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ABSTRACT: This paper aims to evaluate the vibration property of a two-story timber structure which has energy 
dissipation devices to enhance the seismic performance. Oil dampers and friction dampers are considered as the energy 
dissipation devices in this study. Steady-state response of a two-degree-of-freedom system which has the nonlinear 
springs with the force-deformation relation of timber structure and the dampers is derived by using the equivalent 
linearization technique and the sequential quadratic programming. Through the comparison of the resonance curves of 
the models with/without dampers, it is found that the friction damper reduces the story drift mainly around the first mode 
while the oil damper works to decrease the story drift both around the first and the second modes. 
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1 INTRODUCTION 234

Recent years in Japan, energy dissipation devices such as 
oil dampers and friction dampers are widely used to 
enhance seismic performance of low-rise timber 
buildings, especially two-story wooden houses. In some 
previous researches, the effectiveness of installing energy 
dissipation devices into timber structures is evaluated 
numerically through time history seismic response 
analysis; however, it is also important to investigate the 
effect of dampers theoretically based on dynamics of 
structures in order to discuss the vibration property of 
timber structure that have energy dissipation devices. 
The author derived steady-state response of a single-
degree-of-freedom system which has a nonlinear spring of 
ENCL model [1] and viscous and friction elements as 
energy dissipation devices by using Caughey’s equivalent 
linearization technique [2] in the previous work [3]. In this 
paper, the steady-state response of a two-degree-of-
freedom system are derived in a same manner as the 
previous method [3] and discuss the vibration property 
based on resonance curves.
At first, a force-deformation relation model and analysis 
models used in this study are summarized in Chapter 2. 
Then, the steady-state response of the two-degree-of-
freedom system are derived by using Tajimi’s [4] and 
Caughey’s methods [2] in Chapter 3. Finally, the vibration 
property of a two-story timber structure with energy 
dissipation devices are discussed in Chapter 4. 

2 FORCE-DEFORMATION RELATION
OF TIMBER STRUCTURE AND 
ANALYSIS MODEL

The force-deformation relation of a timber structure is 
simulated by an extended normalized characteristic loop 
model (ENCL model) [1] expressed by Eq. (1). L1(x) and 
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L2(x) are loading and unloading curves, respectively.  The 
variable x is the deformation normalized by the maximum 
deformation of the hysteresis loop. A, B, n1, and n2 are the 
parameters which control the shape of the hysteresis loop.
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A represents the force at a y-intercept, and an absorbing 
energy increases with the increase of the value of A. B
controls the slip behaviour of the loop, and a tangent 
stiffness decreases with the increase of the value of B. n1
and n2 control the curvature of the loading and unloading 
curves, and the curvature increases with the increase of 
the values of n1 and n2. 
In this paper, these parameters are adjusted to simulate the 
force-deformation relation obtained through the static 
cyclic loading test on the timber beam and column frame 
combined with plywood panel [5]. Figure 1 shows the 
force-deformation relation simulated by ENCL model, 
and its parameters are listed in Table 1. The deformation 
and the force are expressed by and r, and these values 
are normalized by the deformation and the force at 1/360 
rad, respectively. 

Figure 1: Force-deformation relation of the timber structure 
simulated by ENCL model
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Table 1: Parameters of the ENCL model 

 
 
Figure 2 illustrates the composition of the analysis models 
used in this study. The Basic model is the two-degree-of-
freedom system which has nonlinear springs with the 
ENCL model and dashpots representing the inherent 
structural damping. The VD model has additional 
dashpots (Dashpot 2) to consider the viscous force added 
by oil dampers. The FD model has elastic-perfectly plastic 
springs (EPP springs) which express the stiffness and the 
friction force added by friction dampers. 
 

 
(a) Basic model           (b) VD model              (c) FD model 

Figure 2: Composition of analysis models 

3 STEADY-STATE RESPONSE 
The equation of motion is formulated as Eq. (2) using 
story deformation represented by u1 and u2 for the first and 
the second stories, respectively. 

   
     

2 2 1 2 d2 2 2 2 2

2 2 1 2 1 1 d1 1 1 1 1 2

cos

cos

m u u c c u k Q m pt

m u m m u c c u k Q m m pt





      


        
 

  (2)  

where mi is the mass of ith node, ci is the viscous damping 
coefficient of the ith story related to inherent damping of 
timber structure, cdi is the viscous damping coefficient 
added by oil dampers in the ith story, ki is the stiffness of 
the ith story, Qi is the function of restoring force of the ith 
story,  is the magnitude of an excitation, and p is the 
circular frequency of the excitation. Here, we 
approximate the solution of Eq. (2) as follows.  

     cos 1,2i i iu pt i     (3) 

The restoring force of ith story is approximated as follows 
by using Caughey’s equivalent linearization technique. 

   i i i ei i ei ik Q k k u c u   (4) 

where 

 , i
ei i ei

Sk C c
p
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Ci and Si in Eq. (5) are the values defined in the Caughey’s 
equivalent linearization technique, and they are calculated 
as the summation of the values of ENCL and EPP springs 
as formulated in Eq. (6). 
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Ci_ENCL and Si_ENCL are calculated by Eq. (7) which was 
derived in the previous study [3]. 

 

 

 

 

 

0

_ENCL 1
2

2
20

1 2

1 2

0

_ENCL 1
2

2
20

2 cos cos

cos cos

3 3
2 2 2 1

4 42 2
2 2

2 cos sin

cos sin

i i
i

i

i

i

i i
i

i

C r L d

r L d

n n
r B B

n n

S r L d

r L d









  
 

  

 
 

  
 

  






 




 


                                      


 













2 12 8 1 2 21, 1,
5 2 2 2

i

i

r n nA B
 





                
      

 (7) 

Ci_EPP and Si_EPP are calculated by Eq. (8) based on the 
method proposed by Caughey [6]. 
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where  * 1
ycos 1 2 i i    , Fi is the ratio of the yield 

force of the EPP spring to the force of the ENCL model 
in the ith story at 1/360 rad. yi is the yield deformation of 
the EPP spring in the ith story. By substituting Eqs. (3) 
and (5) for Eq. (4), and by replacing ipt   with i, the 
restoring force of the ith story is expressed as follows. 

  cos sini i i i i i i ik Q k C S     (9) 

First, we replace 2pt   with 2 in Eq. (3) to obtain Eq. 
(3’). 

Drift angle (rad) r A B n 1 n 2

0 0 0 0 0 1 1

1/720 0.5 0.5 0 0 1 1

1/360 1 1 0.12 0.3 1 1.6

1/180 2 1.568 0.12 0.54 1 2.4

1/120 3 1.958 0.12 0.66 1.2 2.8

1/60 6 2.704 0.13 0.76 1.9 4.3

1/30 12 2.865 0.15 0.82 2 5.1
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 1 1 2 2 1 2 2 2cos , cosu u          (3’) 

By substituting Eqs. (3’) and (9) for the upper equation of 
Eq. (2), we obtain Eq. (2’). 
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Since Eq. (2’) is an identity, we obtain the following 
relations. 
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By multiplying i to Eq. (10-2) and adding it to Eq. (10-
1), we obtain Eq. (11). 
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Next, we replace 1pt   with 1 in Eq. (3) to obtain Eq. 
(3’’). 
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By substituting Eqs. (3’’) and (9) for the lower equation 
of Eq. (2), we obtain Eq. (2’’). 
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Since Eq. (2’’) is also an identity, we obtain the following 
relations. 
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By multiplying i to Eq. (12-2) and adding it to Eq. (12-
1), we obtain Eq. (13). 
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Equations (11) and (13) can be written in matrix form in 
the same manner as Kikuchi et al [7]: 
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The story drift i is expressed by Eq. (15). 
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Equation 15 cannot be solved explicitly since A12 and A21 
are also the function of i; therefore, the sequential 
quadratic programming (SQP) was used to solve the 
optimization problem formulated by Eq. (16). 
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4 RESONANCE CURVE 
4.1 PARAMETER OF ANALYSIS MODEL 
The detail of the analysis models used here is listed on 
Table 2. The parameters of cd1 and cd2 are the viscous 
damping coefficients added by oil dampers in the first and 
the second story, respectively.  In all the models, m1 and 
m2 are unity, and the values of c1 and c2 are decided to let 
the model have the inherent structural damping of 1% to 
the initial stiffness of the ENCL springs. 
The M1 is the basic model in this study. The mode shape 
of the first mode in the elastic region of the M1 is an 
inverted triangle, which is expected to have an almost 
uniform deformation along the height of the model under 
ground excitation. The k1 and k2 of the M1_R_1.25, 1.5 
and 2 are 1.25, 1.5 and 2 times larger than those of the M1, 
respectively. The M1_V_3%, 5% and 10% has dashpots 
representing oil dampers in all the stories, and the viscous 
damping coefficients of the dashpots are decided to have 
the damping ratio of 3%, 5% and 10% to the initial 
stiffness of the ENCL springs, respectively. The 
M1_F_0.1, 0.3 and 1 contain EPP springs representing 
friction dampers in all the stories. The number put after 
F_ means the value of Fi which is the ratio of the yield 
force of the EPP spring to the force of the ENCL model 
in the ith story at 1/360 rad as mentioned in Chapter 3. 
The yield deformation of the EPP spring is 1/360 rad in 
all the M1_F models. 
The M2 is another basic model in this study. The stiffness 
k1 and k2 of the M2 are unity, so the story drift in the first 
story is supposed to become larger than that of the second 
story under ground excitation. This type of two-story 
wooden houses is very common in Japan because most 
houses have many rooms, i.e. many walls, in the second 
story. For the M2 model, strengthening only in the first 
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story by increasing stiffness, installing oil dampers, and 
installing friction dampers are considered in this analysis. 
In the models of the M2_R_1.25, 1.5 and 2, the stiffness 
of the first story increases by 1.25, 1.5 and 2 times 
compared with that of the M2. The M2_V_3%, 5% and 
10% have the dashpots the viscous damping coefficients 

of which are calculated by  d1 d 1 2 12c h m m k  in the 
first story, where the value of hd for each model are 0.03, 
0.05 and 0.1, respectively. The M2_F_0.1, 0.3 and 1 have 
the EPP spring in the first story, and the yield forces are 
0.1, 0.3 and 1, respectively. The yield deformation of the 
EPP spring is 1/360 rad in all the M2_F models. 

4.2 RESULT AND DISCUSSION
4.2.1 M1 model
Figure 3 shows the resonance curve of each story of the 
M1 with  = 0.1, 0.2, 0.3 and 0.34. The horizontal axis of 
the figure is the ratio of circular frequency of excitation p
to the first natural circular frequency 0 of the M1. As an 
overall feature, the value of 1 and 2 in the first mode 
significantly increase with increase of , whereas those 
value around the second mode have little or no increase.
It is seen that the value of p/ 0 at the peak in the first mode 
moves to the left side, which means the model shows 
softening behaviour under strong excitation. This result 
agrees to intuitive understanding because the equivalent 
stiffness of the model gradually decreases with increase 
of the story drift as shown in the force-deformation 
relation in Figure 1. It is also confirmed that the jump 
phenomenon occurs around the fist-mode peak, which is 
generally seen in the non-linear system.

When the attention is focused on the result with  = 0.34, 
the shape of the curve around the first mode dramatically 
changes, and the model has more than three solutions at 
the same p/ 0. It is presumed that this phenomenon is
caused by the strong non-linearity in the range of large 
deformation; however, more investigations including the 
verification of stability is needed.  

4.2.2 M1_R, M1_V and M1_F models
The resonance curves of the M1_R, M1_V and M1_F
with  = 0.34 are displayed in Figure 4 (a), (b) and (c), 
respectively, in comparison with the M1. The purpose 
here is to clarify the effect of increasing the stiffness, 
installing oil dampers and installing friction dampers on 
the reduction in the story drift of structures. 
When the stiffness increases by 1.25, 1.5 and 2 times, 1
and 2 in the first mode gradually decrease and the p/ 0 at 
the peak moves to the right side, but in the second mode 
the maximum values of 1 and 2 are almost the same as 
those of the M1. Similar feature is seen in the result of the 
M1_F models shown in Figure 4 (c), while quite different 
trend can be seen in the M1_V models shown in Figure 4 
(b). First of all, installing oil dampers reduce the story 
drift not only around the first mode but also around the 
second mode. Secondly, the change of the value of p/ 0
at the peak is insignificant compared with the results of 
M1_R and M1_F. Thirdly, oil dampers does not work to 
reduce the story drift in the range of 00 0.4p   where 
external force act as almost static load. 
In order to investigate the response characteristics of the 
three strengthened models, M1_R_2, M1_V_10% and
M1_F_1, against large excitation, the resonance curves of 
these models with  = 0.68 are compared in Figure 5.

Table 2: Parameters of analysis models

Name Model type m1 m2 k 1 k 2 c d1 c d2 F 1 F 2

M1 Basic model 1 1 1 0.667 0 0 0 0
M2 Basic model 1 1 1 1 0 0 0 0
M1_R_1.25 Basic model 1 1 1.25 0.833 0 0 0 0
M1_R_1.5 Basic model 1 1 1.5 1 0 0 0 0
M1_R_2 Basic model 1 1 2 1.333 0 0 0 0
M1_V_3% VD model 1 1 1 0.667 0.104 0.069 0 0
M1_V_5% VD model 1 1 1 0.667 0.173 0.115 0 0
M1_V_10% VD model 1 1 1 0.667 0.346 0.231 0 0
M1_F_0.1 FD model 1 1 1 0.667 0 0 0.1 0.067
M1_F_0.3 FD model 1 1 1 0.667 0 0 0.3 0.2
M1_F_1 FD model 1 1 1 0.667 0 0 1 0.667
M2_R_1.25 Basic model 1 1 1.25 1 0 0 0 0
M2_R_1.5 Basic model 1 1 1.5 1 0 0 0 0
M2_R_2 Basic model 1 1 2 1 0 0 0 0
M2_V_3% VD model 1 1 1 1 0.085 0 0 0
M2_V_5% VD model 1 1 1 1 0.141 0 0 0
M2_V_10% VD model 1 1 1 1 0.283 0 0 0
M2_F_0.1 FD model 1 1 1 1 0 0 0.1 0
M2_F_0.3 FD model 1 1 1 1 0 0 0.3 0
M2_F_1 FD model 1 1 1 1 0 0 1 0
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Figure 4: Resonance curves of the M1, M1_R, M1_V and M1_F with = 0.34 (top: second story, bottom: first story)Fi 4 R f th M1 M
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Figure 3: Resonance curves of the M1 with = 0.1, 0.2, 0.3 and 0.34 (left: first story, right: second story)
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Figure 5: Resonance curves of the M1_R_2, M1_V_10% and M1_F_1 with = 0.68 (left: first story, right: second story)
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Although these three models have similar peak values of 
2 under the excitation with  = 0.34, the maximum value 

of 2 of the M1_V_10% and M1_F_1 under the excitation 
with  = 0.68 are smaller than that of the M1_R_2. This 
result indicates that the effect of strengthening by 
increasing stiffness, installing oil dampers and installing 
friction dampers highly depends on the magnitude of 
excitation.

4.2.3 M2 model
Figure 6 indicates the resonance curve of the M2 with  = 
0.1, 0.2, 0.3 and 0.34. In this model, the story drift in the 
first story much larger than that of the second story
especially under large excitation. This result explains the 
soft-story mechanism of two-story wooden houses caused 
by very strong earthquakes such as 1995 Kobe earthquake 
and 2016 Kumamoto earthquake occurred in Japan.  It is 
also seen that the jump phenomenon occurs around the 

first mode and the shape is less complicated than that of 
the M1.
4.2.4 M2_R, M2_V and M2_F models
In Figure 7, the resonance curves of the M2_R, M2_V and 
M2_F are compared with that of the M2 in the same 
manner as Figure 4. It is seen in Figure 7 (a) that the 
increaseing of the stiffness of the first story decreases the 
story drift in the first story 1 but increases the story drift 
in the second story 2, indicating that when we strengthen
only first story, we have to pay attention to the response 
of the second story even if the original structure has the 
relatively low stiffness and strength in the first story. 
In the case of installing oil dampers or friction dampers 
only in the first story, the story drift in the first story 
gradually decreases with increase of the capacity of the 
dampers without significant increase of the story drift in 
the second story. It is presumed that the reason of this 
result is dut to the feature of the damper which works to 

Figure 7: Resonance curves of the M2, M2_R, M2_V and M2_F with = 0.34 (top: second story, bottom: first story)
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Figure 6: Resonance curves of the M2 with = 0.1, 0.2, 0.3 and 0.34 (left: first story, right: second story)
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increase mainly damping performance not stiffness and 
strength. 
 
5 CONCLUSIONS 
The steady-state response of the two-degree-of-freedom-
system with ENCL and EPP springs were derived and the 
vibration property of two-story timber structure with 
energy dissipation devices were discussed based on the 
resonance curve. The following conclusions are obtained 
from this study: 
 
1. The two-degree-of-freedom-system which has ENCL 

springs with the parameters of timber structure shows 
softening behaviour and jump phenomenon around the 
first mode in the resonance curve. 

2. The strengthening by increasing stiffness and 
installing friction dampers reduce the story drift only 
around the first mode, whereas installing oil dampers 
reduces the story drift both around the first and the 
second modes. 

3. In the two-story timber structure which has relatively 
low stiffness in the first story, installing dampers only 
in first story reduces the story drift in the first story 
without significant increase of the story drift in the 
second story. 
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