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A SEISMIC RESPONSE ESTIMATION MODEL FOR CROSS-
LAMINATED TIMBER WALLS USING MACHINE LEARNING

Eknara Junda', Christian Malaga-Chuquitaype>

ABSTRACT: This paper proposes a machine learning-based model for estimating the seismic damage of cross-laminated
timber (CLT) walls. Random Forests are used to this end. A database is created using numerical results from nonlinear
response history analyses under a large set of ground motions. 69 numerical models of CLT walls with various structural
characteristics and design parameters are used. The maximum inter-storey drift ratio (MIDR), which plays an essential
role in explaining the seismic damage of buildings, is adopted as the damage predictor target. Two feature selection
techniques, sequential forward floating selection and LASSO are applied to evaluate the impact of various input features
on the estimation performance. Results show that a high accuracy of the estimation is obtained if six features are employed
as inputs. The proposed model performance is assessed and then compared with traditional methods. Finally, the Shapley
Additive exPlanation method is employed to interpret the influence of the input features on the MIDR estimates in the
machine-learning-based model.

KEYWORDS: Seismic demand estimation, Machine learning, CLT walls, Random Forests, Maximum inter-storey

drift ratio

1 INTRODUCTION

Cross-laminated timber (CLT) is an environmentally
friendly material that offers several advantages in
construction, such as high prefabrication level, good
thermal insulation, lightweight, and good fire
performance when properly designed. CLT has enhanced
mechanical properties springing from its manufacturing
process resulting in high in-plane strength and stiffness.
Thus, CLT has been widely used for walls as the load-
bearing element of CLT buildings, including being
considered as the lateral force-resisting system in seismic
applications [1].

The advantageous mechanical and environmental
characteristics of CLT have made it an attractive option
for mid to high-rise buildings in earthquake-prone
regions. Typical CLT buildings generally comprise panels
linked by metal connectors such as hold-downs, angle
brackets, and screws. These connectors play a vital role in
dissipating the seismic energy through the nonlinear
deformation under seismic actions. On the other hand, the
CLT panel is assumed to behave as a rigid body [2]. This
causes the lateral deformation of CLT buildings to be
fundamentally based on a combination of rocking and
sliding responses which are completely different from
other structural systems, such as moment frames or braced
frames governed by flexural behaviour. Such rocking and
sliding deformation of CLT walls are complex and
challenging to predict due to the overlying effects of
pinching, friction, stiffness and strength degradation
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phenomena. These complex phenomena could also result
in high inelastic deformations under strong earthquakes.
All this in the context of the continuous push towards
taller CLT buildings driven by current developments in
construction technology. Therefore, more complex
structural behaviours and high seismic demands are
expected. Hence, an accurate tool for estimating and
assessing the seismic demands of CLT walls is needed.

Seismic demand estimation using machine learning (ML)
have increasingly been applied to various structural
systems. As ML algorithms do not need functional forms
to predict a target, they can successfully map the complex
relations between inputs and the target by learning
directly from a given dataset. Such abilities to learn and
recognise data patterns make ML beneficial for dealing
with high-dimensional spaces [3]. ML models for the
estimation of seismically-induced responses have been
developed for a variety of systems, from geotechnical
structures [4] to extra-terrestrial constructions [5].
Likewise, several ML techniques were used to establish
regression-based and classification-based models for
reinforced concrete [6] and steel frames [7]. ML
techniques were also used for other structural systems in
the past few years [8-10]. Even though ML techniques
have been used for the seismic response estimation of
various structural systems, no previous study has applied
such techniques to CLT walls. This despite the fact that,
as mentioned earlier regarding the complexity of the
seismic response of CLT walls, ML techniques have
inherent advantages in handling the highly nonlinear



responses and explore the complex relations among
parameters of multi-storey CLT walls.

This paper proposes a ML model for estimating the
seismic response of multi-storey CLT walls. The
maximum inter-storey drift ratio (MIDR) is chosen as the
output target. Thirty input features are used as predictors.
These features are composed of intensity measures (IMs)
and structural parameters of CLT walls (SPs). Sixty-nine
numerical models of CLT wall cases with different
structural configurations are created and analysed using
nonlinear response history analyses to obtain MIDR.
Random Forests, a ML algorithm, is used to develop a
regression model for MIDR estimates. Finally, the
prediction performance of the ML-based models are
evaluated and compared with traditional methods. In
addition, the influence of each input features on the MIDR
prediction is interpreted using SHAP.

2 CLT STRUCTURAL MODELS AND
GROUND MOTIONS

2.1 CLT WALL MODELS

69 CLT structures representing residential multi-storey
CLT buildings of different heights and panel
fragmentation levels are considered. All buildings share
the same plan layout and have a typical storey height of
3.5 m, except for the ground level which height is 4.3 m.
Figure 1 shows the configuration of a typical 12-storey
CLT building as an example. Dead loads were calculated
considering all finishing and insulation, whereas a
superimposed load of 2.0 kKN/m? was assumed. Loads
considered for seismic mass are a combination of 100%
dead and 30% superimposed load. The response spectrum
of Eurocode 8 Type 1 [11,12] at a Peak Ground
Acceleration (PGA) of 3.0 m/s? with an importance factor
of 1.0 was adopted to estimate the seismic load.

In this study, CLT Wall 2-BC was selected as the
representative part of the structure. The wall is 8.5 m long
(marked with dashed lines in Figure 1). All walls were
designed using capacity design principles and current
codified guidance. We followed ductile design and failure
mode control principles informed by Eurocode 8, Part 1.
More details of the design processes of the CLT structure
can be found in [12].
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Figure 1: Typical 12-storey building.
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Several parameters were varied during the design to cover
a wide range of CLT buildings and evaluate their effects
on the corresponding seismic demands. These parameters
comprised the number of storeys, the sub-panel numbers,
and the behaviour factors. Table 1 summarises parameters
regarding CLT walls adopted in this study.

Table 1: parameters regarding CLT walls

Parameters Variables
Number of stories (N) 6,8,12,16,20
Number of subpanels per wall (m) 1, 2,3,4
Behaviour factor (q) 1.5,2,2.5,3,4

We developed a series of 2D numerical models of the wall
structures in OpenSees [13]. Figure 2 shows a schematic
drawing of the model for a wall with m = 2. All CLT
panels were discretised into a number of shell elements.
In contrast, two-node link elements with zero length
represented the three main steel connectors (hold-downs,
shear brackets, and vertical screws). The link elements for
hold-downs were located at the corners of the panels,
represented by blue springs. Angle brackets were
distributed along the length of the panels in the X
direction (red springs), and self-threaded screws at the
vertical joints were lumped into an equivalent single link
element, placed at the mid-height of the panels (shown in
green).

Since most of the nonlinear deformations in CLT walls
under lateral actions occur at their joints and since the
CLT panels themselves are expected to remain largely
elastic [12,14], an equivalent isotropic material model
with linear elastic properties was assumed for the CLT
panels. In steel connectors, we used a hysteretic uniaxial
material model to capture the global nonlinear responses.
Both shear and axial direction capacities were modelled
in all types of connectors, considering the uncoupled
reaction between the two directions. The strength,
deformation values, pinching, strength and stiffness
degradation were calibrated against available data from
previous experimental studies [15-17]. Moreover, a
leaning column, modelled using beam-column elements,
was connected to the wall through equal degree-of-
freedom constraints to account for P-Delta effects caused
by gravity loads. This was done to consider geometric
nonlinear effects since the shell element type used in
OpenSees only allows for a linear geometric
transformation. A Rayleigh damping model with a
damping ratio of 0.05 in the first and fifth mode was
assumed in all cases.
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Figure 2: Numerical model of CLT walls.

The CLT-walled models mentioned above were validated
against experimental results. Two cases of structures,
single wall and couple walls are compared and shown In
Figures 3 and 4. It is seen from the comparisons that our
modelling approach can efficiently reproduce the
experimental hysteretic response of CLT assemblages.
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Figure 3: Validation of the numerical model for a single wall.
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Figure 4: Validation of the numerical model for coupled walls.

2.2 GROUND MOTIONS

In this study, we used the 1,656 records selected by
Hancock et al. [18] from the NGA-West database [19].
These records come from shallow crust seismic events
with moment magnitudes between 5.1 and 7.9 and an
average PGA of 1 g. More information regarding the
ground motion set can be found in [18]. Moreover, scaling
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factors of 2 and 1 were used to scale up the original un-
scaled records in order to increase the intensity of the
ground motions, resulting in more cases of nonlinear
responses. Therefore, the total number of ground motion
records was 3,312 leading to 228,528 nonlinear response
history analyses (NRHA). The massive analysis was
performed on the high-performance computing facility
(HPC) at Imperial College London.

3 FEATURE SELECTION

To develop an ML model for MIDR estimation, a training
dataset was prepared. The dataset consists of the input
features (predictors) and the output target (MIDR). Two
main parameters were considered for the model
development: ground-motion intensity measures (IMs)
that describe earthquake characteristics and structural
parameters (SPs) that describe structural properties in
CLT walls. Nine common IMs were selected based on
hazard computability, including Peak  Ground
Acceleration (PGA), Peak Ground Velocity (PGV), Peak
Ground Displacement (PGD), total Arias intensity at the
end of the time series (), significant duration (Ds-75 and
Ds-95), and spectral acceleration values at the building’s
fundamental period (Sa(T1)) and at n times Ti (Sa(nT1))
where n was varied from 1.1 to 3.0, the mean period of the
ground motion (Tm) and the ratio between the
fundamental structural period and the ground-motion
mean period (the tuning ratio, T1/Tm). In addition, six
structural parameters (SPs) were also considered as
candidate input features. These include the behaviour
factor (q), building height (H), slenderness (Aw), length of
fastening lines (FL), joint density (Bw), and wall
subdivision ratio (m). These SPs have been reported in the
literature to significantly impact the seismic response of
CLT wall structures [14, 20, 21]. The total number of
input features was 30.

We randomly divided the whole database into training and
test sets to avoid overfitting during the model
development. The training set contained 70 % of the
database and was used for all the activities of the
modelling processes, whereas the remaining 30 % of the
data was kept as unseen data and was used for
performance testing purposes at the final step. We
transformed all IMs and MIDR to the log-normal space
following the common assumption of lognormality
adopted in earthquake engineering [22].

All 30 input features used for the model development
were selected using different feature selection techniques,
namely sequential forward floating selection (SFFS) and
Least Absolute Shrinkage and Selection Operator
(LASSO). The feature selection was carried out using the
training dataset. Note that the objective of this process is
to evaluate the predictive potential of the features and
obtain a set of features influencing the prediction. The
mean square error (MSE) was used to assess the fit, and a
10-fold cross-validation (CV) was applied to generalise
the results, mitigate overfitting, and improve the model’s
robustness [23]. The features which finally selected were
PGV, Su(Ts), T1/Tm, q, H, and m. This set was considered



as an optimised combination of predictors, which was
used to develop the ML model in this paper.

4 MACHINE LEARNING MODEL
DEVELOPMENT

4.1 MODEL TRAINING

As mentioned previously, this paper compares the
performance of MIDR estimates between a traditional
regression model and an ML-based model. The algorithm
used for a traditional method is Multiple Linear
Regression, whereas an ML method is Random Forest.
We have implemented the algorithms using the Scikit-
learn package in the Python-based computational
platform. Note that hyper-parameters of Random Forest
were tuned to minimise a cost function using
GridSearchCV, also available from the Scikit-learn
package.

4.2 PERFORMANCE MEASURES

This study employs two performance metrics, the
coefficient of determination (R?) and the root mean square
error (RMSE), to assess the applied models' prediction
performance. These two indicators, widely adopted in ML
performance studies, are provided for training and test
sets. The expressions for R?> and RMSE are given in
Equations 1 and 2.

2ie (i — y:)?

R2=1 — — (n
> — v
1 n
RMSE = EZ(yi — 92 @
i=1

where ¥;is the estimated target out, y;is the real target
value, and n is the number of data points.

5 RESULTS
5.1 MODEL PERFORMANCES

The prediction performances of the training and test
datasets for the regression models are presented in Table
2. The MIDR estimates versus actual values are depicted
in Figures 5 and 6 for the linear regression and random
forest models, respectively. The result shows a
comparable prediction performance between the training
and the test set. This indicates that the models developed
do not overfit the training data and should perform well
on unseen data.

Table 2: Comparison of the prediction performances

MIDR
Algorithm Training set Test set
R RMSE R! RMSE
Linear regression  0.778  0.368  0.777  0.369
Random Forest 0.950 0.102  0.946 0.198
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The traditional linear regression, which has been broadly
applied for estimating seismic demands of structures,
shows relatively low prediction power, evidenced by the
lower R? and higher values of RMSE, compared to the
Random Forest. The linear regression model clearly has
notable dispersion levels between its predictions and
numerical results, especially underestimating MIDRs at
higher levels of demand. Lower performances are
observed from the linear regression with R? of 0.777 and
RMSE of 0.369 on the test set for MIDR estimates. This
indicates that traditional approaches like Linear
Regression might not be able to predict MIDR over the
full range of deformation in CLT structures. The low
prediction performances can be partially attributed to its
inability to describe highly nonlinear processes and
complex relationships between the input features and
MIDRs. On the other hand, the model developed from
Random Forest shows substantial improvements in
prediction power over the traditional method, reflected by
21.75% higher values of R? and 46.34% lower values of
RMSE. The results clearly show that Random Forest can
capture better the non-linearity in the drift response of
CLT walls.
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Figure 5: Comparison between actual and predicted MIDR
from the Linear Regression model.
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Figure 6: Comparison between actual and predicted MIDR
from the Random Forest model.
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5.2 MODEL INTERPRETATION

Machine learning models can be difficult to understand
and are sometimes seen as black boxes due to their
complex algorithms. It is essential to know how a model
makes predictions and which factors affect the model. To
this end, SHAP methodology [24] was used to explain our
ML model, Random Forest. Figure 7 shows the SHAP
summary plot for MIDR. Each point in this graph shows
the relation between the six features and the SHAP value
obtained from the Random Forest model. The features are
ordered from top to bottom based on their overall
importance to the model prediction. It is observed that
In(Sa(T1)) is the most important feature, followed by H,
In(PGV), m, q, and In(T1/Tm). The variation in colours,
from blue to red, represents the variation of the features
from low to high, respectively. Moreover, data points that
result in the same SHAP value are scattered, leading to
different distribution shapes for the features.

The SHAP summary indicates that MIDR positively
corresponds to almost input features except for In(T1/Tm).
An increase in SHAP value goes along with an increase in
In(Sa(T1)), H, In(PGV), m, and q. In the case of In(T1/Tm),
lower values have more impact on MIDR than higher
values, as the red dots are concentrated approximately in
the SHAP value of 0. It is also observed that small SHAP
values (SHAP values < 0) are sensitive to the variation of
all features, reflected in the long blue tails to the left. This
indicates that all features significantly impact the low
range of MIDR, especially in the case of In(Sa(T1)). The
SHAP explanation is consistent with the fact that this
range of MIDR is strongly dependent on the elastic
stiffness of the structures, as well as their yield strength
and structural configuration. On the other hand, In(PGV)
influences the model for large MIDR values significantly.
Other features become progressively less influential on
the prediction, especially m, g, and In(T1/Tm).

High
n(S5(T1))
H

in(PGV)

Feature value

m

q
in(Ty/Tpr)

Low

-1 0 1 2 3
SHAP value (impact on model output)

Figure 7: SHAP summary plots for MIDR.

Figures 8, 9 and 10 show scatter diagrams displaying local
feature importance for the input features and SHAP
values. The plots also indicate the interaction between a
pair of features considered represented by the transition
from blue (low values) to red (high values), as shown on
the right of the plots. Overall, it is observed that a highly
nonlinear influence of all the IMs examined over the
MIDR. In(Sa(T1) and In(PGV) have a positive relation
with MIDR, although they have different trends. This can
be explained by the fact that higher values of In(Sa(T1) and
In(PGV) lead to higher SHAP wvalues, which are

https://doi.org/10.52202/069179-0294

associated with larger MIDRs. The impact of In(Sa(T1) on
the estimation of MIDR decreases moderately, while
In(PGV) tends to increase exponentially.

In the case of In(T1/Tm), a positive impact on the drift
estimation is observed until In(T1/Tm) reaches a value of
1. After that, In(T1/Tm) has no impact on the prediction
denoted by the almost unchanged SHAP values. This
marks an explicit limitation to the predictive power of
T1/Tm that peaks at “resonance” and decays afterwards.
This reduction in the predictive ability of Ti/Tm can be
partially due to the rise in the importance of structural
yielding.
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Figures 11, 12, and 13 depict the SHAP dependency plots
for the three structural parameters used to formulate our
model. They show that H and q positively impact the
MIDR prediction. However, for q values of 3 or larger,
MIDR becomes less sensitive to q. On the other hand, the
trend of m changes from positive to slightly negative after
a value of 3. This suggests that subdividing a CLT wall
into more than three sub-panels is unnecessary.
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Figure 11: SHAP-dependent plots for MIDR and H.
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6 CONCLUSION

This paper has investigated the use of machine learning
(ML) to estimate the maximum inter-storey drift (MIDR)
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in multi-story CLT structures and compared it with
traditional regression approaches. To do this, we have
built numerical models of 69 CLT-walled structures with
various structural configurations and design attributes,
which reflect a wide variety of CLT building
configurations. After calibrating the accuracy of the
numerical models against available experimental data, we
use them to generate MIDRs of the wall structures using
extensive nonlinear response history analyses under a
database of 3,312 real ground-motion records scaled with
factors of 1.0 and 2.0. The large dataset of seismic drift
demands is used as output targets. A total of 30
characteristics, including ground-motion intensity
measurements and structural factors, were examined for
their influence on the MIDR estimates. Two data-science-
based feature selection methods, SFFS and LASSO, are
used to inform the suitable set of features to estimate
MIDR. A set of six most significant features is obtained,
namely the spectral acceleration at Ti (Sa(T1)), peak
ground velocity (PGV), the period ratio (T1/Tm),
behaviour factor (q), structure height (H), and wall ratios

(m).

Two regression models are developed and compared with
their prediction performances using R?> and RMSE. The
results demonstrate that the traditional linear regression,
widely applied for estimating seismic demands of
structures, has low prediction power. This indicates that
the traditional method oversimplifies the complex nature
of the seismic response and cannot provide reliable MIDR
estimates over the full range of deformations in CLT
structures, but this is especially true at higher deformation
levels where the linear model underestimates the drift
response. In contrast, the Random Forest model
significantly outperforms the traditional method, which is
21.75% higher in R? and 46.34% lower in RMSE. The
findings show that Random Forest captures better the
nonlinearity of MIDR in multi-storey CLT walls.

The SHAP important plots reveal that Sa(Ti) and T1/Tm
strongly influence the drift prediction for tiny drifts where
the structure remains elastic while PGV dominates the
model at large displacements. The results also imply that
a q and an m value of 3 can be optimal for multi-story
CLT buildings since an increase in their value beyond
those levels will not significantly improve the overall
ductility of CLT structures.
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