 12 281 19 433 
6 148 13 303 20 455 
7 170 14 325 21 476 

 
Due to the discrete nature of the binomial distribution, for 
intermediate values of ݊, the probability that ݔ௜೘ೌೣ 
underestimates the fifth percentile can be quite a bit higher 
than the 75% which we aimed for – for example, the 
probability for ݊ = 40 is 87%. However, it is also 

possible to determine interpolated ranks directly at the 
desired probability of 75%, for example, by using the R 
package cbinom which provides a continuous analog of 
the binomial distribution [7]. 
In the present study, we used the sample sizes ݊ = 40, 80, 
500, 1000 and 100000 (see 2.3) – for these, the 
interpolated ranks are 1.488, 3.107, 22.13, 45.77 and 
4954, respectively. These ranks were used for the 
calculation of the fully non-parametric LCB values in the 
study. 
 
2.2 INCLUDED PROBABILITY DISTRIBUTIONS 
We included normal and lognormal distributions, because 
they are included in EN 14358. For normal distributions, 
the location parameter does not influence the results, so 
we chose 420 (required mean density in kg/m³ for C24 in 
EN 338 [8]) and used CoV values of 5%, 10% and 20%. 
For the lognormal distribution, the location parameter also 
changes the shape of the distribution, so we calculated 
mean strength values corresponding to the requirements 
for C16, C24 and C35 in EN 338 [8] together with CoV 
values of 5%, 10% and 20%. A further important class of 
distributions are truncated normal distributions, because 
these represent an extreme case of what efficient strength 
grading can do. Here we took the normal distributions 
defined above but cut off everything below 310, 350, 
respectively 390 (required fifth percentile of density in 
kg/m³ for C16, C24 respectively C35). The calculations 
on the truncated normal distributions were handled using 
the R package truncnorm [9]. 
Regarding normal distributions, it is important to note that 
those always include negative values (if maybe only with 
a small probability). Negative values are not realistic in 
the application and cause the calculation of parametric 
lognormal LCB values to fail. Therefore, the normal 
distributions are actually modelled as truncated normal 
distributions truncated below 1. 
The parameterization of the different distributions is listed 
in Table 2. 
 
2.3 SIMULATION STUDY 
We simulated 1000 samples of each of the distributions 
given in Table 2, for each of the following sample sizes: 
40, 80, 500, 1000 and 100000. 40 was chosen as the 
smallest sample size, because below that, the 
nonparametric calculation according to EN 14358 may 
not be used [1]. 100000 was chosen as an "almost infinite" 
sample size, where we expected the LCB to be almost 
equal to the sample fifth percentile, and we expected the 
sample fifth percentile to almost perfectly match the true 
fifth percentile according to the distribution.  
 
2.4 STATISTICAL ANALYSIS 
For each simulated sample, we calculated parametric 75% 
LCB values for the fifth percentile according to EN 14358 
[1] assuming a normal or lognormal distribution. Further, 
nonparametric LCB values according to EN 14358 [1] and 
according to the procedure outlined in section 2.1 were 
calculated. 
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For each simulated sample and each calculated LCB 
value, we determined the "true percentile" this LCB value 
corresponded to according to the distribution by which the 
sample was generated. 
For example, the "true percentile" of 350 in a normal 
distribution with mean 420 and a CoV of 10% is 4.78. The 
"true percentile" value 4.78 in this example is lower than 
five. This means that 350 is a conservative estimate of the 
fifth percentile of the underlying distribution – in fact, the 
actual fifth percentile of the underlying distribution is 
351. 
All calculations were performed using R 4.2.1 [10]. 
 
3 RESULTS AND DISCUSSION 
In Figure 1, the results of the simulation study were 
summarised using boxplots. On the vertical axis, for each 
75% LCB value, the "true percentile" value in the 
respective underlying distribution was plotted. The upper 
end of each box corresponded to the threshold below 
which we found 75% of the observed values. For the 75% 
LCB, we would expect 75% of the observed values to be 
below the target value five, which is indicated by the black 
horizontal line.  
For an optimal 75% LCB, the upper end of the box would 
be at the target value five, which means that 75% of the 
calculated values would be conservative estimates of the 
fifth percentile of the underlying distribution. 
If the upper end of the box is above five, the calculated 
LCB values are too optimistic. If the upper end of the box 
is far below five, the calculated LCB values are very 

conservative. If the height of the box is large, the LCB 
values have a large spread. The ideal situation would be a 
box with low height with its upper end at or closely below 
five. 
In Figure 1a, the true percentiles for the parametric normal 
calculation of 75% LCB values according to EN 14358 
are shown. When the underlying distribution was normal 
(leftmost five boxes in Figure 1a), the height of the boxes 
as well as the distance of the true percentiles to the target 
value five decreased with increasing sample size ݊. For ݊ = 100000, there were almost no deviations of the true 
percentile from the target value five. However, for the 
other underlying distributions in Figure 1a, the heights of 
the boxes and the distances from the target value five did 
not decrease. In particular, even for ݊ = 100000, the true 
percentile values could be far away from the target value 
five. Even if the discrepancies are on the conservative 
side, it is clear that the parametric normal LCB calculation 
was misleading when the underlying distribution was not 
normal. 
A similar pattern could be observed for the parametric 
lognormal calculation of 75% LCB values (Figure 1b). 
When the underlying distribution was lognormal (central 
five boxes in Figure 1b), the parametric lognormal 
calculation was close to optimal. For other underlying 
distributions, the parametric lognormal LCB calculation 
was misleading. When the underlying distribution was 
normal, the upper ends of the boxes were above the target 
value five, meaning that more than 25% of the LCB values 
were too optimistic, and this share increased with 
increasing ݊. For ݊ = 1000, 75% of the LCB values were 

Table 2: Parameters for the simulated distributions. mu and sigma describe location and spread. "lower bound" is a parameter for the 
truncated normal distribution that ensures that no values below the lower bound are included in the distribution. For simulation, this is 
implemented using accept-reject sampling (see help on rtruncnorm in [6]). Additionally, the fifth percentile of the distribution is given. 

distribution mu sigma lower 
bound 

fifth 
percentile 

normal 420 21 1 385 
 420 42 1 351 
 420 84 1 282 
lognormal 2,85 0,05  15,9 
 2,94 0,0998  16,1 
 3,1 0,198  16,0 
 3,26 0,05  24,0 
 3,34 0,0998  23,9 
 3,5 0,198  23,9 
 3,64 0,05  35,1 
 3,72 0,0998  35,0 
 3,88 0,198  35,0 
truncated normal 420 21 310 385 
 420 42 310 353 
 420 84 310 329 
 420 21 350 386 
 420 42 350 365 
 420 84 350 361 
 420 21 390 396 
 420 42 390 395 
 420 84 390 397 
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too optimistic, and for ݊ = 100000, all parametric 
lognormal LCB values were above the target value 5. 
Both nonparametric approaches to calculating 75% LCB 
values (Figure 1c and d) worked for all underlying 
distributions examined in this study. In all the cases, the 
height of the boxes as well as the distance of the true 
percentiles to the target value five decreased with 
increasing sample size ݊. For ݊ = 100000, there were 
almost no deviations of the true percentile from the target 
value five.  
In Figure 2, the boxes from Figure 1c and d were 
rearranged to facilitate comparisons between the two 
nonparametric approaches to calculating 75% LCB 
values. When the underlying distribution was normal, the 
two approaches behaved similarly, with the fully non-
parametric LCB values being slightly closer to the target. 
For an underlying lognormal distribution, and even more 
for an underlying truncated normal distribution, the fully 
non-parametric LCB values were distinctly closer to the 
target fifth percentile.  
 
In Figure 1, the dangers of using a parametric calculation 
of the 75% LCB can be observed. If the distribution 
assumptions are not met, there is a risk of obtaining 
misleading results. 
The non-parametric approaches to calculating the 75% 
LCB seemed to work well for very different types of 
distributions, at the cost of a higher spread of the values 
(indicated by greater heights of the boxes in the plots). 
To facilitate the inclusion of the fully non-parametric 
approach in a standard, it would be helpful to have an 
approximation function for the interpolated ranks which 
are needed to calculate the fully non-parametric LCB 

values (section 2.1). Using linear regression, such an 
approximation was calculated for all sample sizes from 40 
to 10000. 
The rank ݎ can thus be calculated as ݎ = 0.422 + 0.05 ݊− 0.147 √݊ (3) 

where ݊ is the sample size. The relative errors of this 
approximation in the range from ݊ = 40 to ݊ = 10000 
are in the range between -0.01% and +0.26%. 
 
4 CONCLUSIONS 
In this paper, different approaches to calculating 75% 
lower confidence bound (LCB) values for the fifth 
percentile of a sample were compared by means of a 
simulation study. 
Both parametric and non-parametric approaches were 
included, focusing on approaches defined in the European 
standard EN 14358 [1]. As the non-parametric calculation 
of 75% LCB values defined in the standard EN 14358 [1] 
is not fully non-parametric, a fully non-parametric 
approach was also included in the study. 
Samples of sizes 40, 80, 500, 1000 and 100000 were 
simulated for the following underlying distributions: 
normal, lognormal, and truncated normal. For all 
distributions, different coefficients of variation were 
included, and for the lognormal and truncated normal 
distributions, the mean respectively the lower bound 
parameter were also varied. 
The study highlighted the risk of misleading results if a 
parametric approach to calculating 75% LCB values is 
used when the assumptions about the type of underlying 
distribution are not met. 

 

Figure 1: Boxplots of "true percentiles" (the percentile which a calculated 75% LCB corresponds to in the true underlying distribution) 
separated by underlying distribution (horizontal axis), sample size n (colour scale) and mode of calculation for the 75% LCB of the 
sample fifth percentile. a) parametric normal LCB acc. to EN 14358, b) parametric lognormal LCB acc. to EN 14358, c) non-parametric 
LCB acc. to EN 14358, d) fully non-parametric LCB as outlined in section 2.1. The range of the vertical axis is optimised for the boxes – 
not all extreme values are included. Each box summarises 1000 runs times the number of different parameterisations for each type of 
distribution – see also Table 2. 
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Both non-parametric approaches to calculating 75% LCB 
values led to acceptable results. However, the non-
parametric approach defined in EN 14358 [1] led to 75% 
LCB values which were more conservative than 
necessary, especially if the underlying distribution was 
not normal. 
Therefore, the authors recommend revising the standard 
EN 14358 [1], replacing the current non-parametric 
approach to calculating 75% LCB values by a fully non-
parametric approach. 
The fully non-parametric approach is suitable for 
implementation in the standard. Implementation could be 
done using tabled values, an approximation formula 
and/or an exact formula, in a similar manner to the way in 
which the parametric approaches to calculating 75% LCB 
values are currently implemented in EN 14358 [1]. 
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Figure 2: Rearranged boxplots of "true percentiles" from Figure 1 for the two non-parametric approaches to calculating the 75% LCB 
("14358 non-par" and "fully non-par"). For each combination of sample size n and type of distribution, the boxes for the two approaches 
"14358 non-par" and "fully non-par" are plotted side by side to facilitate pairwise comparison. 
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