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Abstract: 
Most of the literature models for condensation heat transfer prediction are based on specific experimental 
parameters and are not general in nature for applications to fluids and non-experimental thermodynamic 
conditions. Nearly all correlations are created to predict data in normal HVAC conditions below 40°C. High 
temperature heat pumps operate at much higher parameters. This paper aims to create a general model for 
the calculation of heat transfer coefficients during flow condensation which could be applied to a wide range 
of fluids and thermodynamical parameters up to the vicinity of the critical point. To achieve this goal authors 
present a model based on Feed Forward  Neural Network. The designed neural network consists of 5 hidden 
layers and utilizes ReLu and linear activation functions. The first four layers consist of 50 neurons, and the last 
layer consists of 1 neuron.  The network was trained on a consolidated database which consists of 4659 data 
points for 25 fluids and covers a range of reduced pressure from 0.1 to 0.9 for various mass velocities and 
diameters. Two input variants were considered. For randomly selected test data Mean Square Root achieved  
0.1093 and Mean Absolute Error MAE achieved 0.2243 for the first configuration which consist of 4 
parameters. For the second variant, which consists of 17 parameters,  MSE achieved 0.0452 MAE achieved 
0.1028.   
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1. Introduction 
The condensation process in high temperature heat pumps occurs at temperatures higher than 80˚C. There is 
a knowledge gap in the literature for increased saturation temperatures above 90˚C. There is sparse data for 
the corresponding high reduced pressures for lower values of saturation temperature. Most of existing 
experimental data is collected for temperatures below 40 ˚C, which is related to the refrigeration applications 
of low boiling agents. For temperatures higher than 120 ˚C most refrigerants operate around the 
thermodynamic critical point, where rapid changes in viscosity and density of the liquid and vapor phases 
occur, which has a significant impact on interfacial interactions. During the 2022 energy price crisis increased 
demand could be observed for industrial high temperature heat pumps (HTHP). These devices enable energy 
recovery and further utilization in industrial processes.  High temperature heat pumps operate in the vicinity of 
the critical point. Among the others, the thermal and hydraulic issues close to the critical point are the least 
recognized. The larger amount of works are related only to carbon dioxide, much smaller to water. Studies for 
other fluids are very scarce. The ones published are presented in a consolidated database. Only a few 
experiments regard condensation at high saturation temperatures in the near critical area. The basic 
characteristics in flows through the channels at close to critical parameters have been studied since the 50s 
of last century. Nevertheless, the phenomena presenting the specific challenges for the successive 
researchers have been observed and can be outlined as follows: 1) The fluid is very expandable, while the 
thermal diffusivity tends to zero due to very low thermal conductivity and high specific heat. 2) The thermal 
properties change nonlinearly, which is different from the normal liquid or gas flow and leads to new flow 
structures. 3) The absence of surface tension and a capillary effect leads to low pressure loss and low flow 
friction. 4) The buoyancy effect can be more complex. 5) There are expected thermal-mechanical effects and 
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several time and spatial scales, related to thermal equilibrium or stability evolution in confined spaces. 
Recently, because of environmental protection requirements, it’s an obligation to look for new working fluids, 
in the case in which physical characteristics are not sufficiently studied. In addition, a large group of these 
fluids are mixtures. In such a case, the issue is further complicated. It’s hard to define the close to the critical 
area due to the temperature glide effect as well as the different thermal and flow properties of the mixture 
components. As a result, there is a risk of the formation of vapor-liquid mixtures with dynamics difficult to 
control. This may happen when one (or more) of the mixture components passes the critical point, while the 
other components remain in the subcritical area. The situation is similar for media containing additives, i.e. 
refrigerant oils, air, or inert gases. Untypical character and high dynamics of phenomena taking place in the 
area close to critical require the selection of working parameters of installation to be chosen very carefully. The 
authors aim to create a general model which can accurately predict the heat transfer coefficient during 
condensation at various values of reduced pressure. A special focus on parameters in the vicinity of critical 
point is a novelty of this research. The authors utilized Feed forward Neural Network which has a different 
structure than the neural network presented by other authors. The new FNN is also significantly smaller.   
Work carried out by other researchers is described in paragraph 1. The consolidated database is described in 
the second paragraph. Feed-forward network model is presented in the next paragraph. The results are 
discussed in the fourth paragraph.  
1.1. Prediction methods that utilize neural networks. 
The study presented by [1] uses machine learning (ML) methods to predict heat transfer coefficients (HTCs) 
for flow condensation in horizontal tubes. A database with a wide range of fluids and experimental conditions 
is compiled to evaluate five ML models. Using XGBoost models, a new universal correlation is developed 
based on the analysis of the most important parameters. The study finds that the ML models perform well in 
predicting the 1213 test data points, with convolutional neural network CNN achieving the best mean absolute 
relative deviation (MARD) of 5.82% and the coefficient of determination (R2) of 0.98 or higher for both XGBoost 
models. XGBoost is better at extrapolating data with reliable performance and the lowest MARD of 19.64%. 
They also created a conventional correlation which mean absolute relative difference achieved 19.21%. Qiou 
et al. [2] gathered a consolidated database of  16953 data points. The consolidated database was divided into 
training and testing data, and an optimization is performed to create the final model architecture consisting of 
dimensionless input parameters and hidden layers. The artificial neural network (ANN) model demonstrates 
excellent accuracy in predicting the test data with a mean absolute error (MAE) of 14.3%, and 92.0%, and 
97.4% of the predicted data fall within ±30% and ±50%, respectively. The performance of the ANN model was 
compared with universal correlations for saturated flow boiling heat transfer which was outperformed by ANN. 
Zhou et al. [3] proposed a new method for predicting heat transfer coefficients in flow condensation in 
mini/microchannels using a consolidated database of 4,882 data points from 37 sources. The data includes 
various parameters such as working fluid, reduced pressures, hydraulic diameters, and mass velocities. Four 
machine learning models were developed and compared, and the ANN and XGBoost models showed the best 
predicting accuracy. These models were able to predict test data with MAEs of 6.8% and 9.1%, respectively. 
The models were also compared to a highly reliable universal correlation and were found to perform better in 
predicting heat transfer coefficients for individual datasheets and different condensation flow regimes. The 
models were able to accurately predict heat transfer coefficients for datasets outside their training database 
when fluid specific information was available. The study shows that machine learning algorithms can be used 
to develop a robust new tool for predicting heat transfer coefficients in flow condensation in mini/micro 
channels. Moradkhani et al. [4] presented a study which focused on the creation of accurate models for 
estimating the condensation heat transfer coefficient (HTC) inside conventional and mini/micro channel heat 
exchangers using machine learning methods. The study evaluated the performance of three different models: 
gaussian process regression (GPR), hybrid radial basis function (HRBF), and interpolating-based radial basis 
function (RBF). The study also presented a new general correlation using the least square fitting method 
(LSFM). The study evaluated the accuracy of earlier HTC models and found a lack of more accurate models 
for condensation heat transfer coefficient (HTC) in conventional and mini/micro channels. Among the intelligent 
method-based models, the GPR model showed the highest accuracy for the testing dataset with an average 
absolute relative deviation of 4.50%, and it was selected as the most reliable model for predicting the HTC in 
different channels. The study also developed a new conventional general HTC correlation.  

2. Consolidated database 
The consolidated database is presented in the Table 1. It consists of data presented in 28 publications for 21 
fluids. Mass velocity varies from 75 to 1400 kg/(m2 ·s), reduced pressure varies from 0.1 to 0.9 and diameters 
vary from 0.76 mm to 15 mm. The first 22 sources which consist form almost 2900 data points were used to 
train neural networks. 6 last sources  are intended for ANN testing 
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Table 1.  Consolidated Database. 
number Authors Diameter 

[mm] 
Fluid 
[-] 

Mass 
Velocity G  
[kg/(m2·s)] 

Reduced 
Pressure Pr 
[-] 

Number of 
Points [-] 

1 Mcdonald et al. 
[5,6] 

0.76-1.45 R290 150-450 0.254-0.809 260 

2 Aroonat [7] 8.1 R134a 300-500 0.251-0.325 54 
3 Cavallini et al. [8] 8 R22, R410a, 

R32, 
R236ea,R134a, 
R125 

100-800 0.307-0.55 251 

4 Cavallini et al. [9] 1.4 R134a, R410a 200-1400 0.251 77 
5 Cavallini et al. 

[10] 
0.96 R32, R254fa 100-1200 0.068-0.428 117 

6 Keiratch [11] 0.86-3 R404a 200-800 0.382-0.618 522 
7 Garimella et 

al.[12] 
0.76-1.52 R410a 200-800 0.805-0.899 214 

8 Jiang et al. [13] 9.4 R410a, R404a 200-800 0.8005-0.9 416 
9 Fonk and 

Garimella[14] 
1.4 R717 75-150 0.103-  

0.231 
 

75 

10 Andersen [15] 3.05 R410a 400-800 0.8  52 
11 Del Co et al. [16] 0.96 R1234yf 200-1000 0.3007 67 
12 Del Co et al. [17] 0.762 Propane 100-1000 0.3225 63 
13 Longo et al. [18] 4 R290, 

PROPYLENE, 
R404a 

75-300 0.25-0.322 194 

 14  Longo et al. [19]  4  R32, R410a  100-800 0.33-0.49  159 
 15  Longo et al. [20]  4  R134a, R152a, 

R1234yf, 
R1234ze(e) 

 75-600 0.13-0.3  280 

 16  Ghim and Lee 
[21] 

 7.75   R245fa  150-500 0.093  20 

17 Patel et al. [22] 1 R134a, 
R1234yf 

202-811 0.256-0.3 77 

18 Zhuang et al. 
[23] 

4 Ethane 101-255 0.22-0.522 230 

19 Song et al. [24] 4 R14 200-650 0.27-0.79 189 
20 Zhuang et al. 

[25] 
4 Methane 99-254 0.43-0.76 286 

21 Milkie et al. [26] 7.75 R245fa, n-
PENTANE 

150-600 0.04-0.17 266 

22 Keniar and 
Garimella [27] 

1.55 R245fa, R134a, 
R1234ze(E) 

50-200 0.05-0.32 149 

23 Moriera et al. 
[28] 

9.43 R134a, 
PROPYLENE, 
R290, R600a 

50-250 0.12-0.32 140 

24 Huang et al. [29] 0.00418 R410a 200-600 0.49 35 
25 Illan-Gomez et 

al. [30] 
1.16 R1234yf 350-945 0.23-0.43 219 

26 Del Col et al. [31] 1 Propylen 80-1000 0.35 109 
27 Azzolin et al. [32] 3.4 R134a 50-200 0.25 73 
28 Berto et al. [33]  R245fa 30-150 0.68 124 
  0.76-9.4 25 fluids 75-1400 0.103-0.9 1916 

3. Neural network model 
The previously cited studies [1–4]show that the use of the artificial intelligence method can give better results 
than conventional correlations for predicting the heat transfer coefficient. During the initial tests, 3 methods 
were investigated: Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and the k-
means clustering algorithm. The results provided by FNN were the most promising and the authors decided to 
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pursue this approach. Artificial Neural Network ANN showcased high quality results also in [34,35]. A multi-
layer neural network was developed to train the prediction of the heat transfer coefficient during flow 
condensation. The scheme of this network is presented in the Figure 1. 

Figure. 1.  Scheme of designed neural network.

The applied neural network uses activation functions (FA), such as ReLu (fR) and Linear 
. ReLu is used on 4 first layers, and the last layer utilizes linear function. The authors of the work 

tried to make the architecture of the network used as simple as possible, and at the same time give the best 
results. Finally, 5 hidden layers were used with 50 neurons in the first layer (M=50), 50 neurons in the second 
layer (N=50), 50 neurons in the fourth layer (D=50), 50 neurons in the third layer (P=50), and 1 neuron in the 
last layer (Q=1). The output signal from the network is described by the relation:

           (1)

Signals given to the input k neuron multiplied by sets of weights are sent to the next 
fully connected layer. The vector of initial weights is randomized from the range (0,1). 
Given the research results described in [36] the Adam algorithm was used to teach the networks under study. 
The network performance error was calculated as the difference between expected and output based on 
Mean Squared Error (MSE) and Mean Average Error (MAE) for all n observations i;i = 1.. ; 

           (1)

4. Results
FNN was trained for two input data configurations. The first one consisted only of basic thermodynamical 
parameters: diameter, flow rate, quality, and reduced pressure (in comparison to critical pressure). The second 
configuration feature also a set of criteria numbers. From the learning database, nearly 800 measurements
were randomly selected to test the database. A comparison of the two input configurations is presented in the 
Table 2. Both configurations achieved good results for the test dataset. Case 1 with only 4 basic input 
parameters achieved accurate output data of its limited input data.  The second configuration achieved 
significantly better results., which are lower than the measurement errors of most experiments. Most 
experiments regarding measurement of HTC during condensation have measurement errors between 10 and 
20%. It is worth mentioning that the presented ANN was much smaller than the artificial intelligence networks 
presented by [1–4]. Values of MSE and MAE have achieved thanks to data preparation and curation for FNN. 
The expected value was turned into a logarithmic value and rescaled, which enabled FNN to achieve 
formidable results.

Table 2.  FNN evaluations on the test dataset for different input combinations.
case number of input 

parameters
input parameters MSE MAE

1 4 d, G, Pr, X 0.1093 0.2243
2 17 d, G, Pr, X, Rev, 

Rel, Pral, Prav, 
Nul, Nuv, CON, 
Bo, Frl, Frv, Frlf, 
Frvf, Wevf

0.0452 0.1028
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Figure. 2.  Histograms that present the distribution of input parameters.  

Histograms which present the distribution of input parameters are present in the Figure 2. Parameters are 
described in the nomenclature section. Most important are diameter, mass velocity, reduced pressure and 
quality which are measured during the experiment. The rest of the parameters are criteria numbers which are 
calculated using fluid properties and mentioned experimental parameters. The learning process of the first 
dataset can be observed in the Fig. 3. Comparison of experimental and calculated values of HTC can be 
observed in the Fig. 4 and the Fig. 5. Value of the expected value and output value for the training dataset 
provides good results for sparse input data. Both variants were trained for 100 epochs.  
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Figure. 3.  Learning graph for the first input configuration

Figure. 4.  Comparison of experimental heat transfer coefficient and results for the first input configuration.
Experimental values are blue and FNN output values are red.
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Figure. 5.  Comparison of HTC value measured during the experiment and ANN output data for the first 
input configuration

The learning process of the second dataset can be observed in the Fig. 6. Comparison of experimental and 
calculated values of HTC can be observed in the Fig. 7 and in the Fig. 6. Better results can be observed in the 
Fig. 8. than in the Fig. 4. Learning process is significantly faster f second configuration.

Figure. 6. Learning graph for the second input configuration
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Figure. 7.  Comparison of experimental heat transfer coefficient and results in for the second input 
configuration. Experimental values are blue and FNN output values are red.

Figure. 8.  Comparison of HTC value measured during the experiment and ANN output data for the second 
input configuration
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4. Conclusions 
The authors created a model which can predict heat transfer coefficient during flow condensation. The model 
utilizes Feed Forward Neural Network (FNN). The method was trained on the consolidated experimental 
database which consists of 4659 data points. The consolidated database covers various parameters of 
diameter, mass velocities, and reduced pressures ranging from 0.1 to 0.9. The proposed Feed Forward Neural 
network achieved very good results for randomly selected data points. Designed FNN consists of 5 hidden 
layers and utilizes ReLu and linear activation functions. ADAM algorithm was used for training. Mean Square 
Root MSE achieved 0.1093 and Mean Absolute Error MAE achieved 0.2243 for the first variant. For the second 
variant, MSE achieved 0.0452 MAE achieved 0.1028. The value of MAE achieved by the second configuration 
is lower than the measurement error of most experiments. It is important to mention that created FNN is 
relatively small, but it managed to provide good results. The created network consists of 5 layers.  Further 
development of work is required to gather more experimental data points from different experiments than used 
in testing data and testing created FNN on a new dataset. This will allow to test the new method in a real-case 
scenario. 

Nomenclature 
ANN Artificial Neural Network,  
d diameter, m 
G mass velocity, kg/(m^2·s) 

 reduced pressure -ratio of pressure to critical pressure, - 

 Reynolds number for saturated liquid , - 

 Reynolds number for saturated vapour , - 

 temperature, °C 

 Weber number for saturated liquid , - 

 Quality, - 

 heat transfer coefficient , kW/(m2K) 

 Feed Forward Neural Network, - 

 Machine Learning, - 

 Convolutional Neural Network, - 

 Prandtl number for saturated liquid, - 

 Prandtl number for saturated vapour, - 

 Nusselt number for saturated liquid, - 

 Nusselt number for saturated vapour, - 

 Confinement Number, - 

 Bond number, - 

 Froude number for saturated liquid, - 

 Froude number for saturated vapour, - 

 Froude number for liquid fraction, - 

 Froude number for vapour fraction, - 
Wevf Weber number for vapour fraction, - 
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