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ABSTRACT: A new numerical model of five uncoupled spring elements is proposed to simulate the panel-to-panel 
Cross-Laminated Timber (CLT) connections made of discrete fasteners. The model accurately simulates the main 
phenomenological effects in the translational and rotational directions of connections: asymmetrical axial gap 
(open/closure), in-plane and out-of-plane sliding of panels, and radial/bending stiffness/strength of fasteners. Linear/non-
linear spring elements with different constitutive material models for each phenomenological effect are considered. For 
instance, a modified Richard–Abbott model is used for the radial/bending hysteresis of fasteners. The model is 
implemented in the ANSYS software through user elements and material routines. An illustrative example under different 
loading conditions is elaborated to show the main capabilities of the proposed model. Finally, the model is validated with 
two experimental monotonic in-plane CLT slab tests, where the initial/hardening stiffness, strength capacity, and failure 
mechanism of both specimens are correctly predicted. 

KEYWORDS: CLT connection models, non-linear finite elements, phenomenological-based models, hysteretic 
models. 
 
1 INTRODUCTION 456 
1.1 OVERVIEW 
Nowadays, with the arrival of new mass timber products, 
such as glue-laminated timber and Cross-Laminated 
Timber (CLT), the incorporation of efficient and 
innovative high-ductile connectors, and elaboration of 
high-precision and faster-prefabricated components, 
provide a viable option to build mid- to high-rise 
residential/non-residential buildings under a severer 
seismic hazard [1]. Particularly, CLT panels can be used 
in either floor and wall elements or as the material for the 
entire building. 
 
The most critical and vulnerable part of CLT buildings is 
their connections, which must be designed with extreme 
care. Moreover, connections' mechanic capabilities 
(strength, stiffness, ductility, and dissipated energy) 
typically govern the whole structure's behaviour, 
particularly under seismic loads [2]. Those connections 
can be strengthened with an adequate layout of special 
straight or inclined fasteners (e.g., nails, screws), special 
steel parts, or slot connectors, which, together with the 
connection panel type (e.g., butt, half-lap, single or double 
surface spline) define mainly their hysteretic behaviour 
[3]. Several tests have been performed to characterize 
most of these configurations [3,4]. 
 
Complex physical effects are present in the interaction of 
CLT connections, such as opening/closing of panels, 
friction, withdrawal extraction of fasteners, large 
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deformation and buckling of fasteners, local compression 
of wood, and fracture and local separation of pieces of 
their panels [5]. Hence, it is necessary to consider an 
adequate numerical model to predict the complex 
response of these connections and provide a more robust 
design process for CLT buildings.  
 
1.2 CLT CONNECTIONS MODELING  
Generally, Finite Element (FE) macro-models are used to 
simulate CLT connections, where each component is 
modelled separately, i.e., timber panels with shell 
elements and discrete fasteners with a set of nonlinear 
uniaxial or muti-directional coupled/uncoupled springs 
based on a mechanical and/or phenomenological material 
approach (e.g., walls [6] or slabs [7]). Uniaxial elements 
with uncoupled directional springs consider a specific 
model for each direction [6,8], while multi-directional 
coupled several directions [9]. Generally, uniaxial FEs are 
the most controllable and can generate a combined effect 
that fits well with experimental tests [10]. 
 
Phenomenological-based hysteretic models used for 
spring elements of CLT connections can be divided into 
the type of constitutive equations (e.g., algebraic [11] or 
first-order ordinary differential equations [12]) or in their 
shape (i.e., smooth [12,13] or polygonal [11,14]). The 
unloading/reloading paths and pinching effect are 
simulated in all these models with different precision 
levels. Moreover, some models include stiffness/strength 
cyclic degradation [13,14]. 
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1.3 GOAL AND SCOPE 
This article summarizes the main results of another recent 
publication by authors, which provides a new robust non-
linear FE model to simulate the CLT connections made of 
discrete fasteners under different loading conditions. 
More details can be obtained in the article of Chacón et 
al., 2023 [15]. Section 2 describes the numerical 
connection model, including its spring elements and 
material models. Moreover, an illustrative example is 
added to show the proposed model's capabilities. Also, 
Section 3 shows the results of two simulated experimental 
in-plane monotonic CLT slab tests with the considered FE 
model. Finally, the conclusions are listed in Section 4. 
 
 
2 NUMERICAL CONNECTION MODEL 
Five uncoupled spring elements were considered to 
simulate a generic discrete-fastener CLT connection. 
User-element and user-material FORTRAN77 
subroutines of FEs and their materials were 
computationally implemented into the ANSYS software 
[16], respectively. 
  
2.1 FINITE ELEMENTS  
Two bar elements were implemented: (i) a uniaxial 
straight element of two nodes with one translational or 
rotational Degree Of Freedom (DOF) per node, called 
hereafter E1; and (ii) a radial 2D straight element of two 
nodes with two translational DOFs per node and a 
Lagrangean co-rotational formulation with radial strain, 
called hereafter RE2. 
 
2.1.1 E1 element 
This bar element has two nodes with one translational ( , 

, or ) or one rotational DOF per node ( , , or ), 
and one integration point at centroid of the element. It has 
a non-zero initial length , and due to external 
forces/moments, the bar suffers a small 
displacement/rotation in each node  with . 
Considering a small engineering strain metric, the updated 
element tangent stiffness  is given by 
 

, (1a) 

,       (1b) 

 
where  is the initial element volume, with  
being the cross-section element area, and  is the 
consistent material tangent stiffness. Moreover, the 
updated internal force vector  is expressed 
as 

, (2) 

where  is the updated material stress. Figure 1a shows 
two of the six cases that this element can adopt, where the 

 and  DOFs are shown. It cannot consider a zero-
length element due to software restraints. 

 
Figure 1: Definition of the two bar finite elements implemented: 
(a) E1 (  and  DOFs cases); and (b) RE2. 
 
2.1.2 RE2 element 
This bar element has two nodes, with two translational 
DOFs per node (  and ) and one integration point at 
the centroid of the element. Given some initial position of 
their nodes ), with , due to external 
forces, the bar suffers a large arbitrary displacement in 
each node  (see Figure 1b), which elongates 
the bar from  to  length. Then, considering the 
Lagrangean co-rotational formulation with engineering 
strain metric (i.e., ), the total updated 
tangent stiffness  of this element is 
expressed as 

, (3) 

where  and  are the initial/current element 
volume; and  and  are vectors given by 
 

, (4a) 

,       (4b) 

 
with , , 

, and . The initial/current length  
and  can be obtained, respectively, as 
 

, (5a) 

.       (5b) 
  
The first term of Equation 3 represents the material 
tangent stiffness, while the second one the geometric 
stiffness. Moreover, the updated internal force vector 

 is given by 

. (6) 

Their element response is studied with a displacement-
controlled rotation loop  and a constant 
stretching , i.e., the displacement load vector  is 

. (7) 

A  von Mises material model with a bi-linear isotropic 
hardening law is assumed. Figure 2 compares their 
response with the well-known two-node bar element with 
two translational DOFs per node. Note that only the RE2 
element predicts the overall angle's response well, where 
a constant force and radial to the element direction 
independent of rotation is observed. 
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Figure 2: Comparison of the RE2 element response between 
small-strain and co-rotational formulations for a rotation loop 

 with a constant stretching : (a) force-rotation 
; and (b) angle force-rotation . 

 
2.1.3 Spring elements 
To simulate the discrete CLT connections, five un-
coupled springs are considered: (i) axial E1 element with 
asymmetric tensile/compressive model to include the gap 
of panels; (ii) in-plane shear E1 element with linear-
elastic behavior to simulate the lateral slip between 
panels; (iii) out-of-plane shear E1 element with linear-
elastic behavior to include the vertical slip between 
panels; (iv) radial RE2 element with the Richard–Abbott 
(RA) model [17] model to add the fastener capacity; and 
(v) bending E1 element with the RA model to represent 
the out-of-plane rotation of panels. Figure 3 and Table 1 
summarize these elements' main properties and functions. 
 

Figure 3: Spring elements to simulate a discrete CLT fastener 
connection. Figure extracted from Chacón et al., 2023 [15]. 

Table 1: Springs elements for the CLT connection model. 
Id Function FE type DOFs Material 
S1 Panel gap E1  Gap 
S2 In-plane shear 

panel 
E1  Linear 

elastic 
S3 Out-of-plane 

shear panel 
E1  Linear 

elastic 
S4 Radial 

fastener 
RE2  Richard–

Abbott 
S5 Bending 

fastener 
E1  Richard–

Abbott 
 
 
2.2 MATERIAL MODELS 
2.2.1 Gap model 
A simple and robust asymmetric model simulates the 
closure/opening gap of CLT panels. It is assumed the 
following gap force-displacement  relation 

, (8) 

where  are the Positive/Negative (P/N) 
(opening/closure) gap stiffness, and  are the P/N 
Macauley functions (i.e., ). Note 
that this relation gives a discontinuous slope at zero 
displacement, which can generate some convergence 
problems at the FE level. 
 

 
Figure 4: Response of gap model: (a) force-displacement ; 

and (b) tangent stiffness-displacement . 
 
Then, Equation 8 can be rewritten in terms of some 
approximated smoothed ( -class) P/N Heaviside 
functions  as 

. (9) 

Hence, they derivative  can be obtained as follows 
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, (10) 

where symbol  denotes the ‘+’ and ‘-‘ superscript, 
respectively. For the sake of simplicity, it is considered 
here the following approximated P/N Heaviside functions 

 

, (11) 

where  is an arbitrary parameter such as 
, with  are the P/N stepped Heaviside 

functions. Figure 4 shows an illustrative example of the 
gap force-displacement  relation and their derivative 

. Note that the slope continuity in both functions is 
satisfied in the overall displacement range. 
 
2.2.2 Fastener model 
A modified version by authors of the Richard–Abbott 
model [17] is considered to simulate the stiffness/strength 
fastener capacity. This model was first proposed to 
simulate the hysteresis of steel connections and can also 
adequately simulate the cyclic behaviour of timber 
connections. The model includes the pinching effect, 
symmetric/asymmetric behaviour, and low-cycle fatigue 
phenomena. 

 
Figure 5: Definition of parameters for the Richard-Abbott 
fastener model. 
 
First, the P/N generalized force-displacement  
curves (e.g., force or moment and displacement or 
rotation, respectively) are stated as a combination of an 
upper  and lower  P/N curves (see Figure 5), 
and are defined as 
 

,        with  
(12a) 

,       
 
(12b) 

 
where , , ; 

 are the P/N reversal point of curves;  are the 
P/N initial force;  and  are the P/N initial/hardening 
stiffnesses, respectively; and  are the P/N factor that 

control the shape of curves. The parameters , , , 
and  are expressed as 
 

,         (13a) 
, (13b) 

, (13c) 
, (13d) 

 
where  and  are upper and lower parameters, 
respectively. The parameter  is a transition factor 
that combines the upper and lower parameters linearly and 
is given by 

,         with       (14) 

where  are P/N displacement factors that 
control the shape of pinching curves. Note that the 
definition of P/N variables  varies from the original RA 
model to give a symmetric response under symmetric 
displacement loads. The variable  is the maximum 
displacement at the loading direction, which is defined as 
 

,        with (15a) 
,       (15b) 

, (15c) 

 
where  is the loading direction, and  are the 
P/N displacement thresholds. Note that variables  grow 
monotonically according to obtained displacements and 
are independent in both directions. 
 
Second, the model also includes a strength/stiffness 
degradation phenomenon (fatigue effect), where the 
degraded generalized force  and the degraded 
hardening stiffness  are evaluated according to 
respective relations 
 

, (16a) 
,       (16b) 

 
where  and  are the 
strength/stiffness damage variables, respectively, given 
by 

, (17a) 
,       (17b) 

 
with  and  are the strength/stiffness degraded factor, 
respectively. Both variables are dependent on the 
hysteretic dissipated energy  (i.e., ). 
The damage variable  and  does not distinguish the 
P/N regime, taking the accumulation in both directions. 
Moreover, Equations 17a-b do not require the completion 
of cycles to increase the damage as occurs with other 
proposed models [13,14]. 
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Additionally, the choice of P/N parameters and variables 
 are determined according to loading direction , i.e.,  

.   (18) 

Finally, it is essential to note that this model considers a 
generalized force-displacement (or moment-rotation) 
relation, whereas the two material models inside of the 
user-implemented FEs work in the stress-strain space. 
Then, converting from the force-displacement to stress-
strain relation is necessary to give the same FE response 
as the theoretical point level. Since this model has 
physical-based parameters, the conversion is explicit and 
only requires the conversion of three types of parameters: 
(i) P/N stiffnesses  and  (or  and ) for the 
upper/lower cases; (ii) P/N strengths  (or ) for the 
upper/lower cases; and (iii) energy-based strength 
degradation factor . Then, for a force-displacement and 
moment-rotation relations, their respective above 
parameters require the following factors 
 

 ,    ,      , (19a) 

 ,      ,      , (19b) 

 
where  is the element length,  is the cross-section 
element area, and  is the cross-section inertia of element 
with respect to their centroid. Note that the gap model also 
requires the conversion of their P/N stiffnesses  from 
force-displacement to stress-strain space, which is used 
the factor  of Equation 19a. 
 
In summary, the model uses four quadruplets of 
parameters to define the upper and lower curve ( , ,

, and ), three pairs of parameters to state the 
transition parameter  ( , , and ), and two 
parameters to control the fatigue (  and ). Hence, the 
model has a total of 24 parameters. An explicit numerical 
integration scheme for the updated force of this model is 
performed, where six state variables are considered 

. 
    
Three illustrative examples are considered to show the 
capabilities of this model. The first two are illustrative 
examples, where it is used a set of symmetrical and 

asymmetrical P/N parameters, respectively. In contrast, 
the third example is a validation of the experimental in-
plane cyclic CLT connection test of Gavric et al. [5].  
Table 2 lists all parameters considered for the three cases. 
Figure 6 shows the first two cases, whereas Figure 7 the 
third one. Four increased amplitude loading displacement 
cycles are applied in the first two cases (see Figure 6). The 
same displacement pattern as the experimental test is 
considered for the third case. 
 
Table 2: Parameters for the three examples of the RA fastener 
model. 

 Example 
Parameter E1 E2 E3 

 
[kN/mm] 

[2, 2, 2, 
2](a) 

[3, 2, 3, 2]    [1, 1, 3, 3]     

 [N/mm] [30, 30, 10, 
10] 

[70, 20, 10, 
10] 

[220, 200, 
60, 60] 

 [kN] [10, 10, 1, 
1] 

[10, 5, 3, 
1] 

[7, 6, -1, 2] 

 [-] [1.5, 1.5, 
1.5, 1.5] 

[1.5, 1.5, 
1.5, 1.5] 

[4, 4, 4, 4] 

 [-] [10, 10](b) [15, 15] [40, 40] 
 [-] [0.9, 0.9] [0.9, 0.9] [0.1, 0.1] 
 [-] [0.9, 0.9] [0.9, 0.9] [1, 1] 
 [-] 0   
 [-] 0   

(a) P/N upper and P/N lower values, respectively; (b) P/N values, 
respectively. 
 
First, Figure 6a shows the force-displacement hysteresis 
using symmetrical P/N parameters, where symmetry is 
preserved regarding the force/stiffness of the envelopes 
and pinching curves. Second, Figure 6b shows the 
response of the second case, where a notable strength 
asymmetry and stiffness/strength degradation is observed. 
Third, a good fit in terms of envelopes and pinching paths 
is kept for the third case (see Figure 7a), where an error 
less than 1% is measured for the peak strength and 
respective displacement in both directions, and a 
coefficient of determination  ( ) for the force history 
of 93.25 is calculated. Moreover, the model reproduces 
with considerable precision the low-cycle fatigue 
phenomena. 
 

Figure 6: Force-displacement hysteresis  of the RA fastener model for two illustrative examples with different set of parameters: 
(a) symmetrical P/N parameters; (b) asymmetrical P/N parameters; and (c) hysteretic dissipated energy of both cases. 
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Moreover, Figures 6c and 7b show the history of 
dissipated energy  for all cases. A more significant 
amount of energy is dissipated in the second case than in 
the first one due to the incorporation of the 
stiffness/strength degradation factors in the model. For the 
third case, an excellent fit is observed concerning the 
experimental test, where a coefficient of determination 

 of 99.02 is estimated. Nevertheless, some minor 
differences exist, showing a moderate underestimation at 
0 to 0.6, while an overestimation from 0.8 to the end is 
noted. 

Figure 7: Third example of the RA fastener model validated with 
the in-plane cyclic CLT connection test of Gavric et al. 2015 [5]: 
(a) force-displacement ; and (b) dissipated energy-relative 
time step . 
 
2.3 CONNECTION MODEL RESPONSE 
To show the response of connection FE model under 
different loading conditions, an illustrative example is 
elaborated (see Figure 8a). Two generic square 3-layered 
CLT panels ( =100 mm) with a width of 1200 mm are 
joined with nine generic fasteners ( =6 mm), equally 
spaced along the edge, and are loaded with different 
independent cyclic loads: axial, in-plane shear, and out-
of-plane bending. Displacement-controlled load is applied 
at right edge of right panel, whereas a fixed support is 
considered at left edge of left panel. A gap separation of 5 
mm between panels is imposed to get a more realistic 
response and to consider a non-zero length for the spring 
elements.  
 
A Three-Dimensional (3D) FE model is generated in 
ANSYS, as shown in Figure 8b. On the one hand, the CLT 

panels are simulated with a four-node layered-shell 
element SHELL181 with a linear-orthotropic material 
model for each lamella, whose material X-axis is oriented 
parallel-to-grain direction of each lamella. This element 
accounts for the shear distribution using the Mindlin-
Reissner first-order shear-deformation theory and can 
adequately represent the mechanical behaviour of 
orthotropic plates since their stiffness depends on the 
loading situation. On the other hand, each fastener is 
simulated with the proposed set of five two-node spring 
elements USER300 and their materials of Sections 2.1 
and 2.2, respectively. 
 

Figure 8: Connection model example: (a) 2D plan view of setup; 
and (b) 3D view of FE model. Units in millimetres. 
 
Table 3: Material parameters for the connection model 
example. 

Parameter  Value 
CLT  
 , ,  [GPa] 11, 0.37, 0.37 
 , ,  [-] 0, 0, 0 
 , ,  [GPa] 0.65, 0.185(a), 0.185(a) 
Radial spring (S4)  
  [N/mm] [500, 500, 500, 500](b)  
  [N/mm] [50, 50, 20, 20] 
  [kN] [3, 3, 1, 1] 
  [-] [4, 4, 4, 4] 
  [-] [40, 40](c) 
  [-] [0.1, 0.1] 
  [-] [1, 1] 
  [-]  
  [-]  
Bending spring (S5)  
  [kN-mm/rad ] [1, 1, 1, 1](b) 
  [kN-mm/rad] [50, 50, 10, 10] 
  [kN-mm] [10, 10, 1, 1] 
  [-] [4, 4, 4, 4] 
  [-] [40, 40](c) 
  [-] [0.1, 0.1] 
  [-] [1, 1] 
  [-] 0 
  [-]  
Gap spring (S1)  
  [kN/mm] 0.13 
  [kN/mm] 3.30 

(a)  and ; (b) P/N upper and P/N 
lower values, respectively; and (c) P/N values, respectively.  
 
Table 3 lists the material parameters for the CLT panels 
and three of the five spring elements (radial, bending, and 
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gap). Moreover, for the two shear springs (in-plane and 
out-of-plane), it is assumed a linear-elastic material, 
where Young’s modulus equal to XZ-shear modulus of 
CLT panels  is considered for both springs for 
simplicity. Also, for the in-plane shear spring, a shear area 
of , with  is the fastener 
cross-section area, is assumed to simulate quasi-null in-
plane friction and to avoid singularity (null pivot) at 
stiffness matrix. In contrast, for the out-of-plane shear 
spring, a shear area of  is taken because no 
out-of-plane slip is assumed. 
 

 
Figure 9: Response of connection model example under 
different loadings conditions: (a) axial; (b) shear; and (c) 
bending. Figures include the displacement field of the FE model 
for a P/N loading condition at some unspecific time step. 

Figure 9a shows the axial reaction force-axial top 
displacement  curve of this FE model under a 
cyclic axial displacement load. An asymmetric 
displacement load pattern with four cycles of increased 
magnitude is considered, where positive (tensile) 

displacements values are larger than negative 
(compressive). The gap effect of panels is correctly 
simulated, where a cyclic behaviour with stiffness 
degradation and pinching is present in the tensile regime. 
In contrast, a marked linear-elastic behaviour is noted in 
the compressive one. 
 
Figure 9b presents the in-plane reaction shear-lateral top 
displacement  relation of this FE model under a 
cyclic in-plane lateral displacement load. Conversely to 
the axial case, a symmetric P/N displacement load pattern 
with four cycles of increased magnitude is applied. A 
symmetric response is observed, with a larger amount of 
hardening in their envelopes, a significant pinching at the 
unloading/reloading paths, and an initial gap 
displacement of approx.—5 mm associated with the 
length of spring elements. Moreover, a snap-through 
behaviour is observed at relatively small displacements 
(around 5 to 10 mm), which is more pronounced at larger 
displacements. This phenomenon can be attributed to 
coupling gap/radial fastener springs. Note that this class 
of load test is scarce in literature (with free panel rotation) 
and that the shear capacity is lower than the axial one, 
contrary to several experimental CLT joint tests [4,5]. 
 
Figure 9c shows the bending reaction moment-vertical top 
displacement  curve of this FE model under a 
cyclic vertical displacement load. An identical symmetric 
displacement load pattern to the second case is applied 
vertically. A hysteretic response is observed, similar to the 
pure RA fastener response, like in Figure 6a, that no other 
coupling effects are present for this load case. 
 
3 VALIDATION EXAMPLES 
To experimentally validate the proposed numerical 
connection FE model, the two in-plane monotonic CLT 
slab test specimens of Veliz et al., 2023 [18] are simulated 
(see Figure 10a). The first specimen, called hereafter 
Slab1, is composed of three 5-layered CLT panels 
elaborated with C24-class Chilean radiate pine ( =165 
mm) and two top surface spline connections, each made 
of plywood ( =18.5 mm) and 11 Simpson SDWS22600 
( 5.6x150 mm) screws [19] alternated placed. The 
second specimen, called hereafter Slab2, is composed of 
four 3-layer CLT panels of identical wood specimen and 
quality ( =99 mm) and three top butt joint connections, 
each made of stainless-steel plate ( =3 mm) and 18 
Simpson SDS25312 ( 6.4x89 mm) screws [19] 
orthogonally placed. A gap separation of 5 mm between 
panels was imposed initially in both specimens to avoid 
an undesirable compression failure between panels and 
neglect friction forces into the response.  
 
Figure 10b shows the 2D plan view of both specimens and 
their loading setup. First, a displacement-controlled load 
is applied in both specimens using two actuators 
positioned at the middle panels (see Figure 10b). Then, a 
monotonic load is applied up to reach the complete failure 
of each slab. 
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Experimentally, both specimens showed a moderate 
ductile behaviour, with a ductility of approx. 3.5 and 2.5, 
respectively (see Figure 12). On the one hand, the failure 
mechanism of Slab1 was due to the damage of 10 screws 
(22 in total), which had a mixed failure mode (i.e., 4 
ductile and 6 shear brittle). Moreover, fibre densification 
of CLT around all hole screws and penetration of almost 
head screws inside plywood were observed. Also, a rigid 
body motion of panels (without significant damage) with 
a moderate beam effect was observed, which generates an 
important shear slip of the central panel, a rotation of both 
lateral panels, and, consequently, a moderate lateral 
aperture of both connections. On the other hand, a similar 
failure mechanism occurred with the Slab2 due to the 
shear failure of 34 screws (54 in total) and tensile 
perpendicular-to-fibre failure at central edge panels. In 
addition to the fibre densification around all hole screws, 
the steel plates suffer a partial global buckling between 
each screw span and plastic deformation around screw 
holes. Furthermore, a more pronounced beam effect than 
Slab1 was viewed for this specimen due to a larger aspect 
ratio, where a considerable lateral aperture of connections 
and a less shear slip of the two central panels were 
noticed. Finally, note that all these observations explain 
why Slab2 is stiffer, stronger, and less ductile than Slab1. 
 
Like example of Section 2.3, a 3D FE model is generated 
in ANSYS for each specimen, as shown in Figure 10c. On 
the one hand, the CLT panels are simulated with 
three/four-node layered-shell element SHELL181, where 
a linear-orthotropic material model is considered for each 
layer. On the other hand, each fastener is simulated with 
three of the five proposed spring elements and their 
respective materials (see Sections 2.1 and 2.2). The three 
springs considered are panel gap (S1), out-of-plane panel 
shear (S3), and radial fastener (S4). The other two springs 
were not required due to that was experimentally observed 
a significant gap separation between panels (in-plane 
spring S2) and a negligible out-of-plane rotations 
(bending fastener spring S5). Note that the out-of-plane 

spring S3 was included exclusively to avoid a null pivot 
in the vertical direction of the element stiffness matrix. 
Moreover, the panel gap springs (S1) were placed only at 
the nearest node at the top/bottom panel edges. Table 4 
lists the material parameters for the panels and two spring 
elements (radial and gap). Also, same spring element S3 
as the example of Section 2.3 is considered here because 
no significant out-of-plane slip was measured. A 
monotonic displacement-controlled load pattern is 
applied equally at the two nodes where the actuators were 
positioned and using 300-time steps for both specimens. 
Table 4: Material parameters for the two simulated CLT slabs. 
  CLT slab  
Parameter  Slab1 Slab2 
CLT 
 , ,  [GPa] 11, 0.37, 0.37 11, 0.37, 

0.37 
 , ,  [-] 0, 0, 0 0, 0, 0 
 , ,  

[GPa] 
0.69, 0.345(a), 
0.345(a) 

0.69, 0.345, 
0.345 

Radial spring (S4) 
  [kN/mm] [0.5, 0.5, 0.5,

0.5](b)        
[0.8, 0.8, 0.8, 
0.8] 

  [N/mm] [50, 50, 20, 20] [70, 70, 20, 
20]        

  [kN] [2.3, 2.3, 
1, 1] 

[7, 7, 1, 
1]        

  [-] [4, 4, 4, 4] [4, 4, 4, 4]       
  [-] [40, 40](c) [40, 40]        
  [-] [0.1, 0.1] [0.1, 0.1] 
  [-] [1, 1] [1, 1] 
  [-]   
  [-]   
Gap spring (S1) 
  [kN/mm] 2.99 1.74 
  [kN/mm] 74.80 43.56 

(a)  and ; (b) P/N upper and P/N 
lower values, respectively; and (c) P/N values, respectively. 

Figure 10: In-plane monotonic CLT slabs tests of Veliz et al., 2023 [18]: (a) 3D view photograph; (b) 2D plan view of setup; and (c)
3D view of FE model. Figure extracted from Chacón et al., 2023 [15]. 
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Figure 11: Force-displacement hysteresis  of the S4 
radial fastener spring element for the two simulated CLT slabs. 
The figure includes the respective dissipated energy-relative 
time step  relation. 
 
Figure 11 depicts the force-displacement hysteresis of the 
S4 spring element (radial fastener) with the RA model for 
the two simulated CLT slabs. Note that the fastener 
springs of Slab2 have more strength/stiffness than used in 
Slab1, which is according to the admissible strength 
capacity of each screw [19]. The traditional inverse 
iterative approach is considered to calibrate the 
parameters of springs S1 and S4 for both specimens, 
where the force-lateral displacement curve  of each 
entire FE model is used to minimize the error concerning 
the experimental test (see Figure 12). Additional 
experimental CLT connection tests under 
monotonic/cyclic axial and in-plane shear loads can be 
required to directly calibrate the spring elements (S1 and 
S4) to avoid this iterative process. During this process, it 
was observed that the tensile gap stiffness of spring S1 
plays a key role in the failure mechanism of the entire 
model, especially at the hardening phase. Small values of 
this parameter give a more CLT panel rotation, whereas 
large values generate a quasi-pure panel translation. 
 

Figure 12: Comparison of reaction force-displacement  
for the two tested and simulated CLT slabs. 
 
Figure 12 compares the experimental measurements 
concerning the reaction force-lateral in-plane 
displacement  curve of each simulated CLT slab. It 
should be noted that for Slab 1, it was necessary to add an 
offset displacement of 2.5 mm to the experimental data 

due to an initial gap separation of 5mm in the model. 
Nevertheless, it was observed in both slab models a good 
fit for the elastic and hardening phase concerning 
experimental results. Although the RA model includes 
strength degradation, the complete FE model cannot 
adequately simulate both tests' abrupt softening failure 
phase. 
 
Figure 13 shows the equivalent von Mises stress (i.e., 

, with  is the 
deviatoric stress tensor and  is the Cauchy stress tensor) 
of the two simulated CLT slabs at the final time step. The 
maximum value of this field in both specimens is 
observed to be lower than the allowable compressive 
strength parallel-to-fibre of panels obtained from the 
current timber code designs, i.e., =8 MPa [20]. 
Moreover, the images also show the displacement field, 
which agrees with the failure mechanism of both 
experimental tests [18].  
 

 
Figure 13: Equivalent von Mises stress field  of the two 
simulated CLT slabs. Units in MPa. Note: the images also 
include the displacement field amplified by 3 times. 
 
4 CONCLUSIONS 
A new Finite Element (FE) model is proposed to simulate 
the discrete-fastener panel-to-panel CLT connections. A 
set of five linear/non-linear uncoupled spring elements are 
considered, where each of them simulates the main 
phenomenological effect of connections under different 
loading conditions: (i) gap of panels with an axial element 
and asymmetrical tensile/compressive (gap) model; (ii) 
in-plane and out-of-plane slip of panels with two linear-
elastic uniaxial elements; and (iii) radial and out-of-plane 
bending stiffness/strength capacity of fastener with a 
respective radial and uniaxial element using both the 
modified Richard-Abbott hysteretic model. The main 
conclusions are:  
 
 On one hand, the gap model adequately simulates the 

axial behaviour (closure/opening) of CLT panels. On 
the other hand, the modified Richard-Abbott model 
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predicts well the contribution of discrete fasteners for 
the CLT connections. In addition, this model 
accurately simulates the hysteresis of a generic timber 
connection, including pinching, asymmetric 
positive/negative loading, and stiffness/strength 
degradation phenomena. 

 The FE connection model simulates three satisfactory 
loading conditions: axial, in-plane shear, and out-of-
plane bending. The gap effect (open/closure) is 
correctly simulated at axial loads, where a hysteretic 
tensile/linear compressive regime is stated. Moreover, 
at in-plane shear loads with a free panel rotation, a 
snap-trough behaviour at small displacements is 
observed due to the coupling of gap and radial fastener 
springs. Also, at bending loads, the pure bending 
fastener spring is represented in the overall response 
of the model. 

 The FE model is correctly validated with the 
experimental results of two CLT slabs under in-plane 
monotonic loads. Furthermore, the 3D FE models 
generated agree with the experimental tests regarding 
initial/hardening stiffnesses, strength capacity, and 
failure mechanism. Also, it is observed that a critical 
role plays in the tensile stiffness of the gap spring in 
predicting the failure mechanism of the entire 
specimen, where smaller values give larger panel 
rotations. 
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