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ABSTRACT: A prediction model is developed based on neural networks approach to estimate the

air-borne sound insulation performance of lightweight wooden façade walls. A hundred insulation

curves are used to develop the model, and they are lab-based measurements performed on various

façades in one-third-octave bands (50 Hz– 5 kHz). For each wall, geometric and physical information

(material types, dimensions, thicknesses, densities, and more) are used as input structural parameters.

The results are satisfactory, and the model can estimate air-borne sound reduction with acceptable

variations. A better estimation is achieved at middle frequencies (250 Hz–1 kHz), while lower and

higher frequency bands often depict higher deviations. The weighted air-borne sound reduction index

(Rw) can be forecast with a maximum error of 3 dB. In certain cases, the model shows high deviations

within fundamental and critical frequencies, which influence the predictive precision. A sensitivity

analysis is implemented to investigate on which structural parameters the model relies. The results

emphasize the importance of façade thickness and the total density of the clustered exterior layers.
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1 INTRODUCTION

Wood has been widely used in structural engi-

neering due to its availability in nature and ease

of handling [1]. Additionally, it has a remarkably

lower carbon footprint than concrete and offers

significant thermal insulation. [2, 3]. In Scan-

dinavia and Australia, wooden constructions have

become widely popular due to their advantages

[4, 5]. Moreover, In North America, wood frame

systems were dominant in the building construc-

tion industry in the 20th century [6].

Despite the fact that these types of structures

reduce both cost and construction time, a disad-

vantage in these constructions is that the subjec-

tive sound isolation quality is considered lower

than in concrete or heavy constructions, with the

same insulation data [7]. This applies to different

lightweight elements, such as floors, roofs, inter-

nal walls, and façades. Façade structures are vital

to control the indoor acoustic environment by at-

tenuating the outside noise. Inappropriate design

may lead to undesirable impact on indoor acous-

tic comfort for occupants.

However, many façade structures are designed

mostly for certain purposes, such as fire safety

and thermal insulation, but acoustic aspects are

often not considered or misunderstood [8]. The

acoustic performance of such structures is de-

rived from standardized measurements, such as
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ISO and ASTM, but it requires time and cost,

and the results cannot be generalized to different

structures.

A theory-based analytical expression uses

stiffness, mass, and damping is utilized as a direct

prediction tool known as the mass law [9]. This

can be adapted for single-leaf partition, but it is

not appropriate for lightweight multi-layered el-

ements. Accurate estimation of the acoustic per-

formance of multilayer structures remains a chal-

lenge [9]. Moreover, the standardized method in

ISO 12354 Part 1 [10] is extracted using insula-

tion data for heavy monolithic partitions, which is

not applicable to lightweight multi-layered struc-

tures [11].

The applications of machine learning have

paved the way for complex technological achieve-

ments in different fields that were considered

challenging, such as image recognition, language

translation, and building acoustics [12, 13, 14]. In

this approach, large and diverse data is essential

to enable the algorithm to learn and to improve

its predictive power. Artificial neural networks

(ANN) approach was used in building acoustics

to predict air-borne sound insulation curves in

1/3-octave bands for masonry walls [14]. 34 lab-

oratory measurements were used to develop the

model. Despite the concordance between the re-

sults, the study focused on a single monolithic

partition.

To bridge this gap, 252 insulation curves of

different lightweight wooden floors were used to

develop an ANN model [15]. Structural param-

eters were used as inputs for the model, such

as material thickness, density, depth and type of

the joists, and more. The model can predict

the weighted sound reduction index Rw and nor-

malized impact sound pressure levels Lnn,w with

maximum deviations of 2 and 5 dB, respectively.

The scope of this study is to develop an ANN

model to estimate the air-borne sound insulation

curves of façades structures. The data comprises

lab-based measurements of lightweight wooden

façades without considering the presence of win-

dows, doors and small openings in the wall. Fi-

nally, sensitivity analysis was performed to shed

light on the most important factors that influence

the prediction of insulation curves.

2 MATERIALS AND METH-
ODS

2.1 DEFINITION OF ARTIFICIAL
NEURAL NETWORKS

The ANN model is a mathematical model which

is inspired by the human neural system to sim-

ulate its behavior [16]. A simple model com-

prises layers: input, hidden, and output (see Fig-

ure 1). Each layer contains artificial neurons

(computational units) and intermediate parame-

ters, called weights, connect adjacent layers. The

ANN model propagates information (input val-

ues) from the first layer (input layer) to the out-

put layer, where prediction values are calculated

[17]. The latter process is referred to as the train-

ing phase, in which weights and bias values (fea-

tures of ANN) are tuned in order to reduce errors

and achieve higher predictive accuracy. The out-

put of an artificial neuron can be determined by,

y = f (∑(wixi +b)), (1)

where y, wi, xi, and b are output, weight, input,

and bias values, respectively. The computed out-

put is called activation value, and it is utilized as

an input value to the chosen activation function.

The most common functions for ANN are tan-

gent, sigmoid, and LeakyReLU [18].

In this study, a multilayer perceptron class of

ANN is adapted. The network model comprises

two hidden layers. The cross-validation technique

is employed to validate the network model and to

prevent overfitting issues. As an activation func-

tion, LeakyReLU (Leaky Rectified Linear Unit)

is chosen for hidden layers [19]. Adam optimizer

[20] is employed during the training phase.

Three subsets of measurements are used by

splitting the entire curve measurements, namely:

training, validation, and test set (Table 1). The

root-mean-square error (RMSE) function is used

as a cost function to evaluate the performance of

the network,

RMSE =

√
1

n

n

∑
i=1

(ŷi − yi)2, (2)

where n presents the number of observations

(measurements) that are used in the training
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phase. Output (predicted) and input (measured)

values are donated by ŷi and yi, respectively. In

this study, the network model depicted an overall

prediction accuracy of 4.44 dB between the pre-

dicted and measured curves. However, for a better

evaluation of the results at different frequencies,

each estimated curve is analyzed with compari-

son to the measured one using the RMSE function

considering values in each one-third-octave band

from 50 Hz to 5 kHz.

Figure 1: The architecture of an ANN model illustrating input, hidden, and output layers and how the

structural parameters propagate through the network model.

2.2 ACOUSTIC DATA
A hundred lab-based measurements were col-

lected from Lund University in Sweden and the

National Research Council (NRC-CNRC) [21] in

Canada. The data consists of air-borne sound in-

sulation curves that concern various lightweight

façade structures in one-third-octave bands (50

Hz to 5 kHz). The measurements were performed

respecting ISO 10140-2 (2010) [22] and ASTM

E90-09 (2016) [23]. All the insulation data that

are performed in compliance with ASTM stan-

dards are converted to follow ISO 717-1 (2013)

[24] descriptor (the weighted air-borne sound re-

duction index Rw). This conversion is essential

to handle the data and to have a better agreement

between them.

The database is organized using different

structural parameters (Table 2) that are used as

inputs to the network model. Despite the impor-

tance of some elastic properties, such as dynamic

stiffeners and the modulus of elasticity, they are

not considered in the study due to the lack of in-

formation provided by the acoustic reports. 10

measurements of different façade walls are used

to initiate the features of the ANN model, known

as validation set, and another set of 10 curves

were selected (randomly from the total number

of curves) to test the accuracy of the model (Fig-

ure A1 in the Appendix). Each façade configu-

ration is clustered in three parts: interior, main

and exterior parts, respecting the installation or-

der of each façade component. The dominant

component or material is represented by the main

part. Therefore, the interior and exterior sections

present components clustered and located along-

side the main façade material (Figure 2).
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Table 1: A description summary of acoustic measurements that are used to develop the network

model.

Database ANN model

Measurements No. 100 100

air-borne training set validation set testing set

100 80 10 100

Table 2: Structural variables that are utilized to organize the measurements to be used by the ANN

model.

Parameter Unit Class
− type of material — i.e., CLT panel, insulation materials, etc.

− Material installation order — first/ second/. . .
− Material thickness mm —

− Group thickness mm interior, main and exterior parts

− Total thickness of a façade mm —

− Material density kg/m3 —

− Group density kg/m3 interior, main and exterior parts

− Total density of a façade kg/m3 —

− Façade area S m2 —

− Volume of the receiving room V m3 —

− Studs depth mm —

− Spacing between studs mm —

− Resilient channels depth mm —

− Spacing between Resilient channels mm —

Figure 2: An explanation schematic presenting how façade components are clustered in the database

using an example of the test façade #6.

2.3 SENSITIVITY ANALYSIS
Understanding the mechanism of ANN models is

cumbersome, especially that they are known as

black box prediction tools [25]. To recognize the

parameters on which the ANN model relies on,
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an axiomatic approach, called integrated gradi-

ents (IG) is adapted. The IG method is defined

as IGi(x). Supposing a function F : Rn → [0,1]
represents a network model. Using x= (x1, ...,xn)
∈ Rn as an input and z ∈ Rn as a baseline relative

to x. Then a vector AF(x,z) = (a1, ...,an) ∈ Rn is

the attribution of the input x, where ai is the at-

tribution of xi of function F(x). IG values can be

extracted by calculating the gradients across the

straight path between the input x and the baseline

z. Hence, IG for ith dimension is donated by [26],

IGi(x) = (xi − zi)∗
∫ 1

α=0

∂F(z+α ∗ (x− z))
∂xi

dα.

(3)

3 RESULTS AND DISCUS-
SION

3.1 AIRBORNE SOUND INSULA-
TION PREDICTIONS

Figure 3 depicts a comparison between predicted

and measured curves. It shows that the estima-

tions are close to the measurements with certain

deviations in some cases at high or/and low fre-

quencies. The smallest RMSE value is 2.19 dB
for façade #3, and the highest is 5.73 dB for

slightly complex wall #10.

Figure 3: Predicted and measured air-borne reduction index curves for test façades.
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In high frequency bands (1.25–3 kHz), a sig-

nificant gap is notable between the curves. The

later range usually includes the critical (coinci-

dence) frequency for lightweight structures. At

these frequencies, a match occurs between the in-

cident wavelength that is projected onto the plate

and the wavelength of the bending wave in the

plate [9]. As a consequence of this matching, the

structure will easily and efficiently radiate sound

at and above this range [27].

Furthermore, similar deviations are observed

at frequencies lower than 200 Hz, e.g. walls #1,

#8 and #9. This can be explained due to the pres-

ence of fundamental resonances or first eigenfre-

quencies [9]. This reveals the limitation of the

ANN model in the estimation around these fre-

quencies. Similar challenges were also reported

for ANN models [15, 14].

Table 3 presents the RMSE values in the pre-

diction of air-borne sound insulation curves. It

also shows the calculated single-number quanti-

ties (SNQ), Rw and RwPredicted , for each curve.

Façade #7 has the highest error with 3 dB,

while the network model can estimate the same

weighted reduction index values (walls #3 and

#6). Additionally, the maximum difference in

the calculation of correction terms (C100–3150 and

C50–5000) is 4 dB in façade #5.

Table 4 summarizes the distribution of errors

in estimation of insulation curves using RMSE,

and taking three frequency ranges into account:

low (50–200 Hz), middle (250 Hz–1 kHz) and

high (1.25–5 kHz) frequency. The results showed

that the model accuracy is the best in the middle

frequency, while higher deviations are found in

low and high frequency ranges. Again, this can

probably be described due to the presence of res-

onance and critical frequencies.

Table 3: Predicted and measured weighted sound reduction indices of test walls.

Façade no. RMSE (dB) Rw (dB) C100–3150 C50–5000 RwPred (dB) CPred 100–3150 CPred 50–5000

1 3.42 39 −4 −3 40 −3 −3

2 5.48 46 −2 −2 48 −1 −1

3 2.19 53 −4 −6 53 −4 −6

4 2.92 50 −3 −4 51 −6 −6

5 5.62 52 −2 −2 51 −6 −6

6 4.48 55 −4 −4 55 −5 −5

7 5.59 48 −1 −1 51 −2 1

8 3.01 65 −5 −7 67 −4 −5

9 4.12 37 −4 −3 38 −1 −1

10 5.73 49 −3 −3 47 −2 −1

Table 4: Error distributions in the prediction of air-borne insulation curves considering three fre-

quency regions.

Root-Mean-Square Errors in dB

Frequency Bands Low Middle High
50–200 Hz 250 Hz–1 kHz 1.25–5 kHz

R (air-borne sound) 4.67 3.52 4.99

3.2 SENSITIVITY ANALYSIS OF
FAÇADES STRUCTURAL PA-
RAMETERS

A sensitivity analysis is implemented to investi-

gate the influence of the thickness and density of

exterior, main and interior parts of each façade on

the forecast. In those types of graphs, a user can

find out the importance of each parameter consid-

ering the magnitude of y− axis. Higher values in-

dicate a larger size effect of the inputs. However,
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values close to zero suggest a weaker relationship.

Plots in Figure 4 illustrate the contribution of

the thickness and density of interior, main and ex-

terior parts of walls to the prediction of insula-

tion curves. It is noticeable that the density and

thickness play a significant role at all frequen-

cies. The density spectrum of the interior part

illustrates fluctuation near the fundamental fre-

quencies. In addition, the density of the exte-

rior part is vital and the effects of fundamental

and critical frequency are obvious on the attribu-

tions. A peak near 150 Hz and a dip near 1.25

kHz are obvious, which is probably due to effects

of fundamental and critical frequencies, respec-

tively. This is likely resulting due to coupling

between resonant wall components that permits

energy to transfer between them [27]. The latter

happens when elements are physically connected,

and they have sufficiently close natural or critical

frequencies. This amplifies the radiations from

components and affects the isolation negatively

[9].

Figure 4: Feature attributions of interior, main and exterior parts façades to the predictions.

4 CONCLUSION
This study reveals the potential of ANN model

to predict the air-borne sound insulation curves

using 100 lab-based measurements of lightweight

façade walls. The results are reasonable, and the

model can forecast the sound weighted reduction

index Rw with a maximum difference of 3 dB.

These results encourage considering the network

model in the early design phases, in particular the

difference around 2 dB is lower than the notice-

able noise differences. Regarding the whole fre-

quency band. The best achieved accuracy is at the

middle frequencies (250 Hz – 1 kHz). However,

the prediction around fundamental and critical

frequency is challenging for the network model

and reveals some deviations.

A sensitivity analysis is carried out to explore

the attribution of the input parameters to the pre-

dictions. The total thickness and total density of

interior, main and exterior parts of façades have

remarkable effects at all frequencies, and a higher

attribution to the total density of the exterior part.

The coupling between resonant façade compo-

nents, resulting from fundamental and critical fre-

quencies of each component, has a significant in-

fluence on the prediction.
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Further research would be expected on enlarg-

ing the sensitivity analysis study to cover different

structural parameters, and how these parameters

can be optimized to enhance the sound insulation

prediction. This would pave the way to explore

the importance of certain structural parameters to

achieve the desired isolation.
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Figure A1: Floor configurations that are used to evaluate the network model for air-borne sound

predictions.
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