
     

EFFICIENT FINITE ELEMENT MODELS FOR ADHESIVE-FREE
MULTI-LAYERED TIMBER STRUCTURES

J. Paroissien1,2, T.A. Bui3, M. Oudjene1, P. Lardeur2

ABSTRACT: This paper presents finite element models to assess the vibration performance of multi-layered timber 
structures assembled through compressed wood dowels. Starting from a solid model which is considered as a reference, 
a new methodology using a solid-beam approach for the dowels and a solid-shell approach for the layers is described.
Kinematic assumptions are applied throughout the cross-section of the dowels and the thickness of layers, leading to a 
significant reduction of the number of variables. The models are assessed for the calculation of frequencies and mode 
shapes of multi-layered timber beams and timber panels. The efficiency of this approach, in terms of quality of results 
and model size, is highlighted.
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1 INTRODUCTION1

The construction sector faces an increasing need for more 
sustainable materials. This is brought together by 
institutions that impose increasingly stringent standards 
and consumers who transform the market through their 
more ecological demands.
Adhesive-free multi-layered timber structures aim to 
replace glue-laminated timber structures as an eco-
friendly alternative by improving their durability and 
recyclability. Indeed, at high temperatures, glue emits 
toxic gases, especially formaldehyde which is 
carcinogenic to humans [1].
A concern for timber construction is the vibration 
serviceability of timber floors, glued or not. Human 
activity and children jumping in a residential or 
commercial building induce annoying vibrations in timber 
floors since they are lightweight structural elements.
Bui et al. [2,3] performed an experimental and numerical 
investigation on the vibration performance of Adhesive-
Free Laminated Beams (AFLB) (Figure 1) and Adhesive-
Free Cross-Laminated Timber (AFCLT) panels (Figure 2) 
assembled through compressed wood dowels.
Namely, this study highlighted a high variability level of 
frequencies. A finite element model made of solid 
elements was proposed for the layers and the dowels. Bui 
et al. [4] developed the Modal Stability Procedure (MSP) 
for the evaluation of the variability of frequencies, using 
this solid finite element model. This model is satisfactory 
in terms of quality of results but is time-consuming, 
particularly in the context of variability assessment or 
optimization where a large number of analyses may be 
necessary.
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Figure 1: Manufactured Adhesive-Free Laminated Beam 
(AFLB) [5]

Figure 2: Manufactured Adhesive-Free Cross-Laminated 
Timber (AFCLT) panels [5]
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Models using classical beam elements for the dowels and 
classical shell elements for the layers were tested by Bui 
[5]. These models lead to several difficulties, namely due  
to the complex deformation of dowels and the specific 
geometry representation, and are finally unsatisfactory. 
Solid-shell and solid-beam approaches were developed by 
Wei et al. [6,7]. These approaches have the advantages to 
use solid elements and to reduce the number of degrees of 
freedom in a model by applying beam or shell theories.  
These approaches are applicable to AFLB and AFCLT 
panels to reduce the model while keeping the solid 
geometry of the structure. However, adapting the solid-
shell and solid-beam approaches to industrial structures is 
a novelty. 
In this paper, we first recall the main experimental results 
obtained for AFLB and AFCLT panels. Then we present 
the reference finite element model of multi-layered timber 
beams and timber panels for modal analysis in free-free 
conditions. To reduce computational time using these 
reference models, reduced models using solid-beam and 
solid-shell approaches are also presented. Finally, a 
method to calculate variability is described. 
 
2 SUMMARY OF EXPERIMENTAL 

DATA 
In Bui et al. study [2], two wood species were considered 
for the layers: spruce and oak. The experimental 
campaign and the results were obtained in free-free 
conditions to minimize boundary conditions effects, with 
the hammer impact technique. The experimental set-up 
for the assessment of vibration behavior of AFLB and 
AFCLT panels is shown in Figure 3. 
 

(a)  
 

(b)  

Figure 3: Experimental set-up for (a) AFLB, (b) AFCLT panels 
[5] 

For the beams, 11 measurement points are chosen along 
the longitudinal axis, and for the panels 15 measurement 
points are distributed over the whole surface. 
In this paper, we consider AFLB and AFCLT panels 
composed of oak for the layers and compressed spruce for 
the dowels. The moisture content during the experiments 
was 9 %. 
The first three bending modes for both types of structures 
are presented. 
The AFLB pictured in Figures 1 and 3a is composed of 
three oak layers and 27 compressed spruce dowels. The 
beam has a length of 1450 mm for a width of 70 mm and 
a height of 67.5 mm.  
The results for the experimental mean natural frequencies, 
damping ratios and their respective coefficients of 
variation are summarized in Table 1 for five AFLBs and 
Table 2 for five AFCLT panels. 
 

Table 1: Experimental natural frequencies and damping ratios 
[2] for five AFLBs 

  Mean 
value CoV (%) 

f1 frequency (Hz) 118.2 6.0 
damping (%) 4.3 9.0 

f2 frequency (Hz) 281.0 5.3 
damping (%) 2.1 4.6 

f3 frequency (Hz) 471.1 4.2 
damping (%) 1.9 13.7 

 
The vibrational serviceability performance of AFLB was 
demonstrated by comparison to their glued counterparts 
by Bui et al. [5]. It was proved that while the difference 
between frequencies increase slightly with higher modes, 
the damping ratio is much higher for AFLB. 
The AFCLT panels pictured in Figures 2 and 3b are 
composed of three oak layers, 28 boards and 196 
compressed spruce dowels in total. Each external layer 
contains 7 boards, while the interior one contains 14 
boards in the perpendicular direction. These panels have 
a length of 2100 mm for a width of 1050 mm and a height 
of 75 mm.  
 

Table 2: Experimental natural frequencies and damping ratios 
[2] for five AFCLT panels 

  Mean CoV (%) 

f2 
frequency (Hz) 54.5 2.5 
damping (%) 0.72 10.8 

f3 
frequency (Hz) 56.3 8.5 
damping (%) 0.87 13.7 

f7 
frequency (Hz) 110.3 3.0 
damping (%) 0.97 6.9 

 
The vibrational characteristics for the assembled beams 
and panels show high variability levels as stated before. 
This highlights the need for a complete variability 
assessment of the structures. 
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3 REFERENCE FINITE ELEMENT 
MODEL

3.1 FINITE ELEMENT MODEL
The models for both AFLB and AFCLT panel using the 
Verification and Validation methods [8] are presented. 
Finite element models are created using the software 
Abaqus/Standard©, and the twenty-node hexahedral solid 
element with reduced integration (C3D20R of Abaqus 
[9]) is exploited. After testing several solid elements, this 
choice has been made as it is the most efficient for 
convergence of frequencies and leads to a minimization 
of model size for these timber structures.
As finite element models must be as close as possible to 
the physical reality, assumptions based on experimental 
observations [2] related to the connection between the 
different parts, are made. On the one hand, in the 
following models, there are no interactions between the 
boards or the layers with each other. On the other hand, as 
the dowels are densified and tend to expand to keep their 
shape memory, contact without sliding is considered. 
Because meshes of layers and dowels are not coincident 
at their interfaces, the interaction between dowels and 
layers must be modelled. To stick the surfaces of the 
dowels and holes of the boards, the Tie option in Abaqus 
is chosen.
Finally, the mechanical properties of the oak boards, are a 
mix of experimental results from [2] for the density and 
the longitudinal modulus. For all the other elastic 
properties, empirical relations from Jodin’s book [10] are 
used. For the compressed wood that constitutes the 
dowels, the properties were identified using a quasi-
inverse problem by Bouhala et al. [11]. 

3.2 VERIFICATION STEP
The Verification process is completed when the 
convergence of frequencies to the accurate solution is 
achieved. For the Verification stage, a highly accurate 
solution is obtained with a very fine model as no 
analytical solution exists.
For the AFLB the results of the convergence study given 
in Figure 4 lead to an optimal mesh with about 13 000 
elements and 220 000 degrees of freedom.
This model is described in Figure 5. It is important to note 
that in the dowels the mesh is refined near the interfaces 
between layers as shear stress gradients are high in these 
areas. 
The same method is applied to the AFCLT panel. In 
particular, the same refinement technique is applied to the 
dowels. The convergence study illustrated in Figure 6 
leads to an optimal mesh with about 86 000 elements and 
1 500 000 degrees of freedom. This mesh is shown in 
Figure 7.

Figure 4: Convergence study for AFLB

Figure 5: AFLB finite element model

Figure 6: Convergence study for AFCLT panel

Table 3: Elastic mechanical properties for dowels and layers

E1 
(MPa)

E2 
(MPa)

E3 
(MPa)

G12 
(MPa)

G13 
(MPa)

G23 
(MPa) ν12 ν13 ν23

Oak [2,10] 11 380 1 045 1 871 977 1 275 361 0.4 0.32 0.43

Compressed spruce [11] 26 000 1 033 1 082 800 800 100 0.41 0.41 0.37
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Figure 7: AFCLT panel finite element model

3.3 VALIDATION STEP
The Validation stage deals with the comparison between 
the numerical results obtained with the verified finite 
element model (from the previous Verification step) and 
the experimental results. As stated in section 2, we
consider three frequencies that correspond to the first 
three bending modes illustrated in Figure 8 for the beam 
and Figure 9 for the panel. 
Here, the Validation concerns only the mean behaviour of 
the structures, so numerical frequencies are compared to 
the mean experimental frequencies. Results are shown in 
Table 4 for AFLB and Table 5 for AFCLT panel.

Table 4: Frequencies comparison between mean experimental 
data [2] and finite element model for AFLB

Mean experimental 
frequencies 

Numerical 
frequencies Diff.

f1 118.2 Hz 119.1 Hz 0.7 %
f2 281.0 Hz 278.2 Hz -1.0 %
f3 471.1 Hz 459.6 Hz -2.4 %

Table 5: Frequencies comparison between mean experimental 
data [2] and finite element model for AFCLT panel

Mean experimental 
frequencies

Numerical 
frequencies Diff.

f2 54.5 Hz 54.3 Hz -0.3 %
f3 56.3 Hz 55.9 Hz -0.7 %
f7 110.3 Hz 108.6 Hz -1.6 %

Numerical and mean experimental results are in good 
agreement both for AFLB and AFCLT panel.
The small errors between numerical and experimental 
frequencies demonstrate that the adopted interaction 
assumptions are relevant despite that they may be 
questionable with regard to the complex physics involved 
in the connections.
This finite element modelling may lead to large-size 
models. In order to reduce the model size, a new 
methodology based on specific solid-beam and solid-shell 
approaches was developed.

Figure 8: Mode shapes for AFLB finite element model

Figure 9: Mode shapes for AFCLT panel finite element model
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4 SOLID-BEAM AND SOLID-SHELL 
BASED MODELS 

4.1 PRINCIPLE OF SOLID-SHELL AND SOLID-
BEAM APPROACHES

The solid-beam and solid-shell approaches used to build 
a reduced model exploit a methodology that was initially
developed by Wei et al. [6,7].
The structure is first modelled with solid finite elements, 
for layers as well as dowels. Shell theory is considered for
the layers and beam theory for the dowels. Then for 
layers, through-the-thickness shell equations are applied 
directly to the solid model. In the same way, through-the-
section beam equations are applied for dowels. The 
concept of master and slave nodes is used, only master 
nodes are kept in the final model and slave nodes are 
eliminated. This process modifies the system of algebraic 
equations and leads to a reduction of the model size 
compared to the initial solid model.
First-order, as well as higher-order theories, can be 
considered. In this paper, we only use modified first-order
theories.
A MATLAB© code produces the set of linear equations.
In the Abaqus input file, these equations are introduced 
using the keyword ‘EQUATION’ [9].

4.2 DISTRIBUTIONS AND NODE LOCATIONS
FOR SOLID-SHELL APPROACH

For the layers, the displacement field in Equation (1) was
exploited by Wei et al. [7], using the Reissner-Mindlin 
theory [12,13], modified to correctly consider the Poisson 
effect through the thickness. The displacement field is
linear through the thickness for u and v and quadratic for
w.

(1)

Figure 10: Master and slave nodes locations for the modified 
first-order solid-shell approach

The displacement field is applied through the thickness of 
a layer as represented in Figure 10. The coefficients in
Equation (1) are identified using the coordinates of nodes

and displacements at degrees of freedom of master nodes.
Then this displacement field is applied to the degrees of 
freedom of slave nodes which are eliminated. The 
location of master and slave nodes is described in Figure 
10.

4.3 DISTRIBUTIONS AND NODE LOCATIONS
FOR SOLID-BEAM APPROACH

For the dowels, the displacement field in Equation (2) was
exploited by Wei et al. [6], using the modified 
Timoshenko theory [14,15]. The reader can find
complementary information in the paper by Wei et al. [6].

(2)

The displacement field in Equation (2) is applied through 
the cross-section of each dowel. The distribution is linear 
for u (longitudinal displacement) and quadratic for v and 
w (transverse displacement).
The same principle using slave and master nodes is 
applied again. Figure 11 describes the location of master 
and slave nodes.

Figure 11: Master and slave nodes locations for the modified 
first-order solid-beam approach

4.4 RESULTS WITH REDUCED MODELS
The reference models respectively for AFLB and AFCLT
panel are the ones described in section 3.2 and obtained 
with the Verification and Validation process. Reduced 
models for both AFLB and AFCLT panel are created 
using the methodology presented in sections 4.2 and 4.3.
In this section, the reduced models are compared to the 
reference models. The quality of results and cost 
reduction are also highlighted.

4.4.1 AFLB reduced model
Table 6 compares, for AFLB, the numerical frequencies
obtained with the reference and the reduced finite element 
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models. The difference between the two models in terms 
of quality is acceptable with a maximum difference of   
5.8 % for the highest frequency. 
The comparison of model size and computational cost is 
summarized in Table 7. The reduction in number of 
floating-point operations is 97 %. The number of degrees 
of freedom (d.o.f.) is reduced by 76 %. 
 

Table 6: Comparison of frequencies between the reference and 
the reduced models for the AFLB 

 Reference model Reduced model Diff. 
f1 119.1 Hz 121.1 Hz 1.7 % 
f2 278.2 Hz 290.0 Hz 4.2 % 
f3 459.6 Hz 486.4 Hz 5.8 % 

 

Table 7: Comparison of size and computational cost between 
the reference and the reduced models for the AFLB 

 Reference 
model 

Reduced 
model Reduction 

Number of 
d.o.f. 221 220 53 553 76 % 

Number of 
floating point 

operations 
1.34×1011 4.13×109 97 % 

 
4.4.2 AFCLT panel reduced model 
Table 8 compares, for AFCLT panel, the numerical 
frequencies obtained with the reference and the reduced 
finite element models. The frequencies obtained with the 
reduced and solid models are very close to each other. The 
maximum difference is 3.5 % for the highest frequency. 
The comparison of model size and computational cost is 
summarized in Table 9. The number of d.o.f. and number 
of floating-point operations are reduced by 77 % and        
96 % respectively. 
 

Table 8: Comparison of frequencies between the reference and 
the reduced models for AFCLT panel 

 Reference model Reduced model Diff. 
f2 54.3 Hz 55.6 Hz 2.4 % 
f3 55.9 Hz 56.2 Hz 0.5 % 
f7 108.6 Hz 112.4 Hz 3.5 % 

 

Table 9: Comparison of size and computational cost between 
the reference and the reduced models for the AFCLT panel 

 Reference 
model 

Reduced 
model Reduction 

Number of 
d.o.f. 1 460 256 335 356 77.0 % 

Number of 
floating point 

operations 
1.49×1012 6.03×1010 96.0 % 

The reduction level is comparable for beams and panels 
models. However, for cross-laminated timber panels, the 
size of the numerical models is much larger than for 
beams. Consequently, reducing the size of the model is 
even more interesting in this case, especially for a 
variability or optimization assessment. 
 
4.5 DISCUSSION ON REDUCED MODELS 

BASED ON HIGHER-ORDER THEORIES 
 The difference between the reference models and the 
reduced models for both the AFLB and the AFCLT panel 
is acceptable in terms of quality. However, some might 
find it too high for a comparison between two finite 
element models. The reason for this slight discrepancy is 
due to the fact that only first-order theories are used here 
and applied to the totality of the layers and dowels. 
Higher-order beam and shell, as well as a mix between 
beam, shell and solid theories, have also been considered. 
These other approaches allow us to obtain a better quality 
of results between the reference and reduced models but 
in that case, the reduction level is lower. In this paper, 
only modified first-order theories, which lead to the 
largest reduction level, are presented. 
 
5 CONSIDERING VARIABILITY WITH 

A PROBABILISTIC APPROACH 
Bui et al. [4] assessed the variability of the vibration 
frequencies of AFLB and AFCLT panel using the Modal 
Stability Procedure (MSP). Here, and based on this 
previous study, we recall the principle of the MSP. Then 
we apply it to calculate the variability of two frequencies 
of the AFCLT panel and compare it to the direct Monte 
Carlo Simulation (MCS). 
One way to assess the variability is to use a probabilistic 
approach which assumes that statistical laws (distribution 
type, mean value, standard deviation) define the input 
parameters. Then, statistical characteristics of the output 
quantities are obtained. 
The direct MCS is a robust probabilistic method. In this 
method, a large number of trials is required with random 
input values to estimate the statistical characteristics of 
the output quantities. The computational time of one 
analysis is multiplied by the number of trials. 
Consequently, this approach is very computationally 
time-consuming.  
The MSP, a less time-consuming variability assessment 
methodology, is investigated here. 
 
5.1 THE MODAL STABILITY PROCEDURE 
The MSP methodology was developed by Arnoult et al. 
[16]. Its efficiency in terms of quality of results and 
computational cost has been proven in multiple studies. 
MSP assumes that the mode shape does not change 
between the original structure (subscript 0) and a 
perturbated one (subscript p), so . Consequently, 
this methodology requires only one finite element 
analysis in the nominal configuration to extract the mode 
shapes  and modal strains . 
Thanks to the previous assumption, we obtain the 
perturbed natural angular frequency for a given mode 
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using the perturbed stiffness matrix and the perturbed 
mass matrix :

(3)

Equation (3) can be transformed as a summation over all 
n elements of the finite element model. The elementary 
internal strain energy of an element j can be expressed as 
the integration over the elementary volume of the 
product of the stresses by the strains. Using the 
generalized Hooke’s law to developpe the stress, we then
obtain our metamodel as follows:

(4)

with the constitutive law matrix and the 
perturbed mass matrix of the element.
The metamodel in Equation (4) is used in a fast MCS, 
allowing the evaluation of perturbed natural frequencies 
for each trial. The variability (mean value, standard 
deviation, coefficient of variation and distribution) of 
natural frequencies can subsequently be obtained.
Figure 12 presents a flowchart explaining the whole
methodology.

Figure 12: MSP flowchart

5.2 VARIABILITY OF AFCLT PANEL 
FREQUENCIES

The MSP results are presented for two frequencies of the 
AFCLT panel f2 and f3. The reference model is exploited 
here.

5.2.1 Inputs variability
Uncertain parameters are the material properties of 
dowels and boards. The parameters distribution is 
assumed to be Gaussian, however, the distribution law is 
truncated (±3σ) in order to avoid non-physical values.

Table 10 gives the mean value and coefficient of variation 
of the uncertain parameters. Four uncertain parameters are 
defined for each of the 28 boards and 3 uncertain 
parameters for each of the 196 dowels, leading to 700 
independent uncertain parameters.

Table 10: Variability levels of uncertain parameters

Mean 
value CoV

board

(kg/m3) 624 6.5 %
E1 (MPa) 11400 13.6 %
G12 (MPa) 1200 14 %
G13 (MPa) 920 14 %

dowel
(kg/m3) 1133 4.2 %

E3 (MPa) 1100 9.5 %
G13 (MPa) 800 10 %

5.2.2 Results
Simulations with 2000 trials using the MSP metamodel 
and the direct MCS are performed. Figure 13 illustrates
the distribution of two frequencies.

Figure 13: Distribution of frequencies of AFCLT panel 
obtained with 2000 trials

There is a good correlation between results obtained with 
MSP and direct MCS, even if limited shifts are observed.
The maximal difference, observed for mode 3, is about      
1 % for the mean value and 8 % for the standard deviation. 
MSP computational time is divided by about 1000 
compared with direct MCS. We can thus conclude that 
MSP is satisfactory for the assessment of variability of 
frequencies of a AFCLT panel.
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6 CONCLUSION AND PERSPECTIVES 
Finite element models to assess the vibration behaviour of 
AFLB and AFCLT panel have been presented. The 
Verification and Validation approach shows that the 
reference model, composed of solid elements, is able to 
correctly reproduce the experimental frequencies.  
A reduction technique, based on the application of solid-
beam and solid-shell approaches for dowels and boards 
respectively, has been introduced. First-order beam and 
shell theories have been exploited, but higher-order 
theories can also be considered. The reduced finite 
element models show good results in terms of quality and 
significant model size and computational cost reduction 
compared to the reference models. 
The MSP has been presented and applied to evaluate the 
variability of frequencies of a AFCLT panel using the 
reference models. The MSP is satisfactory in terms of 
quality and is much less time-consuming than the classical 
direct MCS approach. 
A next step of this study will be to couple the MSP with 
reduced models. 
Investigating the confrontation between experimental and 
numerical variability more deeply is also a perspective. 
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