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NUMERICAL AND EXPERIMENTAL INVESTIGATIONS ON THE STRESS
STATE OF CLT-PLATES NEAR CONCENTRATED LOADS

Heinz Wimmer', Christoph Huber?, Robert Eder?

ABSTRACT: Cross laminated timber (CLT), as a structural plate-like timber product has been successfully established
in civil engineering practice as a load bearing product for walls, floor and roof elements. In a bending situation with
transverse shear the cross section does not remain in a plane form due to the strong flexibility of crossing layers. The
deformed cross section shows a significant warping which follows a zigzag pattern that influences the stress state.
Comparative studies are worked out to investigate the efficiency of two different structural theories. It turned out, that
the traditionally used First Order Shear Deformation Theory (FSDT) does not reflect satisfactorily the local stress state
near concentrated loads. It is demonstrated that the relatively new Refined Zigzag Theory (RZT) is much better able to
represent the stresses in different layers of CLT-plates in such a case. In particular, the rolling shear stress and the
maximum bending stress will be strongly underestimated by FSDT, while RZT will provide accurate results. This
finding was confirmed by alternative analysis with high-resolution FE continuum elements and by experimental tests
using linear strain gauges and a digital image correlation system (DIC) to record the deformations in the area of interest.
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1 INTRODUCTION

Cross laminated timber (CLT), applied as structural
plate-like  products has  revolutionized timber
construction for many years. The worldwide production
volume is still increasing [1]. For floor systems, single-
span strips are predominantly used, characterized by
bending with uniaxial load transfer. For the analysis of
these types of structural elements many methods exist. A
well-known procedure is the Gamma-method [2],
originally developed for composite beams with interlayer
slip by Mohler [3], which can be modified for
applications of CLT. The Shear Analogy (SA) method
introduced by Kreuzinger [4] and worked out by Scholz
[5,6] provides more capability concerning the local stress
state. For beams and plates, the First Order Shear
Deformation Theory (FSDT) [7,8] can be used when an
appropriate shear correction factor is installed. For multi-
span systems as well as for systems with concentrated
loads most of the above-mentioned analysis tools are not
sufficient to accurately predict the structural behavior,
especially the local stress state. In these cases, a higher
order plate theory which considers the specific warping
phenomenon should be applied. While elaborate 3D
analysis is indicated in cases of ultimate load
determinations and predictions of damage histories [9], it
is useful to resort to structural theories for everyday
design tasks. The latter are less complex and easier to
handle. In the wide field of theories of composite
laminated structures, the following groups are
distinguished: Equivalent single layer theories (ESL)
[10], Layer-wise theories (LW) [11] and Zigzag Theories
[12]. ESL models provide poor results of local variables
when employed to highly heterogeneous laminates. The
abrupt change of the mechanical properties between
layers leads to a change in slope of the in-plane
displacements. =~ LW-theories, = wherein  kinematic
assumptions are made for each layer, can reproduce
these kinks very well, but the numerical effort increases
with the number of plies involved. A good compromise
between computational cost and accuracy is offered by
the Zigzag models.

The Refined Zigzag Theory (RZT) [13] is an efficient
structural theory based on the well-known First Order
Shear Deformation Theory, enhanced by local kinematic
terms, which allow for the particular attention of
warping that arises in the cross section due to shear-
elastic layers. The great accuracy of this approach was
assessed by comparison with 2D and 3D analytical
solutions and 2D-FE solutions as well [13,14]. In a
recently published paper, the application of RZT to
uniaxial spanned CLT-plates and other shear elastic
timber structures like timber-concrete composite beams
and timber beams with discrete shear dowels is
demonstrated [15]. For single span beams with
uniformly distributed loads, there is no significant
difference in stress state between FSDT and RZT. In
continuous beams and/or when concentrated loads are
applied, there are considerable deviations that can no
longer be ignored. The Refined Zigzag Theory can work
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out the qualitative differences that arise from the
constrained warping deformations, while FSDT shows
an unvarying stress pattern along the whole beam.

2 REFINED ZIGZAG THEORY

The Refined Zigzag Theory was founded in 2010 by
Alexander Tessler (NASA) and co-workers from
Politecnico di Torino [13]. Since that time many papers
have been published, see e.g. references [16-19],
showing the tremendous capability of this approach.

2.1 PLATE KINEMATICS

The plate is referred to a Cartesian coordinate system
(xB, z, =1, 2) (Figure 1). Its thickness h consists of N
completely bonded orthotropic layers. The normal
surface load q, (x,;) is acting on the mid-plane in the
positive z-direction. The kinematic field in classical
RZT-plate theory is written as

uf,k)(xﬁ,z) =u,(xp) + 2.0, (x5) + ¢g:,)(z).1/)a (x5)

u (x,2) = w(xp) )
uka) (a,p=1,2) denote the in-plane displace-

ments, ugk) the transversal deflection of the k-th layer.
u,, w, 6, represent the displacements of the mid-plane
and the rotations of cross sections respectively. ¢§,’;) are
the layer-wise linear zigzag functions (Figure 2), which
are only dependent of the layer setup and the transversal
shear moduli. Finally, ¥, mean the zigzag rotations
which are the two additional degrees of kinematic
freedom, by which the warping of the cross section will
be controlled. Transverse normal deformation (thickness
stretching) is neglected. For angle-ply layers, additional
coupling terms g5 and ¢S}’ should be used in the
kinematic equations [20]. With these enhanced
kinematic terms also diagonal laminated timber plates
(DLT) [21] can be treated.

mid-plane

Figure 1: General plate notation

Using Green-Lagrange strain-displacement relations
with limitation to moderate rotations (von Karman
terms) we obtain for the in-plane strains (index p) of a
laminated composite plate



EX = E™ 4+ 2 E® + oV E®  (2)
A
z™=+n/2
: N Iz
5 +
b2 o | h(k)& lﬁ 1 4
(k) [0
77? 2 I A0 | Iz L :;>
h2 ! 3 <
i | 2 >
1 <

Z(O) = _h/z (pap(z)

Figure 2: General layer notation and zigzag function
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The transverse shear strains (index t) is given by
k 0 k 0
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It can be split up into a constant averaged shear part and
layer-dependent part

O)
o _ o _ || _ W.1+91} _{1/)1}
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(7a, b)

Since the zigzag functions qb(k) are chosen as layer-wise

linear functions, the B ") functions which influence the
shear stresses (see Equatlon (7) and (8)) are constant for
each layer, leading to mean values of shear stress. This
means that in the classical RZT the local equilibrium
condition of shear stresses at the interlayer and on top
and bottom is violated, just like in FSDT. It has been
shown by Tessler and co-workers [22,23], that by the
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application of Reissner’s mixed variational principle
(RZT™) this deficiency can be eliminated.
According to the assumption of plane stress state
(S35 = 0) these strains are connected by the elastic
Hookean law with the corresponding second Piola-
Kirchhoff stress quantities

(k)

S11 _
=152 = Qp
S12

The matrices Q contain the transformed plane stress
reduced stiffness coefficients [7,8].

S
PG) s = { 13

(k)
— (k)
523} Qty

(8a, b)

611 012 616 w0 = = 1)
0¥ =0 0 Q| QP =2 9‘*5]
Gis Qo G Qs Qs

(9a, b)

To establish the discretized problem the principle of
virtual work says
5 Wine —

Weye =0 (10)

In detail the virtual work done by the inner forces reads
SWine = [ SELS, dV + [ SE( S, dV (11)

Integration over the thickness of the first part leads to

Wine = [ SELR, dA + [ SE{R, dA (12)
with the second Piola-Kirchoff-stress resultants
N T
R,={M{  R=fp] (3
M, ¢

2.2 CONSTITUTIVE RELATIONS OF THE
WHOLE LAMINATE

From the above equations we get in summary the special
plate constitutive equation. In full we have 14 strain
components and stress resultants

E(m)\
E®
Rp
R={R}=CE=C E@® (14)
t |y<0>|
In detail we have
N A B A 0 0] gm
M B" D B® 0 0 (Ea,)]
@\ 14T BT Dp? 0 0 1] p@
lTJ |0 0o 0 4 BP||,0
™) 1o o o BY p®PIly
(15)
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The constitutive matrix C is built up by the following
sub matrices, emerging from the integration of the
weighted, reduced elastic stiffness coefficients over the
thickness.
+2 _
(A4,B,D) = [ (1,2,2)QV dz (16a)
2

h
(4%,B%,0%) = [ (1,007 @ dz  (16b)
2

h
+= _
(4,B?) = [#(1,8%)0  dz (16¢)
2
h
4= _
D = [ BT BV dz (16d)
2

The enhanced zigzag functions are established by layer-
wise integration of the B™ functions. The latter are
derived from a relaxed continuity condition of shear
stresses at the interlayer and the assumption that the
zigzag functions vanish at the top and bottom surfaces of
the plate, see Sorrenti et al. [20]. The model allows for a
piecewise constant distribution of transverse shear
stresses that is accurate in an average sense.

The corresponding relations for the laminated beam in
the x-z-plane can be found in [24]:

Ny Ay By Bys Ux
My, =By, Di; Dy Ox (17)
M¢ B13 D12 Dzz lp,x
The stiffness coefficients are defined as
[A1,B12, Dii] = [, CP[1,2,22b@(2)dz  (18a)

[Bl3r D12v DZZ]

f R p®[1,2,¢®]b® (2)dz
A
(18b)

which can be calculated analytically. For a beam in plane

strain in width direction b, Cl(’f) = E)Ek) / (1 — vy

Xy "yx
and for beam in plane stress Cl(llc) :E,Ek), where E,Ek) is
the Young’s modulus of the k-th layer in axial direction x
and vg,), v}(,’,? are the Poisson’s ratios. Beams with
unequal ply width can also be analyzed when a
modification of the shear modulus G,EI;) is performed
[15].

3 FINITE ELEMENTS

This section summarizes the main finite element
developments of the last ten years based on refined
zigzag kinematics.

3.1 BEAM ELEMENT

The first numerical implementation was presented by
Gherlone et al. [25] using a C’-element based on an
anisoparametric interpolation scheme originally pro-
posed by Tessler and Dong [26]. Di Sciuva et al. [27]
has given an extension to a class of higher-order
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elements. Wimmer et al. [24] provided explicit
representations for the stiffness, the geometric stiffness
and the mass matrix and an exact version of the stiffness
matrix has been worked out in [28]. Flores et al. [29]
reflected some limitations of RZT when modelling
delamination. Kefal and coworkers [30] presented an
iso-geometric beam element based on RZT™.

There are only a few papers that explicitly report on the
experimental verification of RZT. Experimental
evaluations of the static and dynamic response of
sandwich beams are presented by Iurlaro et al. [31,32].
Buckling test are performed and reported by Ascione et
al. [33].

It should be pointed out, that in FSDT beam analysis the
shear stress pattern in the cross section does not vary
along the beam axis, while in RZT it happens due to the
additional kinematic degree of freedom 1), as can be seen
from Equation (5). The mean shear stress obtained by the
corresponding constitutive equation of FSDT therefore
underestimates the real value dramatically (see Figure 5).
For this reason, the shear stress distribution is usually
calculated by integrating the local equilibrium equation
(Cauchy’s equation) [34]. An analogous procedure
derived by Tessler [22] leads to

(6 2) = 00 [210(@) 7P @)] +

Y@ 2@ - 10@] 9

with the integrals
RGN p c®az (20a)
RGN /Zz—cf’;)dz— (20b)
@ =[,,00@ cYdz (20¢)

In case of shear stresses on the top and bottom side an
additional term must be considered. When referring to
FSDT all terms associated with Y are omitted.

3.2 PLATE ELEMENT

A first application for bi-axial plate bending is given by
Versino [16], who extended Tessler’s anisoparametric
shape functions originally presented in the well-known
homogeneous plate element MIN3 to RZT-kinematics.
Recently Sorrenti et al. [18] reported a robust
quadrilateral version which achieves reliable results even
in the ultra-thin range. Wimmer et al. [17] has
demonstrated the advantages that can be reaped when the
so-called smoothed finite element technique is
employed. Hasim et al. [35] has presented an iso-
geometric variant that allows for plates with curvilinear
fibers. Wimmer and co-workers [36] has recently shown
the extension to buckling and geometrical-nonlinear
bending.

4 NUMERICAL RESULTS

Two representative examples are given in this section.
As a first example a continuous beam is investigated. In



another example, the biaxial bending state of a CLT strip
intermediately supported by a column is treated.

4.1 UNIAXIAL BENDING

A two-span CLT-beam is investigated as a beam model
(with RZT and FSDT) and as a 2D-continuum. The
cross-section consists of five layers of equal thickness
with h'® = 0.04 m.

F, =50 kN | F, =50 kN

| 3 i 3
BA
0,90m!I

Figure 3: System of a two-span continuous test beam under
concentrated loads (uniaxial bending)

The single boards are edge-glued. The beam has a width
of b = 0.50 m and an overhang of 0.20 m at both ends.
Two concentrated loads F; = 50 kN act approximately in
the middle of the span (Figure 3 and 10). An additional
force of AF; = 1.84 kN was taken into account for the
load transmission beam. As the structure is first analyzed
as a beam model [24], the forces as well as the support
reactions are applied via distributed loads with respect to
the axis of the beam. At the force application point, a
parabolic line load with amplitude qr = 243 kN/m is
modeled, acting over a length of 0.32 m, while the line
load at the intermediate support has an amplitude of qg =
—475.6 kN/m, distributed over a width of 0.24 m,
resulting in a reaction force B = 76.1 kN. In the 2D-
continuum model the actions are located as uniform
pressures on the top and the bottom side of the beam.
The material data for the numerical model were chosen
as mean values from component tests of the single
boards. To achieve the experimentally determined
maximum deflection of Wy, = 2.85 mm, the rolling
shear modulus had to be adjusted concerning the
experimental measure-ments (see section 5.3):

E, = Ey= 11600 MPa, E, = E, = Eqy = 370 MPa, G,, =
G()g() =560 MPa, ze = Gyz = G9090 =120 MPa.

4.1.1 Longitudinal Stress

The maximum bending stress distribution along the
beam is given in Figure 4. It shows the significant
influence of the cross sectional warping close to the load
transfer zone.

In addition, the structure is modeled with 2D-continuum
elements of high resolution (3 rows of solid elements for
each layer). The maximum deflection must be corrected
for thickness deformation when comparing with the
beam solution. The peak values of RZT-beam solution
are quite well confirmed by 2D-FE analysis. It should
be noted that when using 2D continuum elements, no
rotational degree of freedom at the nodes of the
interlayer boundaries should be present (or it should be
released). Otherwise, the typical kink is numerically
cancelled, and the stress state could be locally distorted
as a result. The measured values of the linear strain
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gauges (mean values of three specimens), which are
attached to the tensile side of the load application points
(Figure 10), impressively confirm the numerical values
of the RZT.

4.1.2 Shear Stress
The standard method of RZT and FSDT as well provides
only mean values of the shear stresses in each layer. It

10 /RZTW..: = 8.63
2D — FEMpar = 8.33
LSG =17.15 LSG — 8.18
2D — FEMmaw = 770
6

7.137

0 [MPa]

FSDTyin = —5.53

-8 RZT (Top Layer) — — — FSDT (Top Layer)
0 F 2D-FEM (Bottom Layer) ----- - 2D-FEM (Top Layer)
——— LSG (mean)
-12 -
0 40 80 120 160 200 240 280 320 360 400

Length coordinate x (cm)

Figure 4: Maximum bending stress along the axis of a two-
span continuous beam for different composite beam theories,
from 2D continuum analysis and experimental results.

turned out that the standard FSDT is not able to reflect
the stress state accurately. In particular, the rolling shear
stress in the second layer is completely miscalculated
qualitatively and quantitatively. It became apparent, that
FSDT significantly underestimates the mean values of
rolling shear stress (Figure 5) when using the
constitutive equation. Figure 6 presents the shear stress
distributions t,,(z) along several sections (see Figure
10) coming from
different calculation approaches. Figure 6 (upper graph)
shows the mean values (FSDTm) recovered from the
constitutive equations and the values which result from
0.5

RZTas = 0.454

0.4
0.3
0.2

20 — FEMmaq = 0.452

0.1
0
-0.1
-0.2

Trz [MPa]

-0.3

2D — FEM,,;, = —0.452

-0.4

05 T RZTmin = —0.454 |
' 40 80 120 160 200 240 280 320 360 400

Length coordinate x (cm)

Figure 5: Rolling shear stress in the second layer along the
axis of a two-span continuous beam under concentrated loads
for different composite beam theories and 2D continuum
analysis.
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integration of Cauchy’s equation (FSDTc, Eq.19, 20).
Figure 6 (lower graph) gives the corresponding results
for RZT. It is noticeable, that RZT provides accurate
values of the rolling shear stress in the second layer even
if the constitutive equation is applied. Outside the
warping zone, both theories give the same result when
the integration technique is applied. In the load transfer
zone, the symmetry is lost under the influence of the

transverse normal stress G,,, as can be seen in section 0 -
0, but the maximum shear stress given by the RZT and
the integration method reproduces the 2D solution quite
well.

SECTION 0-0 SECTION 1-1 SECTION 3-3
10 10 —— . 10—, .
g g| T : g| | e = ;
6 6 PRt e s ? -1 6 A it ey o -
s af : af ..
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Figure 6: Shear stress distributions T,,(z) (mean values, Cauchy-integrated and unsmoothed 2D-solution) for FSDT (upper graph)

and for RZT (bottom graph) along different cross sections

4.2 BIAXIAL BENDING

A double-symmetric, two-span rectangular CLT-plate
(Figure 7) with dimensions 7.80 / 2.40 / 0.20 m, resting
on a line support at both ends and a point intermediate
bearing (30 x 30 cm) is studied with a plate model [17]
considering the above two theories and a 3D continuum
model. A quarter of the plate (3.90 / 1.20 m) is modeled
and subjected by a constant surface load on the upper
side of q, = -10 kN/m”. The contact area at the corner
(0.15 /7 0.15 m) has a subgrade reaction modulus of 3.3
10° kN/m>. The cross section consists of 5 layers, each
with equal thickness of 4 cm. The following material
parameter were applied:

E, = 11500 MPa, E, = E; = 370 MPa, G, = Gj3 = 690
MPa, G23 =50 MPa. Vi2 = 038, Viz = 022, Vo3 = 0.203.

The material axis 1 coincide with the x;-axis. The layer
setup is 0/90/0/90/0°.

https://doi.org/10.52202/069179-0334

Figure 7: Biaxial bending of CLT-plate with point intermediate
support

Table 1: Maximum deflection and bending stresses in the
upper two layers of a CLT-plate (symmetry point) under
biaxial bending, 3D deflection corrected from thickness
compression

FSDT RZT 3D

max w [mm] 5.91 5.18 5.39
max o1, [MPa] 5.68 9.23 9.71
max G, [MPa] 6.92 10.64 10.98
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For comparison the plate is analyzed with the FE-
program ABAQUS using more than 40 000 quadratic
solids elements of type C3D20. Figure 8 shows the
transverse deformation u3 = w and clearly the typical
zigzag pattern arising from the heterogeneous cross
section under high transverse shear stresses. In Table 1



essential results are presented. Figure 9 gives the
through- thickness distribution of stresses at the center
point of the whole plate in both directions. It
demonstrates the superior accuracy of RZT against
FSDT. As with the uniaxial example, it can be seen that
FSDT significantly underestimates the maximum
bending stresses.

5 EXPERIMENTAL RESULTS

In the following, the experimental configurations as well
as the measurement systems for the test beam (see
Figure 3) are described. Furthermore, the measured data
are analyzed and compared with the results from the
numerical analysis.

Figure 8: Warping deformation near the point support along the planes of symmetry with typical zigzag pattern
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Figure 9: Bending stresses distribution at the symmetry point by different structural theories

5.1 EXPERIMENTAL SETUP

Figure 10 shows the experimental setup for the bending
test. The hydraulic jack is fixed on a rigid loading frame.
The latter is clamped to the rigid floor with anchor bolts.
The load is applied via a crossbeam (HEM 280). The
two-span beam has three roller supports. For dimensions
and loads see section 4.1. The cross section of the test
beam has a width of 50 cm.

The shear slenderness at the supports in both bays is
a/d=110/20=5.5 and concerning the inner support
a/d =90/20 =4.5. The test program includes three test
specimens. Figure 10 shows the four measurement
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methods used. A measuring box in the hydraulic jack
reported the test load. In the range of the load application
as well as above the intermediate support, linear strain
gauges (LSG) were responsible for measuring the strains
of the top and bottom fiber. To measure the vertical
deflection, a displacement sensor was placed under the
load application point. A DIC-System is used to detect
strains in the area of interest (AOI). The load rate is
determined at 0.5 mm/min. for all tests.

https://doi.org/10.52202/069179-0334



Detail and field of view - DIC-2D
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Figure 10: Experimental setup of a CLT-beam
5.2 Digital image correlation (DIC) SECTION 3-3
The DIC-System as an optical, contactless deformation 10 i
measurement method combines image registration and 8 i
. . ]
tracking system for precise 2D measurements to 6 - .
reconstruct the strain state in a structural component. In \
this study, the DIC-System was used to monitor the 4
strains and deformations near the intermediate support. 2
Just left and right of this support the lateral surface of the g
beam was speckled randomly and 2D measurement B
method is employed. The strains and deformations are 20
measured in the area of interest and compared with the -4
numerical results. 6 - b
5.3 Evaluation of strains = * .= FE-1,
. ) - | | |
The DIC system provides Green-Lagrange strains. The l00 0.1 02 03 04 05 06 07 08 09 1 L1 1.2

evaluation of shear angles vy, = 2g,, was carried out
along vertical sections 0 — 8 (see Figure 10) and showed
an unsteady distribution related to the strong
inhomogeneity caused by the individual fibers. (Figure
11). Based on these distributions, mean values yy,, are
calculated for each layer. Subsequently they were
multiplied layer-wise by those shear moduli Gy, that lead
to match with the results from 2D-FE analysis which in
turn fulfil the equilibrium conditions.

The calibration procedure is performed for all vertical
sections marked in Figure 10, separated according to
layers, resulting in the following mean values: Gogog =
120 MPa, G()go =560 MPa.

A comparison with extensive tests reported in [37] as
well as numerical investigations [38] showed good
congruence of these values.
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Ty M Pa
Figure 11: Shear stress distribution measured by DIC and
mean values per layer

6 ULS-DESIGN

The clearly recognizable stress peaks in the examples
shown have a non-negligible influence on the design
process. The utilization factor with respect to the axial
stresses in the grain direction, which is given in Tables 2,
3 and 4, was evaluated by the formula of Equation (21),
where 0/c0,c7,a and f/c0cLr,a denote the design values
of max/min. stress and strength parallel to the grain
for

lom,cLr.al
fmcLT,d

_ |‘Tt/c,0,mean,d|
ft/cocLT,d

Utse @n
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pure tension (f) or compression (c), respectively.
Ot/cimean,a Tepresents the mean value of the linearly
varying stress distribution in the uppermost or lowermost
layer. The second part op,crq is given by the
nonuniform part of bending stress deviating from the
above-mentioned mean value and the bending strength
fmcir,a- For the comparison we refer to the design
format of Eurocode 5 and the following material
parameters, proposed in [1]: fi,cire= 24 N/mm?,
feocirx = 24 N/mm?, f,ocr = 16 N/mm’. For the
corresponding design values, k,,,q = 0.80,y, = 1.25
was chosen.

Table 2: Comparison of utilization factor U, concerning axial
stresses of example 1 (uniaxial bending) at the intermediate
support.

Layer z-Pos. FSDT RZT A
[mm] [MPa] [MPa] %
5/1 +100 4 0rocira 6.03 8.63 43
+80  #0romeana 4835 4.525
+ OmcLT,d 1.195 4.105
5 +100 U, 0.550  0.709 29
1 -100 U, 0,393 0,562 43

Table 3: Comparison of utilization factor U, concerning axial
stresses of example 2 (symmetry point) in x-direction

Layer z-Pos. FSDT RZT A
[mm] [MPa]  [MPa] %
5/1 100  +0¢ociTa 5.68 923 63
+80  £0romeana 4545  3.645
£ 0mcLT.d 1.135  5.585
5 +100 U, 0.518 0.720 39
1 -100 U. 0.37 0.601 63

Table 4: Comparison of utilization factor U, concerning axial
stresses of example 2 (symmetry point) in y-direction

Layer z-Pos. FSDT RZT A

[mm] [MPa] [MPa] %

4/2 160  Z0rociTa 6.92 10.64 54
+40  #0iomeana 462 5.10
+OmcLrd 2.31 5.54

4 +60 U, 0.601  0.859 43

2 -60 U, 0451  0.693 54

7 CONCLUSIONS

Comparative studies on uniaxial and biaxial loaded
CLT-plates under concentrated loads have shown the
superiority of Refined Zigzag Theory over the
traditionally used First Order Shear Deformation Theory.
The bending and shear stresses predicted by the RZT are
impressively confirmed by numerical comparative
calculations with continuum elements and experimental
measurements. It could be proven that using the FSDT-
based axial stress values leads to an underestimation of
the corresponding utilization factor of CLT-plates up to
50 % and more. When applying the FSDT the rolling
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shear stress must be determined by integration of
Cauchy’s equilibrium equation otherwise it is
dramatically underestimated. In case of uniaxial bending
the RZT already reliably predicts the rolling shear stress
in the standard procedure using the constitutive equation.
The propagated RZT forms a good compromise in terms
of computational effort and achieved accuracy. It does
not require a shear correction factor. It represents a
consistent extension of the FSDT showing a great
similarity to that between Saint Venant's torsion and
warping torsion. Since it is the simplest variant among
the numerous higher-order shear deformation theories, it
should be used as the new standard tool for the analysis
of CLT plates and other shear-elastic structures in the
everday design process.
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