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ABSTRACT: Moment-resisting timber frames (MRTFs) can be an alternative load-carrying system for mid-rise 
buildings, compared to systems based on walls or diagonals. The response of MRTFs depends largely on their 
connections. This paper provides an overview of analysis and design aspects of connections for MRTFs based on inclined 
threaded rods. Simplified expressions are provided for the properties of such connections and for the properties of 
threaded rods. Finally, the effects of connection’s stiffness variability are explored. It is shown that this variability can 
result in increased values of actions compared to the values obtained by use of mean connection stiffness. 
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1 INTRODUCTION 456

Moment-resisting timber frames (MRTFs) can reduce the 
need for bracing by shear walls or diagonal elements and 
allow for greater architectural flexibility in mid-rise 
buildings. The response of MRTFs depends on the 
properties of their connections, especially with respect to 
the serviceability aspects, see e.g.[1]. Moreover, MRTFs
are statically indeterminate structures and the magnitude 
and distribution of internal forces and moments at the 
Ultimate Limit State, depend on the stiffness of their 
connections. The variability of the connections’ stiffness 
can also significantly influence the internal forces and 
moments as will be shown in Section 4.
A concept for a moment-resisting connection with 
inclined threaded rods is presented in Figure 1. The rods 
are inserted with an inclination in pre-drilled holes in the 
beam and the column and jointed by use of metallic 
coupling parts. In the prototype tests for this concept [2],
beams and columns were made of glued-laminated timber 
(glulam) and purpose-made steel rings were used as the 
coupling parts, see Figure 1. To allow fastening of rods to 
the steel rings, threaded rods with metric thread at their 
end are used, as shown in Figure 1. The use of steel 
brackets or plates and friction bolts can be an alternative 
to steel rings, see for example [3].
As shown in Figure 1, the coupling parts are connected to 
the column by use of a pair of inclined threaded rods (rods 
c1-c2 at the top and rods c3-c4 at the bottom). Due to rod 
inclination and the presence of shear forces, a load 
situation consisting of both axial and lateral forces occurs 
in the rods. However, the rods will mainly experience 
axial forces since their axial stiffness is much greater than 
the lateral one. The transfer of forces in this configuration 
resembles the transfer of forces in a truss system where all 
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members are axially loaded. Therefore, the lateral forces 
in the rods c1, c2, c3 and c4 may be neglected. 
The rods in the beam are inserted at a small angle. Rods
parallel to the grain are vulnerable to cracks since a single 
crack along the grain might lead to a considerable loss of 
strength if the crack occurs in the same plane as the rod. 
Therefore, the beam is connected to the coupling parts by 
use of threaded rods (b1 and b2) inserted at a small angle 
to the grain, i.e. 5°-10°, see Figure 1. Greater angle should 
be avoided as it would also result in high lateral forces in 
the threaded rods and therefore smaller stiffness.

Figure 1: Moment-resisting connection with inclined rods

This paper consists of two parts:
In the first part (Sections 2 and 3), analytical 
expressions are provided for the estimation of 
the properties of a connection as shown in Figure 
1 and for the rods, based on recent publications;
In the second part (Section 4) a preliminary study
regarding the effects of connection stiffness 
variability on response of MRTFs is presented.
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2 CONNECTION PROPERTIES 
2.1 STIFFNESS 
The connection in Figure 1 can be considered as a system 
of rotational springs in series consisting of: a) the 
connection of rods c1-c4 to the column with spring 
constant ܭఏ,௖, b) the connection of rods b1-b2 to the beam 
with spring constant ܭఏ,௕ and c) the connectors with 
spring constant ܭఏ,௖௢௡. Therefore, the rotational stiffness 
of the connection can be determined by Eq.(1). The 
geometry is given in Figure 2. In [4], Eqs.(2)-(3) were 
derived by use of the component method and validated by 

experimental results. The compliance ܵ-terms (Eqs.(4)-
(7)) are given as functions of the axial stiffness (ܭ௔௫,௜) and 
lateral stiffness (ܭ௩,௜) of the rods and the rod-to-grain 
angles (Eq.(8)). In Figure 2 and Eqs.(2)-(3), the lever arm 
is assumed the same on the beam and the column side 
௕ݖ) = ௖ݖ =  However, Eqs.(2)-(3) can also be applied .(ݖ
for different lever arms. Eqs.(2)-(3) depend also on the 
moment to shear ratio (ܮ௩ = ܯ ܸ⁄ ) which is not known - 
a priori - in the structural analysis and approximations are 
needed, see also Eqs.(9)-(12). Eqs.(1)-(8) apply per plane 
of rods.

 

 
Figure 2: Forces and geometry of a moment resisting connection with inclined threaded rods  

ఏܭ  = ൫1 ⁄ఏ,௖ܭ + 1 ⁄ఏ,௕ܭ + 1 ⁄ఏ,௖௢௡ܭ ൯ିଵ (1) 

ఏ,௖ܭ = ଶ൫ܵ௫௫,௖(௖ଵିୡଶ)ݖ + ܵ௫௫,௖(௖ଷିୡସ)൯ + ൫ܵ௫௬,௖(௖ଷିୡସ) − ܵ௫௬,௖(௖ଵିୡଶ)൯ ∙ ݖ (2 ∙ ⁄(௩ܮ  (2) 

ఏ,௕ܭ = ଶ൫ܵ௫௫,௕ଵݖ + ܵ௫௫,௕ଶ൯ + ൫ܵ௫௬,௕ଶ − ܵ௫௬,௕ଵ൯ ∙ ݖ (2 ∙ ⁄(௩ܮ  (3) 

ܵ௫௫,௖(௖ଵିୡଶ) = ܿ௖ଵଶ ⁄௔௫,௖ଶܭ + ܿ௖ଶଶ ௔௫,௖ଵ⁄(ܿ௖ଵܭ ∙ ௖ଶݏ + ܿ௖ଶ ∙ ௖ଵ)ଶݏ  ;  ܵ௫௫,௖(௖ଷିୡସ) = ܿ௖ଷଶ ⁄௔௫,௖ସܭ + ܿ௖ସଶ ௔௫,௖ଷ⁄(ܿ௖ଷܭ ∙ ௖ସݏ + ܿ௖ସ ∙ ௖ଷ)ଶݏ  (4) 

ܵ௫௬,௖(௖ଵିୡଶ) = ܿ௖ଵ ∙ ௖ଵݏ ⁄௔௫,௖ଶܭ − ܿ௖ଶ ∙ ௖ଶݏ ௔௫,௖ଵ⁄(ܿ௖ଵܭ ∙ ௖ଶݏ + ܿ௖ଶ ∙ ௖ଵ)ଶݏ   ;   ܵ௫௬,௖(௖ଷିୡସ) = ܿ௖ଷ ∙ ௖ଷݏ ⁄௔௫,௖ସܭ − ܿ௖ସ ∙ ௖ସݏ ௔௫,௖ଷ⁄(ܿ௖ଷܭ ∙ ௖ସݏ + ܿ௖ସ ∙ ௖ଷ)ଶݏ  (5) 

ܵ௫௫,௕ଵ = ௕ଵଶݏ ⁄௩,௕ଵܭ + ܿ௕ଵଶ ⁄௔௫,௕ଵܭ  ;   ܵ௫௫,௕ଶ = ௕ଶଶݏ ⁄௩,௕ଶܭ + ܿ௕ଶଶ ⁄௔௫,௕ଶܭ  (6) ܵ௫௬,௕ଵ = ௕ଵݏ ∙ ܿ௕ଵ ∙ ൫1 ⁄௩,௕ଵܭ − 1 ⁄௔௫,௕ଵܭ ൯  ;   ܵ௫௬,௕ଶ = ௕ଶݏ ∙ ܿ௕ଶ ∙ ൫1 ⁄௔௫,௕ଶܭ − 1 ⁄௩,௕ଶܭ ൯ (7) ܿ௜ = cosߙ௜ ; ݏ௜ = sinߙ௜ ; ܮ௩ = ܯ ܸ⁄  (8) 

Neglecting the shear term in Eqs.(2)-(3) results in the 
following crude approximations: ܭఏ,௖ ≈ ଶݖ ൫ܵ௫௫,௖(௖ଵିୡଶ) + ܵ௫௫,௖(௖ଷିୡସ)൯⁄ ఏ,௕ܭ (9)  ≈ ଶݖ ൫ܵ௫௫,௕ଵ + ܵ௫௫,௕ଶ൯⁄  (10) 

Assuming further that the rods are inserted at equal angles 
in the column (ߙ௖,ଵ = ௖,ଶߙ = ௖,ଷߙ = ௖,ସߙ =  ௖) and theߙ
beam (ߙ௕,ଵ = ௕,ଶߙ =  ௕) and that they approximatelyߙ
have equal stiffness (ܭ௔௫,௖ଵ = ௔௫,௖ଶܭ = ௔௫,௖ଷܭ = ௔௫,௖ସܭ ௔௫,௖ܭ= ௔௫,௕ଵܭ, = ௔௫,௕ଶܭ = ௩,௕ଵܭ ,௔௫,௕ܭ  = ௩,௕ଶܭ =  ,(௩,௕ܭ
Eqs.(9)-(10) can be further simplified as follows:   
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ఏ,௖ܭ ≈ ଶݖ ∙ ௔௫,௖ܭ ∙  ௖ଶ (11)ݏ

ఏ,௕ܭ ≈ ଶݖ ∙ ௔௫,௕ܭ 2⁄൫ܭ௔௫,௕ ⁄௩,௕ܭ ൯ ∙ ௕ଶݏ + ܿ௕ଶ (12) 

 
2.2 FORCES IN THE RODS 
The forces in each rod can also be determined by use of 
the component method [4]. The rods on the column-side 
are mainly axially loaded and the forces are equal to: 

൜ܨ௔௫,௖ଵܨ௔௫,௖ଶൠ = 1݊ ∙ ⎩⎪⎨
⎪⎧ܿ௖ଶ + ௖ଶݏ ∙ ݖ (2 ∙ ௩)⁄ܿ௖ଵܮ ∙ ௖ଶݏ + ܿ௖ଶ ∙ ௖ଵܿ௖ଵݏ − ௖ଵݏ ∙ ݖ (2 ∙ ௩)⁄ܿ௖ଵܮ ∙ ௖ଶݏ + ܿ௖ଶ ∙ ௖ଵݏ ⎭⎪⎬

⎪⎫ ∙ ݖܯ  (13) 

൜ܨ௔௫,௖ଷܨ௔௫,௖ସൠ = − 1݊ ∙ ⎩⎪⎨
⎪⎧ܿ௖ସ − ௖ସݏ ∙ ݖ (2 ∙ ௩)⁄ܿ௖ଷܮ ∙ ௖ସݏ + ܿ௖ସ ∙ ௖ଷܿ௖ଷݏ + ௖ଷݏ ∙ ݖ (2 ∙ ௩)⁄ܿ௖ଷܮ ∙ ௖ସݏ + ܿ௖ସ ∙ ௖ଷݏ ⎭⎪⎬

⎪⎫ ∙ ݖܯ  (14) 

On the beam-side, the rods are subjected to combined 
axial and lateral loading [4]: ൜ܨ௔௫,௕ଵܨ௩,௕ଵ ൠ = 1݊ ∙ ൜ ܿ௕ଵ + ௕ଵݏ ∙ ݖ (2 ∙ ௕ଵݏ−⁄(௩ܮ + ܿ௕ଵ ∙ ݖ (2 ∙ ⁄(௩ܮ ൠ ∙ ݖܯ  (15) 

൜ܨ௔௫,௕ଶܨ௩,௕ଶ ൠ = − 1݊ ∙ ൜ ܿ௕ଶ + ௕ଶݏ ∙ ݖ (2 ∙ ௕ଶݏ−⁄(௩ܮ + ܿ௕ଶ ∙ ݖ (2 ∙ ⁄(௩ܮ ൠ ∙ ݖܯ  (16) 

Eqs.(13)-(16) can be used in the corresponding design 
checks for the rods, see also Section 3. The parameter ݊  is 
the number of planes of rods. 
 
2.3 PANEL ZONE 
Horizontal forces result in high shear stresses in the panel 
zone of the column, i.e. the region between rods c1-c2 and 
c3-c4. Moreover, stresses perpendicular to grain occur 
around the threaded rods. The combination of tensile 
stresses perpendicular to grain and shear stresses is 
unfavourable due to their high degree of interaction [5] 
and may cause fracture in the panel zone, as shown in 
Figure 3. Thus, the panel zone must be designed with 
sufficient strength against combined shear and tension 
perpendicular to grain. If the rods are long and cross the 
entire height of the column they act as reinforcements [6], 
increasing the capacity of the panel zone.  
 

 
Figure 3: Fracture in the panel zone due to combined 
shear and tension perpendicular to grain (Photo: [2]) 

3 FASTENER PROPERTIES 
The properties of threaded rods are necessary inputs for 
the properties of the entire connection. The axial stiffness 
of a threaded rod is given by: ܭ௔௫ = ௦௘௥,௔௫ܭ ∙ ௦௘௥,௔௫ܭ௔௫,௟଴ܭ +  ௔௫,௟଴ (17)ܭ

where ܭ௦௘௥,௔௫ is the withdrawal stiffness and ܭ௔௫,௟଴ is the 
axial stiffness of the non-embedded part of the rod: ܭ௔௫,௟଴ = ௡௘௧ܣ ∙ ௦ܧ ݈଴⁄  (18) 

where ܧ௦ = 210000 N/mm2 is the modulus of elasticity 
of steel, ܣ௡௘௧ is the net cross-sectional area and ݈଴ is the 
non-embedded length of the rod. Eq.(19) provides an 
approximation for ܭ௦௘௥,௔௫ (in N/mm) as function of the 
outer-thread diameter ݀  (in mm), the rod-to-grain angle ߙ, 
the mean density ߩ௠ (in kg/m3) and the embedment length ݈ (in mm). Eq.(19) was derived in [7] by use of non-linear 
regression on experimental results for threaded rods with 
diameters 16-20 mm embedded in softwood, see [8-10]. 

௦௘௥,௔௫ܭ ≈ 50000 ∙ ቀ2݀0ቁଶ ∙ ቀ ௠470ቁଶߩ ∙ ݇௟௘௡௚௧௛,௄0.40 ∙ cosଶ.ଷߙ + sinଶ.ଷߙ  (19) 

݇௟௘௡௚௧௛,௄ = minൣ(݈ 300⁄ )3 4⁄ , 1൧ (20) 

The stiffness of a laterally loaded threaded rod can be 
determined by Eq.(21). Eq.(21) is derived by modelling 
the rod as a beam on elastic foundation assuming that 
rotation is restrained at the loading point, see in detail [7]:  ܭ௩ = 3 ∙ ݇௩ ∙ ݈௖௛ߣ଴ଷ + 3 ∙ ଴ଶߣ + 3 ∙ ଴ߣ + 3 (21) 

଴ߣ = ݈଴ ݈௖௛⁄   ;  ݈௖௛ = ඥ4 ∙ ௦ܧ ∙ ௦ܫ ݇௩⁄ర  (22) 

The parameter ܫ௦ ≈ ߨ ∙ ݀ଵସ 64⁄  is the 2nd moment of area 
and ݀ଵ is the core diameter of the rod. The parameter ݇௩  
is the foundation modulus (i.e. stiffness per unit length) of 
a laterally loaded rod. According to Eqs.(3),(6),(7) and 
(12) , the lateral stiffness of a rod is an input parameter for 
the rotational stiffness on the beam-side. There the rods 
are inserted at small angles to grain and therefore the 
lateral foundation modulus may be approximately taken 
as the foundation modulus perpendicular to the grain. 
Based on an experimental study of laterally loaded rods 
with ݀ = 22 mm embedded in glulam made of pine and 
spruce [11] an approximate value of ݇௩ ≈ 300 N/mm2 
may be used.  
A power criterion is often used - as an approximation - to 
determine the capacity of fasteners subjected to combined 
axial force (ܨ௔௫) and lateral force (ܨ௩), i.e.:  ቆ ௔௫,ோቇ௤ܨ௔௫ܨ + ቆ ௩,ோቇ௤ܨ௩ܨ ≤ 1 (23) 

In Eq.(23), ܨ௔௫,ோ and ܨ௩,ோ are the axial and lateral capacity 
of a fastener respectively. According to EN 1995-1-1 [12], 
a quadratic failure criterion applies for screws, i.e. ݍ = 2. 
The quadratic criterion has provided safe-sided 
predictions for long screws (i.e. with steel failure being 
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more critical than withdrawal) inserted perpendicular to 
grain [13] and for glued-in rods parallel to grain [14].  
The rods on the beam side are subjected to both lateral and 
axial forces and therefore their capacity should be 
checked by use of a criterion that considers the interaction 
of forces, as the one given by Eq.(23). On the other hand, 
the rods in the column are mainly axially loaded (i.e. ܨ௩,௖௜ ≈ 0) as explained in Section 1 and therefore in this 
case Eq.(23) reduces to: หܨ௔௫,௖௜ห ≤  .௔௫,ோܨ
 
4 STIFFNESS VARIABILITY EFFECTS 
MRTFs are statically indeterminate systems, and the 
distribution of the internal actions depends on the stiffness 
of their elements and connections. The internal forces and 
moments are typically determined by use of mean 
stiffness values in the structural analysis. However, the 
inherent variability of the connection stiffness can result 
in variations of internal forces and moments, compared to 
the expected values obtained by use of mean stiffness 
values. In this section, the effects of connection stiffness 
variability are explored by use of a simple beam model 
with semi-rigid end restrains (Section 4.1) and by linear-
elastic Finite Element simulations of MRTFs with semi-
rigid moment connections (Section 4.2).  
 
4.1 BEAM MODEL 
A beam with semi-rigid end restrains (Figure 4) subjected 
to uniformly distributed load ݍ is used here -as a simple 
example- to study the effects of the connections’ stiffness 
variability. The connections are represented by linear-
elastic rotational springs with spring constants ܭఏ,ଵ and ܭఏ,ଶ which can be expressed in dimensionless form-by 
dividing by the beam stiffness-as follows: ݇ଵ = ܫܧ)ఏ,ଵܭ ⁄ܮ ) ;  ݇ଶ = ܫܧ)ఏ,ଶܭ ⁄ܮ ) (24) 

 

 
Figure 4: Simply supported beam with semi-rigid end restrains  
 
The moments and the vertical forces at the beam ends can 
be expressed as functions of ݇ଵ and ݇ଶ as follows: ܯଵ = ݍ− ∙ ଶ12ܮ ∙ ݇ଵ ∙ (݇ଶ + 6)݇ଵ ∙ ݇ଶ + 4 ∙ (݇ଵ + ݇ଶ) + 12 (25) 

௭,ଵܨ = ݍ ∙ 2ܮ ∙ ݇ଵ ∙ ݇ଶ + 5 ∙ ݇ଵ + 3 ∙ ݇ଶ + 12݇ଵ ∙ ݇ଶ + 4 ∙ (݇ଵ + ݇ଶ) + 12  (26) 

ଶܯ = ݍ− ∙ ଶ12ܮ ∙ ݇ଶ ∙ (݇ଵ + 6)݇ଵ ∙ ݇ଶ + 4 ∙ (݇ଵ + ݇ଶ) + 12 (27) 

௭,ଶܨ = ݍ ∙ 2ܮ ∙ ݇ଵ ∙ ݇ଶ + 3 ∙ ݇ଵ + 5 ∙ ݇ଶ + 12݇ଵ ∙ ݇ଶ + 4 ∙ (݇ଵ + ݇ଶ) + 12  (28) 

The maximum span moment can be simply written as 
function of the forces and moments: ܯ௦௣௔௡ = ଵܯ + ௭,ଵଶ2ܨ ∙ ݍ = ଶܯ + ௭,ଶଶ2ܨ ∙ ݍ  (29) 

By letting ݇ଵ = ݇ଶ = ݇௠௘௔௡ , the moments and the 
reactions at the supports become equal (ܯଵ = = ଶܯ ௘௡ௗܯ  
and ܨ௭,ଵ = ௭,ଶܨ = ௘௡ௗ(݇ଵܯ :(௭ܨ = ݇ଶ = ݇௠௘௔௡) = ݍ− ∙ ଶ12ܮ ∙ ݇௠௘௔௡݇௠௘௔௡ + 2 (30) 

௭(݇ଵܨ = ݇ଶ = ݇௠௘௔௡) = ݍ ∙ 2ܮ  (31) 

௦௣௔௡(݇ଵܯ = ݇ଶ = ݇௠௘௔௡) = ݍ ∙ ଶ24ܮ ∙ ݇௠௘௔௡ + 6݇௠௘௔௡ + 2 (32) 

For each realization of the connections’ stiffness, the 
ratios between the actual action divided by the 
corresponding values by use of mean stiffness values were 
calculated, as specified by Eqs.(33)-(37). These ratios 
express the deviation between a realization (numerator) 
and the corresponding value obtained by static analysis by 
use of mean stiffness (denominator) and they depend only 
on the normalized stiffness values given by Eq.(24).  ݊ெ,௘௡ௗ,ଵ = ,ଵ(݇ଵܯ| ݇ଶ)||ܯ௘௡ௗ(݇ଵ = ݇ଶ = ݇௠௘௔௡)| (33) 

݊ெ,௘௡ௗ,ଶ = ,ଶ(݇ଵܯ| ݇ଶ)||ܯ௘௡ௗ(݇ଵ = ݇ଶ = ݇௠௘௔௡)| (34) 

݊ெ,௦௣௔௡ = ,௦௣௔௡(݇ଵܯ ݇ଶ)ܯ௦௣௔௡(݇ଵ = ݇ଶ = ݇௠௘௔௡) (35) 

݊௏,௘௡ௗ,ଵ = ,௭,ଵ(݇ଵܨ ݇ଶ)ܨ௭(݇ଵ = ݇ଶ = ݇௠௘௔௡) (36) 

݊௏,௘௡ௗ,ଶ = ,௭,ଶ(݇ଵܨ ݇ଶ)ܨ௭(݇ଵ = ݇ଶ = ݇௠௘௔௡) (37) 

In other words, the ratios by Eqs.(33)-(37) multiplied by 
the internal forces and moments by use of mean stiffness 
provide the actual internal forces and moments. 
Therefore, to get an indication of the unfavourable effect 
of stiffness variability on the internal forces and moments, 
it makes sense to consider an upper percentile value of 
these ratios, e.g. the 95th or 98th percentile. Thus, the 
variability of the ratios by Eqs.(33)-(37) is important. 
To study the effects of stiffness variability, realizations of 
normalized stiffness values ݇ଵ and ݇ଶ were generated. 
Note that the variability of parameters ݇ଵ and ݇ଶ results 
from the variability of the properties of the connection 
 Here, for simplicity ݇ଵ and ݇ଶ .(ܧ) and the material (ఏܭ)
were assumed as the random variables instead of ܭఏ  and ܧ separately. Due to the lack of data with respect to the 
distribution of the connection stiffness ܭఏ , two different 
distributions were assumed: namely normal and 
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lognormal distribution. Figure 6 shows an example of the 
distribution of the ratio ݊ெ,௘௡ௗ  (Eq.(33) or Eq.(34)) 
assuming that ݇ଵ and ݇ଶ are either normally or 
lognormally distributed. The distribution of the output 
variable ݊ ெ,௘௡ௗ is fairly similar for both assumptions. This 
observation holds true for relatively small values of ݇ ௠௘௔௡ 
and ܸ݋ܥ(݇) and for the other output variables (݊ெ,௦௣௔௡ or ݊௏,௘௡ௗ) with some small deviations. 
 

 
Figure 5: Distribution of ݊ெ,௘௡ௗ  (right) for normal (up-left) 

and lognormal (bottom-left) distribution of ݇ଵ and ݇ଶ (example 
here for ݇௠௘௔௡ = 2.5 and ܸ݋ܥ(݇) = 0.15)  

 
Given that the distribution of the output variables 
(Eqs.(33)-(37)) is fairly similar for either normal or 
lognormal distribution of the input variables ݇ଵand ݇ଶ, 
only results assuming normal distribution of ݇ଵand ݇ଶ are 
presented further. The mean value is denoted ݇௠௘௔௡  and 
the coefficient of variation is denoted CoV(݇), thus:  ݇ଵ = ܰ൫݇௠௘௔௡ , CoV(݇)൯ (38) ݇ଶ = ܰ൫݇௠௘௔௡ , CoV(݇)൯ (39) 

Figure 6 shows the ratio ݊ெ,௘௡ௗ according to Eq.(33) or 
Eq.(34) for varying values of ݇௠௘௔௡ based on 5000 
realizations per ݇௠௘௔௡-value. Figure 7 shows the 
corresponding results for ݊ெ,௦௣௔௡ (Eq.(35)) and Figure 8 
for ݊௏,௘௡ௗ (Eq.(36) or Eq.(37)). All Figures are plotted for CoV(݇) = 0.15. Such coefficient of variation has been 
observed for the rotational stiffness of connections with 
glulam beams and columns and inclined  threaded rods as 
shown in Figure 1 [15]; however the sample size was 
small and this number is only used as indicative. 
The 95th and the 98th percentiles are also provided in the 
Figures together with the theoretical estimations that 
correspond to normal distribution: ܺଽହ% = ܺ௠௘௔௡ ∙ (1 +1.645 ∙ CoV[ܺ]) and ܺଽ଼% = ܺ௠௘௔௡ ∙ (1 + 2.054 ∙CoV[ܺ]). As shown in the Figures, these estimations are 
in good agreement with the percentiles of each sample. 
 

 
Figure 6: Ratio ݊ெ,௘௡ௗ  for varying ݇௠௘௔௡ and ܸ݋ܥ(݇௜) =0.15  (5000 realizations per ݇௠௘௔௡ value, assuming that ݇ଵ and ݇ଶ are normally distributed)  

 

 
Figure 7: Ratio ݊ெ,௦௣௔௡ for varying ݇௠௘௔௡ and ܸ݋ܥ(݇௜) =0.15  (5000 realizations per ݇௠௘௔௡ value, assuming that ݇ଵ and ݇ଶ are normally distributed) 

 

 
Figure 8: Ratio ݊௏,௘௡ௗ  for varying ݇௠௘௔௡ and ܸ݋ܥ(݇௜) = 0.15  
(5000 realizations per ݇௠௘௔௡ value, assuming that ݇ଵ and ݇ଶ 

are normally distributed 
 
As shown in Figure 6, the end moments are significantly 
influenced by stiffness variability, especially for low ݇௠௘௔௡-values. Low mean connection stiffness values 
result in greater variability of the end moments. Timber 
moment-resisting connections are typically semi-rigid 
with ݇௠௘௔௡-values up to maximum 5-6 and thus such 
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variability of the end moments is to be expected. For 
increasing ݇௠௘௔௡-values (i.e. quasi-rigid connections) the 
variability and the 95th/98th percentiles of the end 
moments reduce significantly. On the other hand, the 
variabilities and the 95th/98th percentiles of the span 
moment (Figure 7) and the shear forces (Figure 8) are 
fairly small and not sensitive to ݇௠௘௔௡-values.  
Tables 1-3 provide the coefficient of variation and the 
95th/98th percentiles of the ratios ݊ெ,௘௡ௗ  (Eq.(33) or 
Eq.(34)), ݊ெ,௦௣௔௡ (Eq.(35)) and ݊௏,௘௡ௗ (Eq.(36) or 
Eq.(37)) for varying values of ݇௠௘௔௡ and CoV(݇) based 
on 5000 realizations.  

 
Table 1: Coefficient of variation, 95th and 98th percentile of 
ratio ࢏,ࢊ࢔ࢋ,ࡹ࢔ for different mean values and coefficients of 
variation of the normalized stiffness ࢑ (assuming that k is 

normally distributed, based on 5000 realizations) ۱܄ܗ൫࢏,ࢊ࢔ࢋ,ࡹ࢔൯ 

 0.30 0.25 0.20 0.15 0.10 ܖ܉܍ܕ࢑ (࢑)܄ܗ۱ 
0.5 0.086 0.130 0.172 0.217 0.261 
1 0.076 0.114 0.154 0.194 0.242 

1.5 0.069 0.105 0.141 0.184 0.221 
2 0.066 0.098 0.131 0.169 0.204 
3 0.055 0.086 0.115 0.150 0.183 
5 0.044 0.067 0.093 0.120 0.151 
10 0.030 0.045 0.065 0.086 0.112 
 %૞ૢ,࢏,ࢊ࢔ࢋ,ࡹ࢔ 0.091 0.068 0.048 0.036 0.022 15
 0.30 0.25 0.20 0.15 0.10 ܖ܉܍ܕ࢑ (࢑)܄ܗ۱ 

0.5 1.139 1.208 1.268 1.338 1.404 
1 1.118 1.178 1.232 1.283 1.348 

1.5 1.110 1.162 1.208 1.259 1.305 
2 1.101 1.147 1.188 1.232 1.274 
3 1.086 1.127 1.166 1.203 1.241 
5 1.067 1.098 1.128 1.153 1.184 
10 1.044 1.064 1.087 1.105 1.131 
 %ૡૢ,࢏,ࢊ࢔ࢋ,ࡹ࢔ 1.101 1.084 1.066 1.050 1.034 15
 0.30 0.25 0.20 0.15 0.10 ܖ܉܍ܕ࢑ (࢑)܄ܗ۱ 

0.5 1.173 1.259 1.327 1.412 1.505 
1 1.151 1.221 1.284 1.345 1.427 

1.5 1.134 1.195 1.257 1.316 1.371 
2 1.124 1.176 1.224 1.279 1.327 
3 1.106 1.156 1.202 1.250 1.289 
5 1.082 1.122 1.154 1.194 1.230 
10 1.056 1.080 1.106 1.130 1.160 
15 1.042 1.063 1.083 1.106 1.135 

 

The 95th/98th percentiles of ݊ெ,௘௡ௗ can be approximated 
by the following expressions: ݊ெ,௘௡ௗ,ଽହ% ≈ 1 + 1.15 ∙ ݇௠௘௔௡ି଴.ଷହ ∙ CoV(݇) (40) ݊ெ,௘௡ௗ,ଽ଼% ≈ 1 + 1.40 ∙ ݇௠௘௔௡ି଴.ଷହ ∙ CoV(݇) (41) 

 
Table 2: Coefficient of variation, 95th and 98th percentile of 
ratio ࢔ࢇ࢖࢙,ࡹ࢔ for different mean values and coefficients of 
variation of the normalized stiffness ࢑ (assuming that k is 

normally distributed, based on 5000 realizations) ۱܄ܗ൫࢔ࢇ࢖࢙,ࡹ࢔൯ 

 0.30 0.25 0.20 0.15 0.10 ܖ܉܍ܕ࢑ (࢑)܄ܗ۱ 
0.5 0.009 0.013 0.018 0.022 0.026 
1 0.013 0.020 0.027 0.034 0.042 

1.5 0.016 0.024 0.032 0.042 0.051 
2 0.018 0.027 0.036 0.046 0.056 
3 0.019 0.029 0.039 0.051 0.062 
5 0.018 0.028 0.040 0.052 0.064 
10 0.015 0.024 0.033 0.045 0.058 
 %૞ૢ,࢔ࢇ࢖࢙,ࡹ࢔ 0.052 0.037 0.026 0.019 0.012 15
 0.30 0.25 0.20 0.15 0.10 ܖ܉܍ܕ࢑ (࢑)܄ܗ۱ 

0.5 1.015 1.022 1.031 1.038 1.045 
1 1.024 1.036 1.050 1.061 1.079 

1.5 1.028 1.044 1.059 1.080 1.098 
2 1.032 1.049 1.068 1.088 1.112 
3 1.034 1.053 1.074 1.105 1.130 
5 1.033 1.055 1.078 1.109 1.136 
10 1.028 1.045 1.067 1.096 1.127 
 %ૡૢ,࢔ࢇ࢖࢙,ࡹ࢔ 1.109 1.079 1.053 1.038 1.023 15
 0.30 0.25 0.20 0.15 0.10 ܖ܉܍ܕ࢑ (࢑)܄ܗ۱ 

0.5 1.019 1.028 1.037 1.050 1.058 
1 1.029 1.045 1.063 1.078 1.104 

1.5 1.035 1.055 1.075 1.107 1.127 
2 1.038 1.061 1.086 1.116 1.148 
3 1.044 1.069 1.097 1.133 1.172 
5 1.040 1.070 1.103 1.145 1.187 
10 1.036 1.060 1.092 1.132 1.188 
15 1.030 1.049 1.072 1.106 1.165 

 
The 95th/98th percentiles of ݊ெ,௦௣௔௡ can be approximated 
by the following expressions: ݊ெ,௦௣௔௡,ଽହ% ≈ 1 + (1 − ݁ି௞೘೐ೌ೙) ∙ CoV(݇)ଵ.ସହ (42) 
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݊ெ,௦௣௔௡,ଽ଼% ≈ 1 + (1 − ݁ି௞೘೐ೌ೙) ∙ CoV(݇)ଵ.ଷ଴ (43)

Table 3: Coefficient of variation, 95th and 98th percentile of 
ratio ࢏,ࢊ࢔ࢋ,ࢂ࢔ for different mean values and coefficients of 
variation of the normalized stiffness ࢑ (assuming that k is 

normally distributed, based on 5000 realizations)۱܄ܗ൫࢏,ࢊ࢔ࢋ,ࢂ࢔൯۱ܖ܉܍ܕ࢑(࢑)܄ܗ 0.10 0.15 0.20 0.25 0.30
0.5 0.004 0.007 0.009 0.011 0.013
1 0.007 0.010 0.014 0.017 0.021

1.5 0.008 0.012 0.016 0.021 0.025
2 0.009 0.013 0.018 0.023 0.028
3 0.009 0.015 0.020 0.025 0.031
5 0.009 0.014 0.020 0.025 0.031
10 0.007 0.011 0.016 0.022 0.028
15 0.006 0.010 0.013 0.018 ܖ܉܍ܕ࢑(࢑)܄ܗ૞%۱ૢ,࢏,ࢊ࢔ࢋ,ࢂ࢔0.024 0.10 0.15 0.20 0.25 0.30
0.5 1.007 1.011 1.014 1.018 1.022
1 1.011 1.017 1.022 1.027 1.035

1.5 1.013 1.020 1.027 1.034 1.042
2 1.015 1.022 1.030 1.038 1.045
3 1.016 1.024 1.032 1.041 1.051
5 1.015 1.023 1.031 1.040 1.051
10 1.012 1.019 1.026 1.034 1.043
15 1.010 1.015 1.022 1.029 ܖ܉܍ܕ࢑(࢑)܄ܗૡ%۱ૢ,࢏,ࢊ࢔ࢋ,ࢂ࢔1.037 0.10 0.15 0.20 0.25 0.30
0.5 1.009 1.014 1.018 1.022 1.027
1 1.014 1.020 1.028 1.034 1.043

1.5 1.017 1.026 1.033 1.043 1.052
2 1.018 1.028 1.037 1.049 1.057
3 1.020 1.031 1.042 1.055 1.066
5 1.018 1.030 1.042 1.053 1.067
10 1.016 1.024 1.035 1.046 1.061
15 1.013 1.022 1.029 1.039 1.053

The 95th/98th percentiles of ݊௏,௘௡ௗ can be approximated 
by the following expressions:݊௏,௘௡ௗ,ଽହ% ≈ 1 + (0.15 − ݁ିହ∙௞೘೐ೌ೙) ∙ CoV(݇) (44)݊௏,௘௡ௗ,ଽ଼% ≈ 1 + (0.20 − ݁ିହ∙௞೘೐ೌ೙) ∙ CoV(݇) (45)

The relative difference of the 95th/98th percentiles 
assuming lognormal distribution of the stiffness 
parameter ݇ is within 6% or less compared to the values 

in Tables 1-3. This is also indicated by the distribution 
shape of the output variables, shown in Figure 5.
As shown in the values of Tables 1-3, the ratio ݊ெ,௘௡ௗ,௜
(Table 1) is more affected by the variability of the 
stiffness parameter ݇. In other words, the end-moments 
are more sensitive to the stiffness variability compared to 
the span moment and the shear forces. As expected, the 
coefficient of variation of the stiffness parameter ݇ results 
in higher variability of the output variables. 
To facilitate comparison, we can consider a connection 
with ݇௠௘௔௡ = 1.5. For CoV(݇) = 15%, the 98th

percentile of the end moment, the span moment and the 
shear force are approx. 20%, 5% and 3% higher than the 
reference values respectively. The corresponding 98th

percentile values for CoV(݇) = 30% are approx. 37%, 
13% and 5%. Especially for the end moments, the 98th

percentiles may reach values of the order of 20-40% 
higher than the reference value for reasonable input 
(CoV(݇) ≥ 15% and ݇௠௘௔௡ = 1 − 5). Such effect should 
be considered in the design.

4.2 FINITE ELEMENT ANALYSIS OF MOMENT-
RESISTING TIMBER FRAMES

The effects of connection stiffness variability are further 
studied in this Section by use of Finite Element (abbr. FE) 
analyses of planar MRTFs. The software SAP2000 was 
used for the structural analysis. An algorithm was 
developed to perform several analyses with varying 
properties.
The structural model for the analysis is presented in 
Figure 9. The frames consisted of glulam columns and 
beams with cross-sectional dimensions ܾ௖ × ℎ௖ and ܾ௕ × ℎ௕  respectively. The columns were continuous. The 
mean modulus of elasticity was ଴,୫ୣୟ୬ܧ = 13000  N/mm2

and the mean shear modulus was ୫ୣୟ୬ܩ = 650  N/mm2. 
These values correspond to strength class GL30c [16].
The beams and the columns were modelled as linear
elements and the material was modelled as linear-elastic.
Shear deformations of timber were taken into account in 
the model. All frames consisted of 3 bays with 8.0m bay 
length between the center-lines of the columns. Frames 
with 4 and 8 storeys were studied. The height of each 
storey was ℎ =3.0 m.

Figure 9: Structural model for FE analyses 
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The connections were modelled as linear-elastic rotational 
springs with spring constant ܭఏ  (by use of the partial 
release command of SAP2000). With respect to the 
translational degrees of freedom, the connections were 
modelled as rigid. Since the columns were continuous, the 
connections were placed at the edge of the columns with 
a rigid offset of ℎ௖ 2⁄  to the columns’ centerline, see the 
detail in Figure 9. The supports of the frame were assumed 
rigid with respect to translations while the for the 
rotational degree of freedom a small rotational stiffness of 
5000 kNm/rad was assumed.  
Three actions were considered in the analysis: dead load 
ܩ) = 2.0 kN/m2), live load  (ܳ = 3.0 kN/m2) and the wind 
action ܹ. The wind load was calculated according to EN 
1991-1-4 [17] for a basic wind velocity  ݒ௕ = 26 m/s and 
terrain category IV (urban environment). For the 
determination of loads on the frame and wind-induced 
accelerations it was assumed that the building consists of 
six frames equally spaced at a distance of 4.0 meters, 
resulting in a total width of 20 m.   
To consider the connection stiffness variability, the 
stiffness of each beam-to-column connection was selected 
as a normally distributed random variable (see Eqs.(38)-
(39)). Similar to the definition given by Eq.(24), the 
stiffness can be expressed in dimensionless form by 
dividing the rotational stiffness by the bending stiffness of 
the beams, i.e.: ݇ = ఏܭ ௕ܫܧ) ⁄௕ܮ )⁄ . Here, ܮ௕ is the net bay 
length. For each frame, analyses with mean dimensionless 
connection stiffness of ݇௠௘௔௡ = 1.5 and ݇௠௘௔௡ = 2.5 
were performed. These values represent feasible 
connection stiffness for moment resisting connections 
with threaded rods (see Section 2). Moreover, they are 
sufficient, so that the frames fulfil the serviceability 
requirements with respect to wind-induced deformations 
and accelerations; see e.g. Figure 10 for accelerations. For 
each ݇௠௘௔௡-value, two values of the coefficient of 
variation were considered: CoV(ܭఏ) = 15% and 25%.  
As a crude simplification, the modulus of elasticity and 
the shear modulus of glulam were assumed constant and 
equal to their mean value, i.e. their variability was not 
taken into account in this analysis. All other parameters 
(e.g. loads, mass etc.) were also kept constant. Therefore, 
the results of these analyses should only be considered as 
indicative; however, they allow for comparison with the 
results provided in Section 4.1. In total, 8 frames were 
studied (2 number of storeys × 2 ݇௠௘௔௡-values × 2 CoV(ܭఏ) values). For each frame type, 3000 realizations 
were generated and solved by use of FE analysis (in total 
24000 analyses were performed).  
The following response quantities were quantified by FE 
analysis, for each frame:  

 The internal actions were determined by use of 
linear-elastic analysis. The envelopes of the 
internal forces and moments were then 
determined for the fundamental Ultimate Limit 
State combinations according to EN1990 [18], 
with wind load (in both directions) being the 
leading variable action. The load safety factors 
were ீߛ = 1.2 for the permanent load, ߛொ = 1.5 
for the live load and ߛௐ = 1.5 for the wind load. 
The ratios between the envelope internal forces 
and moments for each realization divided by the 

corresponding values obtained by use of analysis 
with mean stiffness values were determined for 
each frame, as specified by Eqs.(33)-(37). 

 The horizontal deflections were determined for 
the characteristic Serviceability Limit State 
combination according to EN1990 [18], with 
wind as the leading variable load. The maximum 
horizontal deflection is denoted ߂ and the 
maximum inter-storey drift is denoted ܴܦܫ௠௔௫. 

 The fundamental eigenfrequency (݂) was 
quantified by modal analysis. The quasi–
permanent load (ܩ + 0.3 ∙ ܳ), according to 
EN1990 [18] was used to determine the mass. 

 The wind-induced accelerations (ܣ) on the top-
floor were determined by use of the approximate 
method given by EN1991-1-4 [17] (Annex B), A 
damping ratio of ߦ =2.0 % was assumed based 
on measurements of timber buildings [19]. The 
accelerations were compared to the requirements 
by ISO10137 [20]. To consider the smaller 
return period, the basic wind velocity was 
multiplied by ܿ௣௥௢௕ = 0.73.  

The results of the FE analyses are summarized in Table 4 
(4 storey frames) and Table 5 (8 storey frames). The ratios ݊ெ,௘௡ௗ ,݊ெ,௦௣௔௡, ݊௏,௘௡ௗ  (Eqs.(33)-(37)) were determined 
separately for each connection of the frame and the range 
is given in the Tables. As indicated by the small ranges 
the ratios for different connections are quite similar. The 
FE results can be summarized as follows: 

 The end moments are -by far- the action that it is 
most sensitive to connection stiffness as 
indicated by the higher ݊ெ,௘௡ௗ-values. On the 
other hand, the span moments and the shear 
forces are not very sensitive to connection 
stiffness as indicated by the low values of  ݊ெ,௦௣௔௡ and ݊௏,௘௡ௗ . 

 The ratios ݊ெ,௘௡ௗ ,݊ெ,௦௣௔௡, ݊௏,௘௡ௗ  are quite 
similar for 4-storey and 8-storey frames. 
Moreover, they are in very good agreement with 
the results obtained by the simple beam model in 
Section 4.1 (Tables 1-3). In fact, the beam model 
results in slightly higher values of ݊ெ,௘௡ௗ . 
Therefore, the beam model can be used to 
provide safe-sided predictions.  

 The effect of stiffness variability on 
deformations, eigenfrequency and top-floor 
accelerations is quite small as indicated by FE 
results. Figure 10 shows a plot of the 
fundamental eigenfrequencies and top floor 
accelerations for all realizations of MRTFs, 
compared to ISO10137 [20] requirements. As 
shown by the results, the response of all 
realizations is quite similar for each frame.  
Therefore, the effects of the variability of 
connection stiffness can be neglected in the 
serviceability limit state. 

The aim of the present -preliminary- study was to 
highlight the effects of connections’ stiffness variability. 
A more detailed reliability analysis considering the 
variability of the loads and the material stiffness can be 
used to better quantify the values of ratios ݊ெ,௘௡ௗ ,݊ெ,௦௣௔௡ 
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and ݊௏,௘௡ௗ. Moreover, the presented results come solely 
from linear-elastic analysis; i.e. possible redistribution of 
moments if the connections are ductile was not 
considered.  
 

 
Figure 10: Fundamental eigenfrequency – top floor 
acceleration for all realizations of MRTFs, compared to 
ISO10137 [20] requirements 

 
Table 4: FE results of 4-storey MRTFs (3000 realizations per 

frame) 

Frame datails 
ܰ =4 storeys, ℎ = 3.0 m, ܪ = 12.0 m 

 3 bays, ܮ = 8 m  ܾ௖ × ℎ௖ = ܾ௕ × ℎ௕ = 430 × 585 mm2 ܭఏ  (kNm/rad) 18866 18866 31443 31443 ݇୫ୣୟ୬ 1.5 1.5 2.5 2.5 CoV(݇) 15% 25% 15% 25% 

CoV(݊ெ,௘௡ௗ) 8-9% 14-16% 6-8% 12-14% ݊ெ,௘௡ௗ,ଽହ% 1.12-
1.14 

1.19-
1.22 

1.09-
1.11 

1.15-
1.17 ݊ெ,௘௡ௗ,ଽ଼% 1.15-

1.17 
1.23-
1.27 

1.11-
1.14 

1.18-
1.21 

CoV(݊ெ,௦௣௔௡) ≈2% 3-4% 2-3% 4-5% ݊ெ,௦௣௔௡,ଽହ% 1.03-
1.05 

1.06-
1.09 

1.04-
1.05 

1.08-
1.10 ݊ெ,௦௣௔௡,ଽ଼% 1.05-

1.06 
1.09-
1.12 

1.05-
1.07 

1.10-
1.13 

CoV(݊௏,௘௡ௗ) 1% 1-2 % 1% 1-2 % ݊௏,௘௡ௗ,ଽହ% 1.01-
1.02 

1.02-
1.03 

1.01-
1.02 

1.02-
1.03 ݊௏,௘௡ௗ,ଽ଼% 1.02 1.03-

1.05 1.02 1.03-
 ௠௘௔௡ (mm) 6.73 6.81 5.13 5.16߂ 1.05

CoV(߂௠௔௫) 9% 15% 9% 16% mean(ܴܦܫ௠௔௫) 
(mm) 2.71 2.74 2.25 2.26 

CoV(ܴܦܫ௠௔௫) 6% 11% 6% 11% ௠݂௘௔௡ (Hz) 0.950 0.946 1.080 1.075 

CoV(݂) 1% 2% 1% 2% ܣ௠௘௔௡  (m/s2)  0.036 0.036 0.030 0.031 

CoV(ܣ) 2 %1 %2 %1% 
 
 

Table 5: FE results of 8-storey MRTFs (3000 realizations per 
frame) 

Frame datails 
ܰ =8 storeys, ℎ = 3.0 m, ܪ = 24.0 m 

 3 bays, ܮ = 8 m  ܾ௖ × ℎ௖ = ܾ௕ × ℎ௕ = 430 × 585 mm2 ܭఏ  (kNm/rad) 18866 18866 31443 31443 ݇୫ୣୟ୬ 1.5 1.5 2.5 2.5 CoV(݇) 15% 25% 15% 25% 

CoV(݊ெ,௘௡ௗ) 8-9% 14-16% 6-8% 12-14% ݊ெ,௘௡ௗ,ଽହ% 1.11-
1.14 

1.19-
1.23 

1.09-
1.11 

1.14-
1.18 ݊ெ,௘௡ௗ,ଽ଼% 1.14-

1.17 
1.23-
1.27 

1.11-
1.13 

1.17-
1.22 

CoV(݊ெ,௦௣௔௡) ≈2% 3-5% 2-3% 4-5% ݊ெ,௦௣௔௡,ଽହ% 1.03-
1.06 

1.07-
1.12 

1.04-
1.07 

1.08-
1.13 ݊ெ,௦௣௔௡,ଽ଼% 1.04-

1.08 
1.09-
1.15 

1.05-
1.08 

1.10-
1.17 

CoV(݊௏,௘௡ௗ) ≈1% 1-2% ≈1% ≈2% ݊௏,௘௡ௗ,ଽହ% 1.01-
1.02 

1.02-
1.03 

1.01-
1.02 

1.02-
1.03 ݊௏,௘௡ௗ,ଽ଼% 1.02 1.03-

1.04 1.02 1.03-
 ௠௘௔௡ (mm) 35.26 35.70 26.39 26.69߂ 1.04

CoV(߂௠௔௫) 3% 5% 3% 5% mean(ܴܦܫ௠௔௫) 
(mm) 8.49 8.55 6.84 6.92 

CoV(ܴܦܫ௠௔௫) 3% 5% 3% 5% ௠݂௘௔௡ (Hz) 0.501 0.498 0.577 0.574 

CoV(݂) 1% 1% 1% 1% ܣ௠௘௔௡  (m/s2)  0.053 0.053 0.045 0.045 

CoV(ܣ) 1 %1 %1 %1% 
 
5 CONCLUSIONS AND FUTURE WORK 
This paper provides an overview of analysis and design 
aspects of moment-resisting connections with inclined 
threaded rods. In the first part of the paper, a series of 
expressions that estimate the properties of such 
connections were provided based on recent publications. 
In the second part of the paper, a preliminary study on the 
effect of connections’ stiffness variability on the 
structural response of timber frames was presented, based 
on a simple beam model and Finite Element simulations 
of planar frames. In common practice, structural analysis 
of timber structures is performed by use of mean stiffness 
values. However, in moment-resisting frames the 
magnitude and distribution of internal forces and moment 
is highly dependent on the stiffness of their connections. 
The results of this study have shown that the variability of 
connections’ stiffness can result in great variability of the 
internal forces and moments. The end moments are more 
sensitive to this effect with 98th percentiles of the order of 
20%-40% higher than the reference values obtained by 
analysis with mean stiffness values. Such increase should 
be considered in the design for the Ultimate Limit State. 
The Finite element results were in good agreement with 
the predictions obtained by use of a simple beam model 

1214https://doi.org/10.52202/069179-0165



with rotational springs. When it comes to serviceability 
requirements, the FE models showed that the variability 
of connections’ stiffness has small influence and may be 
neglected.  
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