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Abstract 
Since bi- and trifurcated structures are ubiquitous in nature (from trees to rivers to bronchial alveoli to veins 
and arteries etc.), the idea that their striking topological similarity originates from a physical principle is 
appealing and stimulated a great number of theoretical and experimental investigations. The concepts of 
“nature’s economy” and of “goal-driven evolution” can been invoked to conjecture that there must be some 
“reward” for the effort placed by a biological system to build a bifurcated structure, in the sense that the 
evolutionary advantage gained by the system must more than compensate the additional resource 
consumption. The interest of engineers, botanists and biologists in this matter is justified by the expectation 
that linking the “shape” of these structures to their “function” would allow for better aimed interventions in 
the case of malfunctions (overflow of rivers and channels, tree roots rotting, poor soil exploitation, circulatory 
diseases…). Furthermore, provided the quite different boundary conditions are properly taken into account, 
such an insight may be translated into more accurate and efficient design guidelines of artificial 
(manufactured) branched structures like pipelines, heat exchangers, biological implants etc.. 
In the early XX century two physiologists, Walther R. Hess in 1903 and Cecil B. Murray in 1926, 
independently derived a general correlation between the successive radii of bi- and trifurcated vessels: 
since their derivation was based on a first-order “energy budget” of the operation of the bifurcated system, 
their result (ri+1/ri=2-1/3) was seen as a confirmation of the evolutionary biology, then in its infancy. The Hess-
Murray Law has undergone since a series of critical reviews both in biology and in engineering, and different 
researchers strived on the one side to reinforce its physical foundation and on the other side to justify the 
obvious disagreement of its predictions with experimental data.  
In this paper, after a brief discussion of Hess’ and Murray’s original derivations, experimental evidence and 
physical considerations are used to argue that the “cubic root of 2” allometry cannot apply to the blood flow 
in arteries and veins. Its application to capillary flows must be corrected by introducing wall suction. On the 
same basis, it is argued that the law accurately represents the flow in sap-carrying vessels in leaves, but 
cannot be applied to tree branchings where the bifurcations are originated by a different sort of evolutionary 
trade-off.  
It is then shown that an exergy cost analysis leads to a more credible quantification of the cost/benefit ratio 
of creating a bifurcation: an application to realistic models of permeable blood vessels indicate that a) the 
onset of a bi- or trifurcation always requires a larger use of resources w.r.t. the equivalent non-bifurcated 
configuration; b) the existence of an optimal radius ratio is not guaranteed; and c) the H-M optimal ratio can 
be seen as a limit value obtained by neglecting some of the relevant physical variables. 

Keywords: Branched Fluid Structures; Hess-Murray law; Permeable wall vessels; Entropy Generation 
Minimization; Exergy cost 

1- Introduction 
1.1 - The problem 
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Bifurcated structures in fluid carrying channels and vessels are ubiquitous in nature: as shown in 
(Figure 1) the shape of tree roots and branches, leaf veins, circulatory systems in animals, air 
vessels in the respiratory systems, river deltas…display an amazing degree of geometric 
similarity, so pervasive to suggest the conjecture that their creation can be explained by some 
common evolutionary principle. Understanding the underlying physics might lead to a better 
comprehension of natural evolution and linking the “shape” of these structures to their “function” 
would allow for better aimed interventions in the case of malfunctions (overflow of rivers and 
channels, poor health of tree roots and tips, poor soil exploitation, circulatory diseases…). And a 
clearer insight on the physics of natural bifurcations may pave the way to the formulation of more 
accurate and efficient design guidelines of artificial (manufactured) branched structures (provided 
proper provision is made for the quite different boundary conditions). 
 
It is therefore not surprising that a multitude of studies have been -and still are being- published 
on the topic. In fact, engineers, botanists and biologists have devoted substantial time and 
resources to search for a general model of bi-, tri- and polyfurcated fluid carrying vessels. From 
a careful consultation of the archival literature [9,18,24,27,28] it is though apparent that there 
remain questions to be answered: 
a) Why do bifurcated structures appear in nature?  
b) Why is the geometry of such structures apparently similar at all scales and in different 

instantiations? 
c) How and to what measure is the shape of a bifurcation independent of the prevailing boundary 

conditions?  
d) Does the functional advantage obtained by repeated bifurcations decrease with the number of 

splittings? 
 
One of the goals of this paper is to clarify the current state of affairs and suggest possible paths 
to a solution. To place this study in the correct perspective, it is useful to begin by examining the 
available empirical evidence collected over decades of valuable experimental campaigns: 
1) Although different types of branchings display an amazing degree of large-scale geometric 

similarity, the specific details (radius- and length ratio of daughter and parent branches, 
branching angle, complanarity) depend on the type of fluid being transported (newtonian or 
non-newtonian, pure substance or particle laden), on the material of the channel walls (lignine, 
muscle fibers, gravel, sand…), and on the flow features (creeping, laminar or turbulent); 

2) Although a branched network resembles a fractal structure, there is no indication that the 
fractal exponent remains constant over successive branching levels. Thus, Fractal models are 
not considered here; 

3) While in plants the flow can be accurately modeled as stationary, in blood and air systems as 
well as in rivers the non-stationarity of the flow has a substantial influence on the geometry of 
the bifurcations. 
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Corals Fern leaves Symmetric tree branching

Arteriole with Capillaries The Mississippi river delta
Figure 1 – Examples of bifurcated topologies appearing in nature (images retrieved from Internet) 

 
1.2 – The currently most popular physical model: the Hess-Murray law 
In 1903 the Swiss physiologist  Walter Rudolf Hess formulated a model of blood flow in arteries 
and capillaries that results in an allometric correlation between the radii of successive branchings 
in bi/trifurcated vessels: the original concept is presented and discussed in Hess’ doctoral thesis 
published in 1903, with expanded versions published in 1914 and 1917 [7,8]. The same 
correlation was “rediscovered” by the American physiologist Cecil Dunmore Murray in 1926 using 
a slightly different approach, and later refined and extended in the same year in two other papers 
[12,13,14]. Since the numerical result, i.e., the allometric rule, is the same, the law came to be 
referred to as “the Hess-Murray law”.   
The method proposed by Hess and Murray is described in detail in several review papers 
[4,20,24,28], and what is of interest here is to underline the novelty of their approach: they 
assumed that blood or lymph circulation in living organisms is governed by a “work minimization” 
principle. Although the legacy of the H-M law is considered to be the derivation of an “optimal 

branching ratio”   between the daughter-to-parent diameters of 

symmetrical branchings, the real merit resides in the “energy cost” methods they adopted. As we 
shall see, their conjecture is in fact only a first approximation of the energy balance of bifurcated 
systems, but due to the simplicity of their “cubic root of 2” correlation and of its apparent 
universality, the “H-M radius ratio” is widely employed in biology and even in engineering as a 
modelling criterion. What goes often unmentioned is that extensive experimental assessments 
performed in the second half of the 20th century indicate that while the correlation is sufficiently 
accurate for the smallest vessels (capillaries), it fails for the larger ones (large veins and arteries); 
moreover, it can be extended to turbulent flows only by changing the exponent of the root [27]. 
Recent comparisons with numerical investigations of branched flows led to similar conclusions 
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[2,11,15,16]. It is argued in section 4 here below that this depends on intrinsic limitations of the 
H-M law and on some hitherto little explored restrictions to its theoretical foundation. 

3 – A Brief description of Hess’ and Murray’s original derivations 
3.1 – Hess’ problem position and solution 
In 1903, in a preparatory paper for his M.D. thesis [7], the Swiss physiologist Walter Rudolf Hess 
proposed the existence of a physical “optimization criterion” that guides the branching of arterial 
vessels. This idea was also the topic of later work in his “Habilitation” thesis [8], but the 1903 work 
already contains a complete derivation of his “cubic root of 2” law. Hess’ interest was motivated 
by previous work by Roux [17] who postulated a “dynamic mechanical principle” to be the driver 
of vessel bifurcations in animal circulatory systems. To extract physical meaning from Roux’ 
experimental data, Hess suggested that nature would adopt a “minimum resource consumption” 
criterion to build the human circulatory system and proceeded to calculate how this task can be 
attained  (“Wie kann die Aufgabe des Blutes mit dem kleinsten Kraftverbrauch erledigt werden“ 
[7, p.5]). Hess’ idea is that the optimal radius of a vessel carrying a given volumetric blood flowrate 
is the one that minimizes a cost function given by the sum of the pumping work and the metabolic 
cost of the volume of the pumped blood. Since the former is inversely proportional to the fourth 
power of the radius and the latter to the square of the radius, an “optimal radius” exists and is 
proportional to the cubic root of the flowrate. Furthermore, if a vessel splits symmetrically and the 
mass flowrate is each of the branches is equal to the half of that in the mother vessel, imposing 
optimality on the daughter branches leads to the allometric law:  

          1) 

A detailed description of Hess’ derivation is provided in [20]: for the purpose of this paper, it 
suffices here to list the conditions under which the derivation is valid: 
a) The flow in arteries, arterioles, veins and capillaries can be described by Poiseuille’s law for 

steady laminar flow in circular vessels with rigid walls; 
b) Blood is a Newtonian fluid with constant viscosity; 
c) Blood has a metabolic cost proportional to the pumping work performed by the heart 

(neglecting its thermal content); 
d) Since flowrate and pumping power are directly proportional, a larger radius would decrease 

the pressure drop (and the pumping power) but increase the flowrate. The two effects are 
opposite, and the problem can be reformulated as a Lagrangian minimization: 

        (2) 
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Figure 2 – Hess’ concept (original drawing 
from [8])     

Figure 3 – Murray’s calculation of the optimal 
splitting angle (original drawing from [12]) 

       Which results in: 

             (3) 

      Where the constant κ depends on the fluid properties and on the metabolic rate.  
e) If a vessel bifurcates symmetrically (Figure 2), , the optimality can be extended 

to the daughter branches: 

;           (4) 

Whence equation (1). 
Throughout his papers Hess repeatedly states that his result depends on the assumption of 
validity of Poiseuille pressure drop formula and flow stationarity, and makes reference to selected 
contemporary literature to support his belief that i) a branching does not generate turbulence and 
ii) the low-frequency pulsations do not affect the flow in such a way as to invalidate Eq. (1). 
3.2 – Murray’s problem position and solution 
Murray was aware of Hess’ work, and makes his goal explicit in the first lines of his 1926 paper 
[12]: “If we examine the arterial system bearing in mind the question of economy, we find that 
there are two main antagonistic factors. If the vessels are too small, the work required to drive the 
blood through them becomes too great; if the volume of the vessels is too large, the volume of 
blood, being equally large, becomes a burden to the whole body”. Murray maintained that his 
calculation of the blood cost was more accurate than Hess’ and based on the latest experimental 
results. He also derived the “optimal angles” for a symmetric bifurcation using the principle of the 
minimum virtual work. Again, a detailed description of the mathematical steps is provided in [20]. 
Proceeding along the same path previously proposed by Hess, Murray obtained an expression 
for the power required to pump a given mass flowrate of blood in a straight vessel with rigid walls, 

, where K1 is the same constant as in Hess’ formulation. He then proceeded to 

calculate the metabolic cost of the pumped blood: 
         (5) 

θ 

ϕ 
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Where is the “cost of blood” calculated on the basis of the then available data on heart rates 
and varies between 980 and 1980 W/m3 as per Murray’s estimates. For the purpose of this paper, 
the accuracy of the value of  is though irrelevant.  
The optimal radius is again obtained by solving the corresponding Lagrangian: 

        (6) 

Which results in: 

              (7) 

Where the constant ξ depends on the fluid properties and on the power absorbed by the heart. If 
a vessel bifurcates symmetrically (Figure 2), i.e., if , the optimality can be extended 

to the daughter branches and the “cubic root of 2” law is recovered. 

In a second paper [13], Murray calculates the optimal branching angle by applying again the 
principle of minimum work: as shown in Figure 3, among the possible path lengths the one that 
minimizes the total work displays branching angles given by: 

       (8) 

That is: 

    (9) 

Introducing the optimal radius ratio δ (Eq. 1): 

      (10) 

The above result predicts that symmetrical branches should have a total branching angle (θ+ϕ) 
of about 75°. 
If the vessel trifurcates as shown in Figure 4, with two side daughter branches being symmetrical 
with equal radii =γ  and the third coaxial with the main and also of radius , the optimal 

value of the radius ratio is  and Murray’s optimization procedure provides:  

        (11) 

with the splitting angle ψ=57°. 
Although not mentioned by Murray, Eq. (8) leads to an interesting corollary: if , it reduces to  

                      (12) 

Which implies that larger daughter branches ought to form higher angles with the parent vessel. 
For future record, consider that Murray’s angle formulae (8) and (12) retain their validity if applied 
to branching ratios different from the “canonical value” : for example, a 

 that ensures constant fluid velocity in the parent and daughter branches corresponds 

(Figure 7) to an angle θ °, i.e., to no splitting, while the δ=0.5 derived from a constant Reynolds 
assumption in parent and daughter branches leads to impossible solutions of Eq. (12): this does 
though not agree with empirical evidence. 
 
4 – SOME REFLECTIONS ON THE PHYSICS OF FLUID-CARRYING VESSELS  
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As certified by an impressive experimental database [9,18,23,24,25,27,28,30], the “cubic root of 
2” correlation is reasonably accurate in small capillaries and in the small sap-carrying channels 
of leaves, but it fails in predicting branching ratios in human arteries (typical diameters 0.005-
0.025 m) and veins (0.006-0.03 m), as well in smaller vessels in case of turbulent flow [27]. The 
discrepancies have been traditionally explained by considering that the blood flow is pulsatile, 
that the vessel walls are non-rigid, that blood is a non-Newtonian fluid with shear thinning 
characteristics, and that the junctions inevitably generate turbulence in the flow. In fact, in his 
original paper Hess made a point in stressing that his model was derived by neglecting all of the 
above. 
A possible explanation of the reason for the popularity of the H-M law in spite of its lack of 
generality may be found in its “robustness” with respect to both the radicand and the exponent of 
the root: as shown in Figures 5 and 6,  changing the radicand from 1.5 to 3.5 results in a maximum 
difference of about 20% w.r.t. the H-M radius ratio, while changing the exponent 1/n of the root 
from 0.66 (=1/1.5) to 0.3 (=1/3.3) leads to a maximum derangement of about 17%. Translating 
these relative values into absolute measurement of the daughter branches, this means that the 
differences are of the order of fractions of a millimeter and can often be absorbed by the inevitable 
averaging over large series of in vivo measurements. 
It is therefore legitimate to question the validity of the H-M model itself: is it missing some relevant 
variables? Or is its “universality” being overestimated? The remaining sections of this paper 
present a critical analysis of different physical instantiations. 
 
5 – DIFFERENT TYPES OF BIFURCATED STRUCTURES IN NATURE 
5.1 – River flows 
The claim that the H.M law ought to apply to river flows appears at least as an arbitrary 
extrapolation of the principles on which the law is based. First, the flow in rivers is rarely laminar; 
second, it is an open channel flow rather than a genuinely internal flow; third, the flow 
characteristics are essentially determined by several factors not contemplated in the H-M 
derivation: hydraulic head, type of the river bed, structure of the banks, presence of obstacles on 
the water path; permeability of the terrain. In the absence of a physical model that includes all of 
the above effects, the similarity between a river delta and -for instance- tree roots is purely 
topological and the existence of an underlying common physical principle is not justifiable. 
 

  

Figure 5 – H-M radius ratio δδ=r1/r0 vs radicand 
in 1/x-1/3 

Figure 6 – H-M radius ratio δ=r1/r0 vs 
exponent n in Eq. (1).       

x

δδ 

n 
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Legenda:  
      δ=0.707, constant velocity; 
       δ=0.7937, H-M value; 
       δ=1, constant vessel radius 
 
 

 

Figure 7 - Murray's splitting angle for 
symmetric branches as f(δδ) 

 
5.2 – Blood flow in arteries and veins 
Experimental evidence demonstrates that we are dealing here with the unsteady turbulent flow of 
a non-newtonian fluid in vessels of variable diameter and with non-rigid walls. Again, the H-M 
model does not account for any of these characteristics. It is therefore legitimate to conclude that 
the apparent success of “semi-empirical exponent adjustment” of the H-M law is to be abscribed 
to its arithmetical “robustness” mentioned in section 4. 
5.3 – Blood flow in arterioles, venules and capillaries 
In these smaller vessels, the flow is with good approximation laminar, and the unsteadiness is 
strongly damped by the upstream circuit capacity (Figure 8). The H-M law ought to apply here, 
with a small modification to take into account the effects of permeable walls described in section 
6 below. 
5.4 – Sap flow in leaves capillary tubules 
This is perhaps the most suitable instantiation of H-M flow: laminar, steady, very small flowrates 
and Reynolds numbers. As for the capillaries, a correction to the H-M model to account for the 
(significant) amount of wall permeability is in order: the treatment being the same as for blood 
capillaries, both the model and the results are shown in section 6. 
5.5 – Tree branchings, including roots 
The attempt to apply the H-M law to these systems is based on wrong premises. To begin with, 
there is no “fluid branch splitting” here, because the carrying vessels (xylems and phloems) do 
not bifurcate. The splitting of the woody structure seems to obey some sort of reproducible rule, 
probably linked to the advantage the plant obtains from a larger crown, that depends in turn on 
the number of branchings, since the final twigs carry the most leaves. A possible non H-M model 
is described in [21]. 
 
6 – A MODEL BASED ON THE EXERGY COST OF A BIFURCATION 
6.1 –Theoretical justification 
As stated in the Introduction, the major merit of the Hess-Murray approach is the idea of the 
existence of an “energy cost” principle that guides the creation of a branching: in essence, a 
vessel bifurcates in such a way that the energy budget of the main- and of the daughter branches 
is “optimal”. There are two energy cost items in the H-M budget: the energy rate required to 
overcome friction (pumping power) and that needed to “create” the blood (its metabolic cost). This 
is a very reasonable physical principle and in fact leads to accurate predictions for the class of 
flows it has been originally derived for. 
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It is likely that in capillary flows the permeability of the walls has some influence on the shape of 
the structure, and in this section we shall examine a model that accounts for these effects. Before 
doing that though, it is important to consider that when we deal with problems in which different 
forms of energy are involved (in this case, material energy and pumping work) the proper 
thermodynamic quantifier is eXergy. The model discussed in the next sections is in fact based on 
a comparison of the exergy cost [26] of a bifurcated structure w.r.t. to its non-bifurcated 
counterpart. The results presented here apply to capillary blood flow and sap flow in leaf tubules 
and -most likely with lesser accuracy- to blood flow in arterioles and venules. 
 

 

 
 

Figure 8 – Representative diagram of the 
pressure in human blood circulation system 

Figure 9 – Conceptual illustration of the 
proposed model  

 

 
Figure 10 – For the calculation of the tubule 

volume 
Figure 11 – Minimum- and maximum allowed 

splitting angles
 
Consider a straight portion of vessel of length L and uniform radius r0: it will “feed” a domain HxL 
as shown in Figure 9. Under steady state conditions, the amount of fluid mass permeated through 
the wall is proportional to the vessel external surface: 

     (13) 
where ξ [kg/(m2s)] is the wall permeability coefficient. 

Arteri   Arterioles     Capillaries         Venules 
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This mass flowrate must be equal to the difference between the inlet and outlet mass flowrates: 
for ease of calculation, let us assume that the length L is a “terminal” portion and the outlet flowrate 
is zero: 

     (14) 
where γ [kg/(m3s)] is the local metabolic rate and s is the thickness of the surrounding tissue, 
assumed constant over the domain HxL. 
The inlet mass will be thus equal to: 

   (15) 
There are three terms in the exergetic cost of the structure: the first is equal to the pumping power 
required to propel the fluid through the length L: 

    (16) 

where f is the friction factor (in the following calculations the value f=64/Re has been assumed 
throughout). The second cost is the amount of exergy required of the main system (the body, the 
tree…) to generate the blood or the sap: 

    (17) 
where efluid [J/kg] is the specific exergy of the blood or sap. The third cost term is the exergy 
embodied into the walls of the vessel (Figure 10): 

    (18) 

where τ  [s] is the assumed operational life of the vessel, ϕ is a coefficient that accounts for the 
ratio of the “vessel construction time” to τ and σ=s0/r0 is the ratio of the wall thickness to the radius. 
Thus the total exergy cost (in W) of the “linear vessel segment” of length L is: 

(19) 

For a symmetrically branched structure the above calculations can be repeated separately for the 
unsplit length 0 and for the two branches 1. The result is: 

  (20) 

where λ0= 0/L=1-a/(2tanθ); λ1= 1/L=a/(2sinθ), δ=r1/r0 and a=H/L is the domain aspect ratio. 
The difference  represents the additional resource cost the main system incurs into when 
developing a bifurcation in the domain HxL. It is convenient to use Eq. (12) to eliminate the radius 
ratio δ and obtain an expression in the angle θ: 

  (21) 

With  

   (22) 

Plots of ΔEBIF as a function of θ for different aspect ratios are shown in Figures 12 and 13: only 
the graphs for a=0.25 and a=1 are shown, since the general shape remains similar for the 
intermediate aspect ratios. As expected, the results are somewhat different for blood and sap: 

I. Blood flow 
a) The  is always positive, i.e., the construction of a bifurcation always leads to a reduction 

of the exergy cost born by the system; 
b) The cost reduction is of the order of few percentage points for each single bifurcation (see 

Table 2), with the absolute exergy savings in the range 10-7 W/bifurcation: it is clear that the 
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savings at system level make sense only if the number of branchings is sufficiently high (an 
estimate of the number of bifurcations in the human blood circulation system is of the order of 
billions [25]); 

c) The aspect ratio of the domain has a direct influence on the resource savings because it sets 
a limit to the possible splitting lengths:  and  as shown 

in Figure 11; 
d) The curve of the saved resource is rather flat and it is shows an optimal value (i.e., maximum 

resource savings) towards the lowest allowed splitting angles; 
e) The optimal radius ratio d lies between 0.715 (narrowest domain, a=0.25) and 0.759 (square 

domain, a=1): it is interesting that not only these values are consistently lower than the Hess-
Murray 0.7937 value, but also that they do not reproduce either the constant Re value (0.5) 
or the constant velocity (0.707); 

f) The value of the ratio KP/KM has an important influence on the numerical results (i.e., on the 
percentage savings), but since all physical quantities in both KP and KM are rather rigidly 
determined for blood and sap (Table 1), this value has a reasonably small variability. 

II. Sap flow 
a) The  is three orders of magnitude higher than in blood capillaries, with the average value 

being about 10-2W; 
b) Here, too, the aspect ratio plays a significant role in determining the range of θ; 
c) The curve of the saved exergy resource is clearly skewed towards the lowest allowed splitting 

angles; 
d) The value of the ratio KP/KM has an important influence on the numerical results, but it is rather 

rigidly determined for the known physical properties of sap and has a small variability. 

The above results are somewhat less “deterministic” as those of previously published allometric 
models  [3,4,18,24,28], and lead to an interesting interpretation: 
i- The advantage of a single bifurcation is very small, and it becomes  relevant at system level 

only if a sufficiently high number of branchings exist; 
ii- While every angle between θmin and θmax leads to exergy savings that differ by few percent 

points- Blood and sap display different savings for different splitting angles, but the optimal 
values in both cases are skewed towards the lowest allowable angles (daughter branch length 
1 as long as possible); 

iii- For each aspect ratio, the radius ratio δ has a lower limit set by the domain shape and grows 
with the splitting angle to an upper limit δ=1 (established by experimental evidence) that 
corresponds to θmax=60°; 

iv- Within θmin and θmax thus, solutions are in practice almost equivalent (see Table 2), and 
different values of the radius ratio are acceptable, possibly influenced by the external 
boundary condition. For comparison with previous works [1,3,4,19,24,28,29], the H-M solution 

 with θmax=35.5°is also shown on the graphs; 

v- There is no general allometric rule that governs the branching in ALL blood and sap carrying 
vessels! The solutions displayed here apply only to capillaries and small leaf tubules. The 
balance of larger vessels (arteries, veins, larges sap tubes) is much more complicated, due 
to several other relevant variables that enter the game.  
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Table 1 – Definition, units and values of the relevant model parameters 
a=H/L, aspect ratio model parameter δ=r1/r0, radius ratio calculated 
b, kcal/m3, Murray’s “blood cost” 0.39 γ, kg(m3s), metabolic rate calculated
e, kJ/kg, specific exergy eb=1.7;    es=25. θ, rad, splitting angle model parameter 

, kW, exergy rate calculated χ, rad, generic angle n.a. 
f, Moody friction factor 64/(Reynolds #) λj=λj/L, length ratio model parameter 
H, m, domain width model parameter μ, kg/(ms), dynamic viscosity μb=0.08;     μs=0.08 

0, m, 1st splitting length model parameter ν, m2/s, kinematic viscosity*105 νb=8.05; νs=8 
1, m, 2nd splitting length model parameter ϕ, s, time ϕb=0.015;    ϕs=0.02 

L, m, domain length Lb=0.01;     Ls=0.01 ψ, rad, generic angle n.a. 
m, kg/s, mass flowrate calculated ρ, kg/m3, density ρb=105;      ρs=994 
n, Hess-Murray exponent model parameter σ=s/r, wall thickness ratio σb=0.125;  σs=0.125 
r0, m, parent radius6 τ, s, lifetime*10-7 τb=250; τs=3 
r1, m, daughter radius δ∗r0 ξ, kg/(m2s), wall permeability calculated 
s, m, tissue thickness ζ, numerical coefficient n.a. 
v, m/s, fluid  velocity vb=3*10-4; vs=1*10-4   

 

 
  

Figure 11a – Blood capillary, a=0.25: ratio of 
Exergy rate gain to unsplit geometry,  

Figure 11b – Blood capillary, a=1: ratio of 
Exergy rate gain to unsplit geometry,  

 

 
 

 
 

Figure 12a – Sap tubule, a=0.25: ratio of 
Exergy rate gain to unsplit geometry,  

Figure 12b – Sap tubule, a=1: ratio of Exergy 
rate gain to unsplit geometry,  

Legenda:       δ=0.7937, H-M value 
 

Table 2 – Minimum and maximum gain for a single bifurcated structure 
Aspect 

ratio 
a=H/L 

Blood capillary Sap tubule 
 

max 
,  

Eq. (12) 
   

max 
 ,  

Eq. (12) 
 

δopt=0.715 δopt=0.759 

δopt=0.711 δopt=0.745 
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0.25 1.2% 0.715 0.22 rad, 12.60° 1.04% 0.711 0.15 rad, 8.59° 
0.5 1.28% 0.730 0.35 rad, 20.05° 0.36% 0.718 0.25 rad, 14.32° 
0.75 1.4% 0.745 0.45 rad, 25.78° 0.36% 0.730 0.35 rad, 20.05° 
1. 1.52% 0.759 0.52 rad, 29.79° 0.44% 0.745 0.45 rad, 25.78° 

 
 
7 - CONCLUSIONS 
The paper presents a new model to predict the splitting angle and the radius ratio of a single, 
symmetric bifurcation in small blood vessels and sap tubules. The model consists in the 
calculation of the exergy cost difference between an unsplit vessel of length L in a domain HxL 
and the bifurcated configurations in the same domain. The balance is obtained by imposing that 
the fluid mass flowrate at the inlet is completely permeated to feed the surrounding tissue with 
the metabolically necessary nutrients. Three “cost terms” are identified: the pumping exergy rate, 
the exergy rate of the transported fluid and the exergy rate equivalent to the amount embodied in 
the construction of the vessel structure. The concept is clearly borrowed from the 20th century 
seminal works of Hess and Murray, but the use of exergy instead of energy and the inclusion of 
the permeation lead to substantially different results. In conclusion, it can be said that the creation 
of a bifurcation is -under the boundary conditions specified here- always convenient for the 
system, in the sense that a bifurcated structure reduces the overall exergy consumption. 
Furthermore, the resource savings depend on the aspect ratio of the domain, i.e., on the extension 
of the surrounding tissue the vessels deliver nutrients to. Finally, the concept of “optimal splitting 
radius ratio” does not apply, because there is a rather wide range of legitimate splitting angles all 
of which are “convenient” for the system and each one of which corresponds to a different radius 
ratio. The H-M value falls within the range of allowable angles, but is not optimal in any sense. 
The advantage for sap vessels is of 3 orders of magnitude higher than for blood capillaries, and 
this is compensated by a much larger number of capillary junctions w.r.t. those experimentally 
detectable on leaves and other sap carrying vessels. It must be stressed however that the model 
does not apply to xylems and phloems that do not bifurcate.  

The analysis is performed under rather stringent specifications: laminar flow, rigid permeable 
walls with constant diameter and constant wall thickness, and an exact balance of the inlet mass 
flowrate with the permeated one. The inclusion of different levels would imply a major complication 
in the modelling effort. 
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