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ABSTRACT: Cross laminated timber (CLT), as a structural plate-like timber product has been successfully established 
in civil engineering practice as a load bearing product for walls, floor and roof elements. In a bending situation with 
transverse shear the cross section does not remain in a plane form due to the strong flexibility of crossing layers. The 
deformed cross section shows a significant warping which follows a zigzag pattern that influences the stress state. 
Comparative studies are worked out to investigate the efficiency of two different structural theories. It turned out, that 
the traditionally used First Order Shear Deformation Theory (FSDT) does not reflect satisfactorily the local stress state 
near concentrated loads. It is demonstrated that the relatively new Refined Zigzag Theory (RZT) is much better able to 
represent the stresses in different layers of CLT-plates in such a case. In particular, the rolling shear stress and the 
maximum bending stress will be strongly underestimated by FSDT, while RZT will provide accurate results. This 
finding was confirmed by alternative analysis with high-resolution FE continuum elements and by experimental tests
using linear strain gauges and a digital image correlation system (DIC) to record the deformations in the area of interest.
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1 INTRODUCTION 
Cross laminated timber (CLT), applied as structural 
plate-like products has revolutionized timber 
construction for many years. The worldwide production 
volume is still increasing [1]. For floor systems, single-
span strips are predominantly used, characterized by 
bending with uniaxial load transfer. For the analysis of 
these types of structural elements many methods exist. A 
well-known procedure is the Gamma-method [2],
originally developed for composite beams with interlayer 
slip by Möhler [3], which can be modified for 
applications of CLT. The Shear Analogy (SA) method 
introduced by Kreuzinger [4] and worked out by Scholz 
[5,6] provides more capability concerning the local stress 
state. For beams and plates, the First Order Shear 
Deformation Theory (FSDT) [7,8] can be used when an 
appropriate shear correction factor is installed. For multi-
span systems as well as for systems with concentrated 
loads most of the above-mentioned analysis tools are not 
sufficient to accurately predict the structural behavior, 
especially the local stress state. In these cases, a higher 
order plate theory which considers the specific warping 
phenomenon should be applied. While elaborate 3D 
analysis is indicated in cases of ultimate load 
determinations and predictions of damage histories [9], it 
is useful to resort to structural theories for everyday 
design tasks. The latter are less complex and easier to 
handle. In the wide field of theories of composite 
laminated structures, the following groups are 
distinguished: Equivalent single layer theories (ESL) 
[10], Layer-wise theories (LW) [11] and Zigzag Theories 
[12]. ESL models provide poor results of local variables 
when employed to highly heterogeneous laminates. The 
abrupt change of the mechanical properties between 
layers leads to a change in slope of the in-plane 
displacements. LW-theories, wherein kinematic 
assumptions are made for each layer, can reproduce
these kinks very well, but the numerical effort increases 
with the number of plies involved. A good compromise 
between computational cost and accuracy is offered by 
the Zigzag models.

The Refined Zigzag Theory (RZT) [13] is an efficient
structural theory based on the well-known First Order 
Shear Deformation Theory, enhanced by local kinematic 
terms, which allow for the particular attention of 
warping that arises in the cross section due to shear-
elastic layers. The great accuracy of this approach was
assessed by comparison with 2D and 3D analytical 
solutions and 2D-FE solutions as well [13,14]. In a 
recently published paper, the application of RZT to 
uniaxial spanned CLT-plates and other shear elastic 
timber structures like timber-concrete composite beams 
and timber beams with discrete shear dowels is 
demonstrated [15]. For single span beams with 
uniformly distributed loads, there is no significant 
difference in stress state between FSDT and RZT. In 
continuous beams and/or when concentrated loads are 
applied, there are considerable deviations that can no 
longer be ignored. The Refined Zigzag Theory can work 

out the qualitative differences that arise from the 
constrained warping deformations, while FSDT shows 
an unvarying stress pattern along the whole beam.

2 REFINED ZIGZAG THEORY
The Refined Zigzag Theory was founded in 2010 by 
Alexander Tessler (NASA) and co-workers from 
Politecnico di Torino [13]. Since that time many papers
have been published, see e.g. references [16–19], 
showing the tremendous capability of this approach.

2.1 PLATE KINEMATICS 
The plate is referred to a Cartesian coordinate system ൫࢞ఉ , ,ݖ ߚ = 1, 2൯ (Figure 1). Its thickness h consists of N 
completely bonded orthotropic layers. The normal 
surface load qz ൫࢞ఉ൯ is acting on the mid-plane in the 
positive z-direction. The kinematic field in classical 
RZT-plate theory is written as

ఉ࢞ఈ(௞)൫࢛   , ൯ݖ = ఉ൯࢞ఈ൫࢛ + ఉ൯࢞ఈ൫ߠ.ݖ + ߶ఈఘ(௞)(ݖ).߰ఈ൫࢞ఉ൯ݑ௭(௞) ൫࢞ఉ , ൯ݖ = ఉ൯࢞൫ݓ ߩ,ߙ)ఈ(௞)࢛(1) = 1, 2) denote the in-plane displace-
ments, ௭(௞)ݑ the transversal deflection of the k-th layer.࢛ఈ , ,ݓ ఈߠ represent the displacements of the mid-plane 
and the rotations of cross sections respectively. ߶ఈఘ(௞) are
the layer-wise linear zigzag functions (Figure 2), which 
are only dependent of the layer setup and the transversal 
shear moduli. Finally, ߰ఈ mean the zigzag rotations 
which are the two additional degrees of kinematic 
freedom, by which the warping of the cross section will 
be controlled. Transverse normal deformation (thickness 
stretching) is neglected. For angle-ply layers, additional 
coupling terms ߶ଵଶ(௞) and ߶ଶଵ(௞) should be used in the 
kinematic equations [20]. With these enhanced 
kinematic terms also diagonal laminated timber plates 
(DLT) [21] can be treated.

Figure 1: General plate notation

Using Green-Lagrange strain-displacement relations 
with limitation to moderate rotations (von Karman 
terms) we obtain for the in-plane strains (index p) of a 
laminated composite plate

ଵ, ଵ ଶ, ଶ

, w

ଵ, ଵ
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ℎ
mid-plane
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௣(௞)ࡱ = (௠)ࡱ + (௕)ࡱ.ݖ + ઴௣(௞)(ݖ)ࡱ(థ) (2)

Figure 2: General layer notation and zigzag function

Split into the membrane part, the bending part and the 
zigzag part and with the abbreviation (. ),ఈ = డడ௫ഀ it 
follows

(௠)ࡱ   = ൞ ଵ,ݑ + ଵଶ ଶ,ݒଵ,ݓ.ଵ,ݓ + ଵଶݓ,ଶ.ݓ,ଶݑ,ଶ + ଵ,ݒ + ଶൢ                  (3a),ݓ.ଵ,ݓ

(௕)ࡱ = ቐ ଵ,ଶߠଶ,ଶߠଵ,ଵߠ + (థ)ࡱ  ଶ,ଵቑߠ = ⎩⎨
⎧߰ଵ,ଵ߰ଶ,ଶ߰ଵ,ଶ߰ଶ,ଵ⎭⎬

⎫
(3b, c)

  ઴௣(௞)(ݖ) = ൦߶ଵଵ(௞) 0 0 ߶ଵଶ(௞)0 ߶ଶଶ(௞) ߶ଶଵ(௞) 0߶ଶଵ(௞) ߶ଵଶ(௞) ߶ଵଵ(௞) ߶ଶଶ(௞)൪              (4)

The transverse shear strains (index t) is given byࡱ௧(௞) = ௧(଴)ࡱ + ઴௧,௭(௞)(ݖ)࣒ = ௧(଴)ࡱ + ࣒(௞)ࢼ       (5)

It can be split up into a constant averaged shear part and 
layer-dependent part 

௧(଴)ࡱ = ௧(଴)ࢽ = ቊߛଵ(଴)ߛଶ(଴)ቋ = ൜ݓ,ଵ + ଶ,ݓଵߠ + ଶൠߠ ࣒   = ൜߰ଵ߰ଶൠ    (6a, b)

઴௧(௞) = ቈ߶ଵଵ(௞) ߶ଵଶ(௞)߶ଶଵ(௞) ߶ଶଶ(௞)቉       ࢼ(௞) = డడ௭઴௧(௞) = ቈߚଵଵ(௞) ଶଵ(௞)ߚଵଶ(௞)ߚ ଶଶ(௞)቉ߚ
                                                 (7a, b)

Since the zigzag functions ߶ఈఘ(௞) are chosen as layer-wise 
linear functions, the ߚఈఘ(௞) functions which influence the 
shear stresses (see Equation (7) and (8)) are constant for 
each layer, leading to mean values of shear stress. This 
means that in the classical RZT the local equilibrium 
condition of shear stresses at the interlayer and on top 
and bottom is violated, just like in FSDT. It has been 
shown by Tessler and co-workers [22,23], that by the 

application of Reissner´s mixed variational principle 
(RZTm) this deficiency can be eliminated.
According to the assumption of plane stress state (ܵଷଷ = 0) these strains are connected by the elastic 
Hookean law with the corresponding second Piola-
Kirchhoff stress quantities

௣(௞)ࡿ = ൝ ଵܵଵܵଶଶଵܵଶൡ
(௞) = ௧(௞)ࡿ        ௣(௞)ࡱഥ௣ࡽ = ൜ ଵܵଷܵଶଷൠ(௞) = ௧(௞)ࢽഥ௧ࡽ

                                (8a, b)

The matrices ࡽഥ contain the transformed plane stress 
reduced stiffness coefficients [7,8].

ഥ௣(௞)ࡽ = ቎ തܳଵଵ തܳଵଶ തܳଵ଺തܳଵଶ തܳଶଶ തܳଶ଺തܳଵ଺ തܳଶ଺ തܳ଺଺቏
(௞)

ഥ௧(௞)ࡽ    = ቈ തܳସସ തܳସହതܳସହ തܳହହ቉(௞)
   

(9a, b)

To establish the discretized problem the principle of 
virtual work says ߜ ௜ܹ௡௧ − ߜ ௘ܹ௫௧ = 0                 (10)

In detail the virtual work done by the inner forces readsߜ ௜ܹ௡௧ = ௣ࡿ௣்ࡱߜ∫ ܸ݀ + ௧்ࡱߜ∫ ௧ࡿ ܸ݀             (11)

Integration over the thickness of the first part leads toߜ ௜ܹ௡௧ = ௣ࡾ௣்ࡱߜ∫ ܣ݀ + ∫ ௧்ࡱߜ ௧ࡾ (12)              ܣ݀

with the second Piola-Kirchoff-stress resultants

௣ࡾ = ൝ థൡࡹࡹࡺ ௧ࡾ = ൜ థൠࢀࢀ (13)

2.2 CONSTITUTIVE RELATIONS OF THE 
WHOLE LAMINATE

From the above equations we get in summary the special 
plate constitutive equation. In full we have 14 strain 
components and stress resultants

ࡾ = ൜ࡾ௣ࡾ௧ ൠ = ࡱ࡯ = ⎨⎪⎩࡯
࣒(଴)ࢽ(థ)ࡱ(௕)ࡱ(௠)ࡱ⎧⎪ ⎭⎪⎬

⎪⎫
                     (14)

In detail we have

⎩⎪⎨
⎪⎧ (ࣘ)ࢀࢀ(ࣘ)ࡹࡹࡺ ⎭⎪⎬

⎪⎫ = ⎣⎢⎢
⎢⎢⎡ ࡭ ࡮ ࣘ࡭ 0 ૙ࢀ࡮ ࡰ థ࡮ 0 థ்࡭0 థ்࡮ థࡰ 0 00 0 0 ௧࡭ ௧(థ)0࡮ 0 0 ்௧(థ)࡮ ⎥⎥⎦௧(థ)ࡰ

⎥⎥⎤ ⎩⎪⎨
࣒(଴)ࢽ(థ)ࡱ(௕)ࡱ(௠)ࡱ⎧⎪ ⎭⎪⎬

⎪⎫
(15)

(଴) = −ℎ/2

h/2

h/2

z

xz(k)

( ) = +ℎ/2
k

1
2
3

k+1

N

z(k-1)
h(k)( )

( )
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The constitutive matrix C is built up by the following 
sub matrices, emerging from the integration of the 
weighted, reduced elastic stiffness coefficients over the 
thickness. (ࡰ,࡮,࡭) ≡ ∫ (1, ,ݖ ା೓మି೓మݖ݀ഥ௣(௞)ࡽ(ଶݖ         (16a) ൫࡮,ࣘ࡭థ,ࡰథ൯ ≡ ∫ ൫1, ା೓మି೓మݖ݀ഥ௣(௞)઴௣(௞)ࡽ઴௣(௞)்൯,ݖ       (16b) ቀ࡭௧ ௧(థ)ቁ࡮, ≡ ∫ ൫1,ࢼ(௞)൯ࡽഥ௧(௞)݀ݖା೓మି೓మ               (16c) ࡰ௧(థ) ≡ ∫ ା೓మି೓మݖ݀(௞)ࢼഥ௧(௞)ࡽ்(௞)ࢼ                   (16d) 

 
The enhanced zigzag functions are established by layer-
wise integration of the  ࢼ(௞) functions. The latter are 
derived from a relaxed continuity condition of shear 
stresses at the interlayer and the assumption that the 
zigzag functions vanish at the top and bottom surfaces of 
the plate, see Sorrenti et al. [20]. The model allows for a 
piecewise constant distribution of transverse shear 
stresses that is accurate in an average sense. 
 
The corresponding relations for the laminated beam in 
the x-z-plane can be found in [24]: 
 

    ቐ ௫ܰܯ௫ܯథቑ ≡ ൥ܣଵଵ ଵଶܤ ଵଶܤଵଷܤ ଵଵܦ ଵଷܤଵଶܦ ଵଶܦ ଶଶ൩ܦ ൝
 ௫,߰௫ൡ  (17),ߠ௫,ݑ

 
The stiffness coefficients are defined as  
[ଵଵܦ,ଵଶܤ,ଵଵܣ]  ≡ ∫ ,ଵଵ(௞)[1ܥ ,ݖ ஺ݖ݀(ݖ)ଶ]ܾ(௞)ݖ         (18a) [ܤଵଷ,ܦଵଶ,ܦଶଶ] ≡ න ,ଵଵ(௞)߶(௞)ൣ1ܥ ஺ݖ݀(ݖ)൧ܾ(௞)(௞)߶,ݖ  

     (18b) 
 

which can be calculated analytically. For a beam in plane 
strain in width direction b, ܥଵଵ(௞) = ܧ௫(௞)/൫1 −  ௬௫(௞)൯ߥ௫௬(௞)ߥ
and for beam in plane stress ܥଵଵ(௞) = ܧ௫(௞), where ܧ௫(௞) is 
the Young´s modulus of the k-th layer in axial direction x 
and ߥ௫௬(௞), ߥ௬௫(௞) are the Poisson´s ratios. Beams with 
unequal ply width can also be analyzed when a 
modification of the shear modulus ܩ௫௭(௞) is performed 
[15]. 
 
 
3 FINITE ELEMENTS  
This section summarizes the main finite element 
developments of the last ten years based on refined 
zigzag kinematics. 
 
3.1 BEAM ELEMENT 
The first numerical implementation was presented by 
Gherlone et al. [25] using a C0-element based on an 
anisoparametric interpolation scheme originally pro-
posed by Tessler and Dong [26]. Di Sciuva et al. [27] 
has given an extension to a class of higher-order 

elements. Wimmer et al. [24] provided explicit 
representations for the stiffness, the geometric stiffness 
and the mass matrix and an exact version of the stiffness 
matrix has been worked out in [28]. Flores et al. [29] 
reflected some limitations of RZT when modelling 
delamination. Kefal and coworkers [30] presented an 
iso-geometric beam element based on RZTm. 
There are only a few papers that explicitly report on the 
experimental verification of RZT. Experimental 
evaluations of the static and dynamic response of 
sandwich beams are presented by Iurlaro et al. [31,32]. 
Buckling test are performed and reported by Ascione et 
al. [33]. 
It should be pointed out, that in FSDT beam analysis the 
shear stress pattern in the cross section does not vary 
along the beam axis, while in RZT it happens due to the 
additional kinematic degree of freedom ߰, as can be seen 
from Equation (5). The mean shear stress obtained by the 
corresponding constitutive equation of FSDT therefore 
underestimates the real value dramatically (see Figure 5). 
For this reason, the shear stress distribution is usually 
calculated by integrating the local equilibrium equation 
(Cauchy´s equation) [34]. An analogous procedure 
derived by Tessler [22] leads to 
 

  ߬௫௭(௞)(ݔ, (ݖ = (ݔ)௫௫,ߠ ቂ஻భమ஺భభ ߬௨(௞)(ݖ) − ߬ఏ(௞)(ݖ)ቃ +       + ,߰௫௫(ݔ) ቂ஻భయ஺భభ ߬௨(௞)(ݖ) − ߬ట(௞)(ݖ)ቃ     (19) 
 
with the integrals 
 ߬௨(௞)(ݖ) ≡ ∫ ௭ି௛/ଶ̅ݖ݀ଵଵ(௞)ܥ                        (20a) ߬ఏ(௞)(ݖ) ≡ ∫ ௭ି௛/ଶ̅ݖ݀ଵଵ(௞)ܥ̅ ݖ                  (20b) ߬ట(௞)(ݖ) ≡ ∫ ߶(௞)(̅ݖ) ܥଵଵ(௞)݀̅ݖ௭ି௛/ଶ         (20c) 
 
In case of shear stresses on the top and bottom side an 
additional term must be considered. When referring to 
FSDT all terms associated with ߰  are omitted. 
 
3.2 PLATE ELEMENT 
A first application for bi-axial plate bending is given by 
Versino [16], who extended Tessler´s anisoparametric 
shape functions originally presented in the well-known 
homogeneous plate element MIN3 to RZT-kinematics. 
Recently Sorrenti et al. [18] reported a robust 
quadrilateral version which achieves reliable results even 
in the ultra-thin range. Wimmer et al. [17] has 
demonstrated the advantages that can be reaped when the 
so-called smoothed finite element technique is 
employed. Hasim et al. [35] has presented an iso-
geometric variant that allows for plates with curvilinear 
fibers. Wimmer and co-workers [36] has recently shown 
the extension to buckling and geometrical-nonlinear 
bending. 
 
 
4 NUMERICAL RESULTS 
Two representative examples are given in this section. 
As a first example a continuous beam is investigated. In 

2540https://doi.org/10.52202/069179-0334



another example, the biaxial bending state of a CLT strip 
intermediately supported by a column is treated.

4.1 UNIAXIAL BENDING
A two-span CLT-beam is investigated as a beam model 
(with RZT and FSDT) and as a 2D-continuum. The 
cross-section consists of five layers of equal thickness 
with h(k) = 0.04 m.

Figure 3: System of a two-span continuous test beam under 
concentrated loads (uniaxial bending)

The single boards are edge-glued. The beam has a width 
of b = 0.50 m and an overhang of 0.20 m at both ends. 
Two concentrated loads F1 = 50 kN act approximately in 
the middle of the span (Figure 3 and 10). An additional 
force of F1 = 1.84 kN was taken into account for the 
load transmission beam. As the structure is first analyzed 
as a beam model [24], the forces as well as the support 
reactions are applied via distributed loads with respect to 
the axis of the beam. At the force application point, a
parabolic line load with amplitude qF = 243 kN/m is 
modeled, acting over a length of 0.32 m, while the line 
load at the intermediate support has an amplitude of qB = 

475.6 kN/m, distributed over a width of 0.24 m,
resulting in a reaction force B = 76.1 kN. In the 2D-
continuum model the actions are located as uniform 
pressures on the top and the bottom side of the beam.
The material data for the numerical model were chosen 
as mean values from component tests of the single 
boards. To achieve the experimentally determined 
maximum deflection of wmax = 2.85 mm, the rolling 
shear modulus had to be adjusted concerning the 
experimental measure-ments (see section 5.3):

Ex = E0 = 11600 MPa, Ey = Ez = E90 = 370 MPa, Gxz = 
G090 = 560 MPa, Gxz = Gyz = G9090 = 120 MPa.

4.1.1 Longitudinal Stress
The maximum bending stress distribution along the 
beam is given in Figure 4. It shows the significant 
influence of the cross sectional warping close to the load 
transfer zone. 
In addition, the structure is modeled with 2D-continuum 
elements of high resolution (3 rows of solid elements for 
each layer). The maximum deflection must be corrected 
for thickness deformation when comparing with the 
beam solution. The peak values of RZT-beam solution 
are quite well confirmed by 2D-FE analysis. It should 
be noted that when using 2D continuum elements, no 
rotational degree of freedom at the nodes of the 
interlayer boundaries should be present (or it should be 
released). Otherwise, the typical kink is numerically 
cancelled, and the stress state could be locally distorted 
as a result. The measured values of the linear strain 

gauges (mean values of three specimens), which are 
attached to the tensile side of the load application points
(Figure 10), impressively confirm the numerical values 
of the RZT.

4.1.2 Shear Stress
The standard method of RZT and FSDT as well provides 
only mean values of the shear stresses in each layer. It 

Figure 4: Maximum bending stress along the axis of a two-
span continuous beam for different composite beam theories,
from 2D continuum analysis and experimental results.

turned out that the standard FSDT is not able to reflect 
the stress state accurately. In particular, the rolling shear
stress in the second layer is completely miscalculated 
qualitatively and quantitatively. It became apparent, that
FSDT significantly underestimates the mean values of 
rolling shear stress (Figure 5) when using the 
constitutive equation. Figure 6 presents the shear stress 
distributions ߬௫௭(ݖ) along several sections (see Figure 
10) coming from
different calculation approaches. Figure 6 (upper graph)
shows the mean values (FSDTm) recovered from the 
constitutive equations and the values which result from 

Figure 5: Rolling shear stress in the second layer along the 
axis of a two-span continuous beam under concentrated loads
for different composite beam theories and 2D continuum
analysis.

F1 = 50 kN F1 = 50 kN

1,10 m 1,10 m0,90 m 0,90 m

BA C
x
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integration of Cauchy´s equation (FSDTc, Eq.19, 20). 
Figure 6 (lower graph) gives the corresponding results 
for RZT. It is noticeable, that RZT provides accurate 
values of the rolling shear stress in the second layer even 
if the constitutive equation is applied. Outside the 
warping zone, both theories give the same result when 
the integration technique is applied. In the load transfer 
zone, the symmetry is lost under the influence of the 

transverse normal stress zz, as can be seen in section 0 -
0, but the maximum shear stress given by the RZT and 
the integration method reproduces the 2D solution quite 
well.

Figure 6: Shear stress distributions ߬௫௭(ݖ) (mean values, Cauchy-integrated and unsmoothed 2D-solution) for FSDT (upper graph)
and for RZT (bottom graph) along different cross sections

4.2 BIAXIAL BENDING
A double-symmetric, two-span rectangular CLT-plate 
(Figure 7) with dimensions 7.80 / 2.40 / 0.20 m, resting 
on a line support at both ends and a point intermediate 
bearing (30 x 30 cm) is studied with a plate model [17] 
considering the above two theories and a 3D continuum 
model. A quarter of the plate (3.90 / 1.20 m) is modeled
and subjected by a constant surface load on the upper 
side of qz = -10 kN/m2. The contact area at the corner 
(0.15 / 0.15 m) has a subgrade reaction modulus of 3.3
106 kN/m3. The cross section consists of 5 layers, each 
with equal thickness of 4 cm. The following material 
parameter were applied: 

E1  = 11500 MPa, E2 = E3 = 370 MPa, G12 = G13 = 690 
MPa, G23 = 50 MPa. 12 = 0.38, 13 = 0.22, 23 = 0.203.

The material axis 1 coincide with the x1-axis. The layer 
setup is 0/90/0/90/0°.

Figure 7: Biaxial bending of CLT-plate with point intermediate 
support

Table 1: Maximum deflection and bending stresses in the 
upper two layers of a CLT-plate (symmetry point) under 
biaxial bending, 3D deflection corrected from thickness 
compression

FSDT RZT 3D
max w [mm] 5.91 5.18 5.39
max 11 [MPa] 5.68 9.23 9.71
max 22 [MPa] 6.92 10.64 10.98

For comparison the plate is analyzed with the FE-
program ABAQUS using more than 40 000 quadratic 
solids elements of type C3D20. Figure 8 shows the 
transverse deformation  u3 = w and clearly the typical 
zigzag pattern arising from the heterogeneous cross 
section under high transverse shear stresses. In Table 1 

B

x1

z

x2
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essential results are presented. Figure 9 gives the 
through- thickness distribution of stresses at the center 
point of the whole plate in both directions. It 
demonstrates the superior accuracy of RZT against 
FSDT. As with the uniaxial example, it can be seen that 
FSDT significantly underestimates the maximum 
bending stresses.  
 
 

5 EXPERIMENTAL RESULTS 
In the following, the experimental configurations as well 
as the measurement systems for the test beam (see 
Figure 3) are described. Furthermore, the measured data 
are analyzed and compared with the results from the 
numerical analysis. 
 
 
 

 
 
 

 
 
Figure 8: Warping deformation near the point support along the planes of symmetry with typical zigzag pattern 
 

 
Figure 9: Bending stresses distribution at the symmetry point by different structural theories 
 
 
5.1 EXPERIMENTAL SETUP 
Figure 10 shows the experimental setup for the bending 
test. The hydraulic jack is fixed on a rigid loading frame. 
The latter is clamped to the rigid floor with anchor bolts. 
The load is applied via a crossbeam (HEM 280). The 
two-span beam has three roller supports. For dimensions 
and loads see section 4.1. The cross section of the test 
beam has a width of 50 cm. 
The shear slenderness at the supports in both bays is 
a/d = 110/20 = 5.5 and concerning the inner support 
a/d = 90/20 = 4.5. The test program includes three test 
specimens. Figure 10 shows the four measurement 

methods used. A measuring box in the hydraulic jack 
reported the test load. In the range of the load application 
as well as above the intermediate support, linear strain 
gauges (LSG) were responsible for measuring the strains 
of the top and bottom fiber. To measure the vertical 
deflection, a displacement sensor was placed under the 
load application point. A DIC-System is used to detect 
strains in the area of interest (AOI). The load rate is 
determined at 0.5 mm/min. for all tests. 
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Figure 10: Experimental setup of a CLT-beam 
 
 
5.2 Digital image correlation (DIC) 
The DIC-System as an optical, contactless deformation 
measurement method combines image registration and 
tracking system for precise 2D measurements to 
reconstruct the strain state in a structural component. In 
this study, the DIC-System was used to monitor the 
strains and deformations near the intermediate support. 
Just left and right of this support the lateral surface of the 
beam was speckled randomly and 2D measurement 
method is employed. The strains and deformations are 
measured in the area of interest and compared with the 
numerical results. 
 
5.3 Evaluation of strains 
The DIC system provides Green-Lagrange strains. The 
evaluation of shear angles γxz = 2εxz was carried out 
along vertical sections 0 – 8 (see Figure 10) and showed 
an unsteady distribution related to the strong 
inhomogeneity caused by the individual fibers. (Figure 
11). Based on these distributions, mean values γxz,m are 
calculated for each layer. Subsequently they were 
multiplied layer-wise by those shear moduli Gxz that lead 
to match with the results from 2D-FE analysis which in 
turn fulfil the equilibrium conditions. 
The calibration procedure is performed for all vertical 
sections marked in Figure 10, separated according to 
layers, resulting in the following mean values: G9090 = 
120 MPa, G090 = 560 MPa. 
A comparison with extensive tests reported in [37] as 
well as numerical investigations [38] showed good 
congruence of these values. 
 

 
Figure 11: Shear stress distribution measured by DIC and 
mean values per layer 
 
 
6 ULS-DESIGN 
The clearly recognizable stress peaks in the examples 
shown have a non-negligible influence on the design 
process. The utilization factor with respect to the axial 
stresses in the grain direction, which is given in Tables 2, 
3 and 4, was evaluated by the formula of Equation (21), 
where ߪ௧/௖,଴,஼௅்,ௗ and ௧݂/௖,଴,஼௅்,ௗ denote the design values 
of max/min. stress  and  strength  parallel to the  grain 
for  
 ௧ܷ/௖ = หఙ೟/೎,బ,೘೐ೌ೙,೏ห௙೟/೎,బ,಴ಽ೅,೏ + หఙ೘,಴ಽ೅,೏ห௙೘,಴ಽ೅,೏               (21) 

Centerline
Layer 2

2x DMS
a=20 cm

2x LSG

Roller 
Suppor
(middle)

2x LSG

2x LSG

2x Linear strain
gauges - LSG
a=20 cm

Top
Layer

Centerline
Layer 1

Roller 
Support

Roller 
Support
(end)

Bottom
Layer

1

8

0

Detail and field of view - DIC-2D

9
10
11

6

30 1

Measuring box

53

HEM280

HEM180
11

Hydraulic Jack

62 7

HEM180
7

4 5

4 9

Section

Section

Specimen
CLTPLUS - C5

t=5x40=200mm8

Te
st

 lo
ad

2
1012

4

7

10

12
8

90

10

10

50

7x5=3510

200

20

10

20

7x5=35

1

18
9

4

1

35°

12

220

35°

50 20
15

15

2544https://doi.org/10.52202/069179-0334



pure tension (t) or compression (c), respectively. ߪ௧/௖,௠௘௔௡,ௗ represents the mean value of the linearly 
varying stress distribution in the uppermost or lowermost 
layer. The second part ߪ௠,஼௅்,ௗ is given by the 
nonuniform part of bending stress deviating from the 
above-mentioned mean value and the bending strength ௠݂,஼௅்,ௗ. For the comparison we refer to the design 
format of Eurocode 5 and the following material 
parameters, proposed in [1]: ௠݂,஼௅்,௞ = 24 N/mm2, ௖݂,଴,஼௅்,௞ = 24 N/mm2, ௧݂,଴,஼௅்,௞  = 16 N/mm2. For the 
corresponding design values, ݇௠௢ௗ = 0.80, ெߛ = 1.25 
was chosen. 
 
Table 2: Comparison of utilization factor Uc/t concerning axial 
stresses of example 1 (uniaxial bending) at the intermediate 
support. 
  
Layer z-Pos. 

[mm] 
 FSDT 

[MPa] 
RZT 
[MPa] % 

 ௧,଴,஼௅்,ௗ 6.03 8.63 43ߪ   100 5/1
  ௧,଴,௠௘௔௡,ௗ 4.835 4.525ߪ   80 
  ௠,஼௅்,ௗ 1.195 4.105ߪ   

5 +100  Ut 0.550 0.709 29 
1 -100  Uc 0,393 0,562 43 

 
Table 3: Comparison of utilization factor Uc/t concerning axial 
stresses of example 2 (symmetry point) in x-direction  
  
Layer z-Pos. 

[mm] 
 FSDT 

[MPa] 
RZT 
[MPa] % 

 ௧,଴,஼௅்,ௗ 5.68 9.23 63ߪ   100 5/1
  ௧,଴,௠௘௔௡,ௗ 4.545 3.645ߪ   80 
  ௠,஼௅்,ௗ 1.135 5.585ߪ   

5 +100  Ut 0.518 0.720 39 
1 -100  Uc 0.37 0.601 63 

 
 
Table 4: Comparison of utilization factor Uc/t concerning axial 
stresses of example 2 (symmetry point) in y-direction  
  
Layer z-Pos. 

[mm]  
 FSDT 

[MPa] 
RZT 
[MPa] % 

 ௧,଴,஼௅்,ௗ 6.92 10.64 54ߪ   60 4/2
  ௧,଴,௠௘௔௡,ௗ 4.62 5.10ߪ   40 
  ௠,஼௅்,ௗ 2.31 5.54ߪ   

4 +60  Ut 0.601 0.859 43 
2 -60 Uc 0.451 0.693 54 

 
 
7 CONCLUSIONS 
Comparative studies on uniaxial and biaxial loaded 
CLT-plates under concentrated loads have shown the 
superiority of Refined Zigzag Theory over the 
traditionally used First Order Shear Deformation Theory. 
The bending and shear stresses predicted by the RZT are 
impressively confirmed by numerical comparative 
calculations with continuum elements and experimental 
measurements. It could be proven that using the FSDT-
based axial stress values leads to an underestimation of  
the corresponding utilization factor of CLT-plates up to 
50 % and more. When applying the FSDT the rolling 

shear stress must be determined by integration of 
Cauchy´s equilibrium equation otherwise it is 
dramatically underestimated. In case of uniaxial bending 
the RZT already reliably predicts the rolling shear stress 
in the standard procedure using the constitutive equation. 
The propagated RZT forms a good compromise in terms 
of computational effort and achieved accuracy. It does 
not require a shear correction factor. It represents a 
consistent extension of the FSDT showing a great 
similarity to that between Saint Venant's torsion and 
warping torsion.  Since it is the simplest variant among 
the numerous higher-order shear deformation theories, it 
should be used as the new standard tool for the analysis 
of CLT plates and other shear-elastic structures in the 
everday design process. 
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