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Abstract:
Ejectors are devices that expand a primary flow through a nozzle to entrain and compress a secondary flow
without moving parts. They can be modelled in 1D as two streams exchanging momentum. However, the
engineering modelling of this exchange is based on closure parameters such as friction coefficients that must
be calibrated against experimental or numerical data. This work proposes a general machine learning frame-
work for calibrating engineering models governed by Ordinary Differential Equations (ODEs) and presents its
application to the 1D modelling of an ejector. We combine a physics-separated approach with a physics-
integrated approach, with the first acting as an initial guess for the second. The first approach calibrates shear
and friction coefficients from their counterpart extracted via post-processing of an axisymmetric CFD simula-
tion. The second consists of calibrating these coefficients from the prediction of physical quantities (pressures,
temperatures, and cross-sections), thus making the training process aware of the ODEs driving the forecast.

Keywords:
1D ejector modelling, closure modelling, physics-constrained machine learning

1. Introduction
Ejectors are flow devices that expand a primary flow to entrain and compress a secondary flow into a mixing
pipe. These ‘compressors’ have no moving parts and are thus robust and without limitations on the working
fluid (gas, liquid, two-phase). Their applications include aeronautics, the chemical and processing industry,
power generation and refrigeration [1].
Ejectors are commonly modelled with 0D lumped parameter formulations [2–6], meaning that conservation
laws are expressed between key sections such as the throat and the exit of the primary nozzle, the constant
area section of the mixing pipe and the exit of the diffuser. These models give fast predictions of the global
performance in the form of mass flow rates but require calibration of several closure coefficients accounting for
the isentropic efficiencies of key components. On the other hand, classic CFD provides detailed flow fields [7,8],
but requires more computational time and effort for meshing and setting up the solver, which is generally too
expensive at system scale. A compromise consists of 1D models, which discretize the flow field in the axial
direction. The mixing pipe can be modelled with a single domain [9], or with two interacting domains [10–12].
These models still require calibration, for example, for modelling wall friction and shear. Nevertheless, they
provide local information and resolve more physics related to entrainment than 0D models, at a fraction of the
cost of 2D/3D CFD.
Closure relations mapping these closure coefficients to physical quantities (e.g., a friction coefficient which
depends on the Reynolds number) could make these models self-standing and thus more useful in early
design stages, but their derivation is particularly challenging. This work proposes a machine learning formalism
to discover such closure relations from data. By training the model on reliable CFD data, the intricacies of the
2D flow field can be lumped into the closure coefficients of the lower dimensional 1D model to maximize the
accuracy of these models. This data-driven approach has been successfully applied in other branches of fluid
mechanics such as heat transfer or and turbulence modelling. These can be classified as physics-separated
(as in [14]) or physics-integrated (as in [15, 16]) depending on whether the learning process is carried out on
data extracted from a simulation or during a simulation. These approaches are briefly reviewed in the next
section. None of these have been implemented for the calibration of ejector models.
In this work, we propose a general formulation for machine learning-based closure of a system of ordinary
differential equations (ODEs), and we apply it to a 1D ejector model with two streams (1D-2s hereafter). The

424https://doi.org/10.52202/069564-0039



general framework is presented in section 2. and its application on the ejector model in section 3.. The results
are discussed in section 4., leading to the conclusions in section 5..

2. A general framework for machine learning-based calibration
We consider a physical problem governed by a system of ordinary differential equations (ODEs) in the state
variables u ∈ R

nu and a set of parameters p ∈ R
np to be linked to the state variables. In this work, we focus on

boundary value problems in x ∈ [0, L], and denote the sought-after closure relation as p = g(u, x). Thus the
closure problem can be written as

f
(

u,
du
dx

,
d2u
dx2 , ..., x , p = g(u, x)

)
= 0 , (1)

with boundary conditions u(0) = uL and u(L) = uR . This framework is general enough to encompass many
physical systems, from turbulence modelling [15–18] to general inverse modelling [13]. This work presents the
first implementation of this framework for the closure of 1D ejector models.
The problem of finding the unknown function is generally a difficult variational problem. Machine learning
offers an alternative approach by approximating the unknown function using a parametric model p = g(u, x ; w )
which depends on a finite set of weights w ∈ R

nw . This could range from a simple linear relation to artificial
neural networks (ANNs), and the range of possible functions that the given model can represent defines the
’hypothesis set’ in the machine learning formalism [21]. Following [19], the identification of the weights w can
be carried out using physics-separated and physics-integrated approaches (see also [14], and [13,15–18]).
The physics-separated approach is a classic supervised learning formulation which assumes that a set of
instances (ũi , xi ) and the associated parameters p̃i are available. Therefore, the optimal set of weights is the
one that minimizes a cost function J(w ) such as, for example:

J1(w ) =
∑

i

∑
r

(
p̃i ,r − g(ui ,r , xi ; w )

)2

p̃2
i ,r

, (2)

where i is the index spanning the instances p̃i at coordinates xi and r is the index spanning the entries in each
vector of parameters (i.e. the closure coefficients that make up p).
This regression problem is shown schematically in block II of figure 1 and starts with an initial guess w0.
The gradient of the cost function dw J only requires the gradient of the parametric function dw g; this is easily
available for usual machine learning models (e.g. using backpropagation in ANNs) hence classic gradient-base
optimizer such as the BFGS algorithm [20] can be implemented efficiently. However, this approach requires
that both the parameters p̃i and the full states ũi can be extracted from a sufficiently rich dataset with sufficient
accuracy (cf. block I in figure 1). This is rarely possible from experimental data. Moreover, the trained model g
is unaware of the underlying physical problem in (1) since the model is never called during training.
The physics-integrated approach includes the physical problem in (1) during the learning process (cf. block III
in figure 1). Note that both approaches are self-standing, but can be applied successively. The extraction of
the model parameters from data is not required, and the training is based on some observation of the states
and the prediction that the model f can achieve for a given set of weights w . Considering the simplest case of
full observation of the states ũi and denoting the solution of (1) as ui (g(ui , xi ; w )) when the closure is achieved
with the weights w , the optimal set of weights minimizes a cost function of the form

J2(w ) =
∑

i

∑
r

(
ũi ,r − ui ,r (g(ui ,r , xi ; w ))

)2

ũ2
i ,r

(3)

where i is the index spanning the instances ũi at coordinates xi and r is the index spanning the entries in each
state vector (i.e. the variables considered for the cost function definition).
The relative error is preferred here due to the composite nature of common state vectors (e.g., pressures
and temperatures). Using the chain rule, it is easy to see that in this formulation, the gradient of the cost
function dw J requires the gradient of the problem solution with respect to the parameters and the gradient of the
parameters with respect to the weights, i.e. dw J(u(g(w ))) = duJdpudw g. Computing this gradient symbolically
is challenging and requires adjoint differentiation (cf. [13,15–18]), but for a computationally inexpensive solver
of f and a small number of parameters, a simple finite difference implementation is feasible. Besides avoiding
the need for extracting the parameters p̃ from data, this approach has the main merit of pairing the closure

425 https://doi.org/10.52202/069564-0039



with the solver with which it is later deployed. On the other hand, the model sensitivity to the parameters (dpu)
strongly influences the cost function gradient and often results in more poorly behaved and multimodal cost
functions.
In this work, we propose a combination of the two approaches, whereby the solution of a physics-separated
approach is used as a starting point for a physics-integrated approach (hence successively following blocks I
to III in figure 1). This offers an excellent balance between accuracy, robustness and computational cost.

Figure 1: Schematic overview of the physics-separated and the physics-integrated approach for calibrating
a physical model f through a closure relation g, given data ũ. The physics-separated approach consists of
(I) extracting the reference parameters p̃ from data and (II) applying a classic supervised machine learning
technique for regressing p. The physics-integrated approach (III) includes the physical model in the training
process and thus requires the sensitivity of the model with respect to its parameters dpu. Both methods are
self-standing, but this work proposes to apply them successively (I-III) as indicated in red.

3. Application to a 1D ejector model
The previously introduced model calibration framework is applied to the modelling of a supersonic ejector using
a 1D and two streams formulation. The calibration is based on data from a 2D axisymmetric CFD simulation
presented in [22]. This is briefly reviewed in section 3.1.. The model formulation is presented in section 3.2.
while the procedure for the calibration is reported in section 3.3..
3.1. The CFD Dataset
We consider an ejector with a converging primary nozzle, operating with total pressures ptp = 5 bar, pts = 1
bar and static back pressure pb = 2.2 bar. Herein, the subscripts p and s are used for variables related to
the primary and the secondary flows, respectively (see list of symbols at the end of the article). The total
temperatures equal Ttp = Tts = 293K. The numerical domain and a contour of the Mach number field are
shown in figure 2. The primary jet is under-expanded due to the large pressure difference between the inlets,
which leads to a shock train in the mixing pipe. This is evidenced by the dividing streamline as indicated by the
full red line in figure 2. The ejector operates in off-design conditions, so the maximal flow rate is not reached,
and the mixed flow remains subsonic. Consequently, no shock train is present in the diffuser as would be the
case in on-design conditions [7]. Interested readers are referred to [22] for further numerical details and the
validation against experiments.
The data assimilation in this work focuses on the mixing pipe since the primary and secondary inlets can be
accurately described with classic quasi-1D flow theory. The mixing pipe features complex flow phenomena,
mixing the two streams and shock trains interacting with shear layers. This portion of the ejector is the one
where closure relations are required the most.
The first step in the data preparation consists of calculating the dividing streamline in the mixing pipe. This is
defined as the line bounding the primary mass flow rate. Hinging on the axisymmetry of the problem, this is
the radius rdiv such that:

ṁp(x) =
∫ rdiv

0
ρ(x , r )u(x , r ) 2πr dr , and ṁs(x) =

∫ R

rdiv

ρ(x , r )u(x , r ) 2πr dr , (4)

The dividing streamline is also used to average the relevant flow variable across the ejector’s section, i.e.
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Figure 2: Mirrored Mach number field of an ejector operating in off-design conditions, obtained through classic
axisymmetric CFD [22]. A shock train is present in the mixing pipe due to the different static pressures of both
streams at the exit of the primary nozzle. The red line indicates the dividing streamline. The reference 1D data
in the rest of the work is obtained through averaging over the resulting cross-sections with equations (5).

ρ̂p,s(x) =
1

Ap,s

∫
Ap,s

ρ dAp,s, ûp,s(x) =
1

ρ̂p,sAp,s

∫
Ap,s

ρu dAp,s, and êt p,s(x) =
1

ρ̂p,sAp,s

∫
Ap,s

ρet dAp,s, (5)

where the hat ·̂ denotes the cross-section averaged variables and the subscripts p, s denote the primary and
the secondary stream. Therefore, the areas Ap,s are the portion of the domain corresponding to r ∈ [0, rdiv ]
and r ∈ [rdiv , R] respectively. It is worth noticing that the specific choice of density average is arbitrary, but
the other two equations enforce that the 1D variables keep the same mass flow rate and total internal energy
as the CFD [23]. The final dataset consists of the cross-sections Ap,s and the flow variables obtained with
equation 5 at 1530 spatial coordinates x of the single CFD simulation shown in figure 2. Hence, the available
data is locally rich, but limited to a single geometry and a single operating condition. Therefore, the resulting
calibration in section 4. can not be expected to generalize to different operating conditions.
3.2. Model definition
The main idea of the 1D- two stream ejector model is to treat the inlets as 1D domains with the variable
area along the axial coordinate x (as in the 1D modelling of nozzle flows). The mixing pipe is modelled as
a 1D domain with 2 streams that exchange momentum through shear and with the wall. The division of the
complete section between the two streams remains a degree of freedom, e.g., the same primary mass flow
rate can pass through a narrow or a wide flow passage, with the secondary cross-section adapting accordingly.
Therefore, the static pressure is assumed to be equal in both streams as an additional constraint. This set of
equations is known as the compound flow theory, originally proposed by Bernstein [24] and adopted later in
ejector modelling [6,10,23,25]. The set of ODEs (1) consists of the following governing equations:

dxp
p

=
1
β

(
dxA +

1
2

fpslps

(
M2

p − M2
s
)2

M2
p M2

s
− 1

2
fw lw

(
1 + (γ − 1)M2

s

))
, (6)

dxptp

ptp
= −1

2
fpslps

Ap
γ
(
M2

p − M2
s
)

, (7)

dxpts

pts
=

1
2

fpslps

As
γ
(
M2

p − M2
s
)
− 1

2
fw lw
As

γM2
s , (8)

dxTtp

Ttp
= 0 and

dxTts

Tts
= 0, (9)

dxAp

Ap
=

(
1 − M2

p

γM2
p

)
dxp
p

+
1
2

fpslps

Ap

(
1 + (γ − 1) M2

p

)(
1 − M2

s

M2
p

)
, (10)

dxAs

As
=

(
1 − M2

s

γM2
s

)
dxp
p

− 1
2

fpslps

As

(
1 + (γ − 1) M2

s

)(
M2

p

M2
s
− 1

)
+

1
2

fw lw
As

(
1 + (γ − 1) M2

s
)

, (11)

where

β = Ap
1 − M2

p

γM2
p

+ As
1 − M2

s

γM2
s

, (12)
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and with the constraint that Ap + As = A. It is worth noticing that eq. (6) implies that the static pressure is equal
on both primary and secondary sides, i.e. pp = ps = p. The derivation of these equations from conservation
principles is presented in appendix A. We refer to the list of symbols for the definition of all variables.
The two closure parameters to be identified in a data-driven model calibration are the shear coefficient fps
between the streams and the wall friction coefficient fw . These are linked to the shear forces acting on the
perimeter of the primary cross-section (lps) and the wall’s perimeter (lw ), respectively. Therefore, in the formal-
ism introduced in section 2., these variables constitute the model parameters p = [fps, fw ]T to be provided by
the closure function g while the state variables are u = [p, ptp, pts, Ttp, Tts, Ap, As]T . The local Mach numbers
can be computed from these variables (e.g. the static and total pressures) or the local densities using the ideal
gas law. Note that the constraint on the cross-sections can be imposed by first calculating the gradient of the
primary cross-section Ap and subtracting it from the gradient of the total cross-section.
It is worth stressing that the assumption of equal static pressure is problematic at the inlet of the mixing pipe
because the primary flow is generally under-expanded (cf. figure 2). Therefore, the proposed model cannot be
used from the exit of the primary nozzle (x = 0) unless a pressure equalization mechanism is introduced in the
model. Alternatively, the areas for the primary and secondary flows must be provided at the inlet of the mixing
channel: in this case, the pressures naturally equalize within a short distance from the inlet; this is akin to what
happens through the shock cells in the CFD simulation. The development of the first approach is left to future
work. In this work, we use the dividing streamline identified from the CFD up to the point where the pressures
equalize, and downstream, we use the compound equations (6)-(12) (this is further discussed in Section 4.)
The research question addressed in this work is the feasibility of deriving the spatial distribution of shear and
friction coefficients that makes the 1D model comply with the post-processed CFD data. Moreover, in this
work, we do not (yet) link the closure parameters to the state, which is a more complex task and should be
studied across a wide range of operating conditions. We focus on the parameters’ spatial distributions and
their derivation by implementing the physics-separated and physics-integrated approaches.
3.3. Calibration
Physics-separated approach

Following the framework in Section 2., the physics-separated approach consists of calculating the closure
coefficients from the processed CFD data. To this end, equations (7) and (8) can be used to compute the
1D shear and friction coefficients (fps and fw ) if all the other terms are extracted from data via appropriate
processing. These two equations give:

fps = − 2Ap

lpsγ
(
M2

p − M2
s
) dxptp

ptp
and fw = − 2As

lwγM2
s

(
dxpts

pts
− 1

2
fpslps

As
γ
(
M2

p − M2
s
))

. (13)

Both definitions rely on the differentiation of pressure evolution, computed using finite differences on a smoothed
version of the signal. The derivation was carried out with a second-order centred scheme, while the smoothing
was carried out with a Savitzy-Golay filter with a second-order polynomial. The resulting closure coefficients
are, therefore, functions of the spatial coordinate x and could be linked to the local value of the state variables
u, or local values of dimensionless numbers such as Reynolds and Mach numbers in each stream, or pres-
sure and temperature ratios. However, this regression has a high risk of overfitting because the flow field (and
thus the closure coefficients) can change drastically with the operating conditions. This challenging regression
requires a large dataset and is foreseen for future work. This work focuses on a single off-design operating
point, with regression as a function of the axial coordinate x . Practically, we minimize the cost function (2)
separately for the shear and the wall friction coefficient with a parametric function g heuristically constructed
after analyzing the data. The specific choice is provided in Section 4.1.. Note that we can split the regression
in two smaller problems because the predicted closure coefficients p can be evaluated independently against
their references p̃.
Physics-integrated approach

The closure coefficients derived in the previous section are those that minimize the error in the definitions
(13), but this does not guarantee that the model prediction is the most accurate. The complex interplay of
this parameter with the other equations in the model (6)-(11) introduces additional sensitivities to the model
prediction. The physics-integrated approach seeks to account for all of these using the cost function (3) to
penalize model prediction (that indirectly depends also on the parameters). In the investigated calibration
problem, the observed quantities included in the cost function are the pressures ptp and pts and the cross-
sections Ap and As. The static pressure p is not included because the shock trains make pp and ps oscillate.
Since the 1D model can only reproduce the mean trends due to the assumption of equal static pressures, this
oscillation could unfairly penalize the model prediction and produce local minima in the cost function landscape.
Moreover, the total temperature is excluded because it is assumed to be constant in the mixing pipe and
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thus does not contribute to accentuating the cost function gradient distribution along the spatial coordinate.
Finally, an additional term is added at the exit (x = L) to penalize the potential error on the back pressure.
This penalization helps enforce the boundary condition of the model. Therefore, the cost function (3) for this
approach becomes

J2(w ) =
∑

i

[
(p̃tp,i − ptp,i (g))2

(p̃tp,i )2 +
(p̃ts,i − pts,i (g))2

(p̃ts,i )2 +
(Ãp,i − Ap,i (g)2

(Ãp,i )2
+

(Ãs,i − As,i (g))2

(Ãs,i )2

]
+

p̃(L) − p(g, L)
p̃(L)

(14)

where the summation is carried out over the available instances (e.g. grid points in x), the functional de-
pendency on g denotes the model prediction based on the closure g and the summation over the index r is
made explicit over the four variables involved. We recall that the closure function depends on weights w , i.e.
g := g(x , w ). For a given guess of the weights, hence a given closure law p = g(x , w ), the cost function J2(w )
in (14) is computed by first solving numerically the set of equations in (6)-(11) using a shooting method.

4. Results
4.1. Physics-separated approach
Figure 3 shows the original and filtered 1D distributions of the total pressure in both streams from the post-
processed CFD, from the exit of the primary nozzle at x/L = 0 to the exit of the numerical domain at x/L = 1
(cf. equations (5)). The total pressures equalize for x/L > 0.4, as a result of the mixing process and the
growth of the shear layer separating the two streams. After this equalization, the two streams are fully mixed
and indistinguishable, driven by a common total pressure and temperature. The zoom Z1 (shown on the right)
displays a sharp drop in total pressure at x/L = 0.025. This corresponds to the Mach disk in figure 2. This is a
2D effect which can not be reproduced by the 1D model and is thus better filtered out before the data is used
for calibration. The filtered signal thus ‘averages’ the shock train for the computation of the closure coefficients.
The window length of the Savitzky-Golay filter has been tuned to this end.

Figure 3: Filtering of the 1D total pressure field obtained through post-processing the CFD simulation in fig-
ure 2. The total pressures tend towards a common value as the primary and secondary streams exchange
momentum. The shock train at the inlet of the mixing pipe strongly affects the primary total pressure, which
is therefore filtered with a Savitzky-Golay filter before being differentiated (cf. equations (13)). The filtered
secondary total pressure coincides with its raw counterpart since it is already quite smooth.

The shear and friction coefficients computed with equations (13) are shown in figures 4 and 5 respectively.
The unfiltered coefficients show a sharp peak at the position of the Mach disk, as the primary total pressure
changes suddenly at this point. This artefact is avoided through filtering. Still, both results indicate large
coefficients at the inlet of the mixing pipe, especially in the wall friction fw , which reaches an extreme value of
25 (with values expected to be of the order 0.01). A possible explanation could be the separation region behind
the wall between the exit of the primary nozzle and the secondary inlet. This trailing edge is not sharp, so it is
followed by a region of separated flow which slows down both the primary and the secondary stream through
shear. This effect is locally quite strong for the primary flow due to a momentum deficit between the sonic
flow and the stagnant flow in the bubble, hence a large value of the shear coefficient fps. However, this force
is applied equally but with an opposite sign on the secondary flow, which therefore tends to accelerate rather
than decelerate. In turn, a high wall friction coefficient is thus needed to overcome this numerical acceleration
and still represent the actual friction forces on the secondary stream.
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The peak at the inlet of the mixing domain shows an exponential decay, so an exponential function is chosen
in the parametric closure function g for the calibration. Downstream, the evolution is rather flat, except for the
oscillations induced by the shock train. Therefore, the closure function g is parametrized with a linear trend
downstream. This leads to the following parametric function with 5 weights:

{
y = w1 + w2 exp(−w3x) ifx ≤ w0

y = w1 + w2 exp(−w3w0) + w4x ifx > w0
(15)

This function is used for both closure coefficients, bringing the number of weights to 10. The mismatch with
the post-processed coefficients is minimized using the summed squared error as a cost function and with the
BFGS algorithm available in SciPy [20]. The gradient computation is performed with finite differences, which
is affordable due to the low cost of the function to be called and the low number of weights. The resulting
regression is shown alongside the raw and the filtered signals in figures 4 and 5.

Figure 4: Shear coefficient calculated from the raw and filtered total pressure field from figure 3 with equation
(13). The exponential decay at the inlet is attributed to a separation bubble at the exit of the primary nozzle. The
calculation on the raw signal suffers from sharp gradients in the shock train and the Mach disk (x/L = 0.025).
The physics-separated regression is carried out with equation (15) on the filtered shear coefficient fps.

Figure 5: Wall friction coefficient calculated from the raw and filtered total pressure field from figure 3 with
equation (13). The same trends are observed for the shear between the streams (cf. figure 4), so the same
parametric function is used for the regression.

Next, we use the regressed closure relation to predict the flow field of the ejector with the 1D model. The
resulting flow field compares well to the post-processed CFD (cf. figure 6). Upstream, the cross-section is
imposed by the CFD, leading to a close match. Downstream, the unique pressure deviates from the values
in the CFD due to the shock train (the primary stream is particularly affected). Nevertheless, the 1D model
captures the global rising trend. This pressure increase arises from the momentum exchange between the
two streams of the compound flow (cf. equation (6) with β > 0). The pressure rises more strongly in the
diffuser from x/L = 0.23 and reaches a constant value where the streams reach the same total pressure. The
constant total temperature in the 1D-2s model matches the post-processed CFD within 3 K. The deviation
is attributed to the low enthalpy in the separation bubble at the exit of the primary nozzle, which influences
the total temperature field downstream near the dividing streamline. The constant total temperature remains a
good approximation for the bulk of the streams. Thermal mixing through different inlet temperatures is foreseen
as a future extension of the 1D-2s model.
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Despite the indirect penalization on the closure coefficients, an excellent match is obtained. The assumption of
equal static pressure in both streams proves to be an acceptable assumption to close the system of equations
(6)-(11) (at least in this off-design operating point). The match of the cross-sections between the 1D model
and the CFD best validates the model. However, the 1D model shows a mismatch in back pressure (2.3 bar
in the model and 2.2 bar in the CFD). The formulation with the ODEs always requires a shooting method to
match a boundary condition at the exit of the domain (x = L), but none of the flow quantities is penalized in
the physics-separated approach. Therefore, we apply the physics-integrated method in the next section to
improve the prediction in the flow quantities both in the internal domain and the boundary condition for the
static pressure.

(a) Static pressure p (b) Total pressure pt

(c) Cross-section A (d) Total temperature Tt

Figure 6: Model predictions with the regressed closure relation from the physics-separated approach (cf. fig-
ures 4 and 5). All variables match the post-processed 1D data quite well (the cost function (14) equals 0.0044).
However, the boundary condition of the static pressure at the outlet is not met due to the indirect regression on
the post-processed closure coefficients instead of on the physical quantities (cf. equations (2) and (14)).

4.2. Physics-integrated approach
The closure relation from the section above serves as an initial guess for the physics-integrated approach,
where the prediction error on the physical quantities is minimized (including the back pressure as a boundary
condition, cf. equation (14)). The resulting evolution of the shear and friction coefficients is shown in figure 7.
The wall friction coefficient increased significantly, resulting in lower static pressure and a satisfied boundary
condition (cf. figure 8a). An increased shear coefficient compensates for the corresponding loss in secondary
total pressure. Finally, we note that the exponential decay between the inlet and x/L = 0.01 from figures 4 and
5 has sharpened, which results in a flat plateau in the coefficients in figure 7. This indicates the extreme values
found with the physics-separated approach were not necessary.
The physics-integrated approach has decreased the value of the cost function (equation (14)) from 0.0044
with the initial guess from the physics-separated approach to 0.0036. This significant improvement can be
appreciated visually by comparing figures 6 and 8. However, the integrated approach is less straightforward
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a priori; one does not know which type of parametric function allows a close match. Additionally, initializing
the weights is also non-trivial. For example, an excessive wall friction coefficient could decrease the static
pressure enough to choke the flow and lead to problems in the integration of the system of ODEs (which
becomes singular if β = 0). Therefore, the initialization through the physics-separated approach followed by
fine-tuning with the physics-integrated proves an effective strategy for the model calibration, profiting from their
complementary advantages.

(a) Shear coefficient fps (b) Wall friction coefficient fw

Figure 7: Comparison of the regressed closure relations of the physics-separated and the physics-integrated
approach. The first serves as initial guess for the latter method and is optimized to minimize cost function (14)
(final value of 0.0036). A significant increase of the wall friction coefficient has allowed to decrease the static
pressure in the mixing duct, leading to a satisfied boundary condition (cf. figure 8a).

5. Conclusion
This work proposes a general machine learning framework for calibrating physical models governed by a sys-
tem of ODEs. We have explored a physics-separated approach, which consists of calculating the closure
coefficients from higher resolution data (CFD) and then regressing the post-processed coefficients, and a
physics-integrated approach, where the model is called upon during the optimization (training) phase to mini-
mize the prediction error on the observed physical quantities. Both approaches have been applied successfully
on a 1D ejector model to find the shear and wall friction coefficients as a function of the spatial coordinate.
The results show that a successive application of both approaches proves to be a convenient and robust
method to calibrate the 1D model. The physics-separated approach guides the choice of the parametric
function and provides a valid initial guess for the physics-integrated approach,. This then acts as a refinement
tool to further minimize the prediction error by directly penalizing mispredictions in the state variables.
The proposed methodology is robust and flexible: it is compatible with state-of-the-art optimizers and leaves a
free choice of the regressor. Any parametric tool fits the framework, ranging from linear regression to artificial
neural networks. Furthermore, the method brings physical insight through closure relations for low-order but
highly interpretable models. Finally, the framework can be categorized as physics-constrained, as opposed
to physics-informed, machine learning since the conservation equations are always respected. From a more
global perspective, splitting the problem in a set of physical equations f and closure relations g (cf. equation (1))
allows the continued use of dedicated solvers for the physical problem f , which are conservative and efficient,
and simplifies the machine learning task by restricting its scope to the closure problem g. In this sense, the
framework is an extension of neural ODEs, which solve the combined problem of f and g with neural networks
without including prior physical knowledge. Consequently, less complex regressors may suffice for solving the
problem, reducing the amount of required data or improving the performance on a fixed dataset.
Improvements are foreseen on two fronts. Firstly, the 1D ejector model is currently being extended to on-design
operation with a pressure equalization mechanism to remove the requirement of imposing the cross-section
from CFD at the inlet of the mixing pipe. Secondly, the adjoint method is being explored to handle closure
laws requiring many weights (e.g., neural networks). Finally, the closure coefficients can be linked to the state
variables rather than space coordinates to discover more universal closure relations for the 1D ejector model.
This will require an extensive study on operating conditions and various geometries.
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(a) Static pressure p (b) Total pressure pt

(c) Cross-section A (d) Total temperature Tt

Figure 8: Model predictions with the regressed closure relation from the physics-integrated approach (cf. figure
7). The agreement improved compared to the physics-separated approach in figure 6 (the cost function (14)
equals 0.0036). Moreover, the boundary condition of the static pressure at the outlet is now respected.
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Appendix A Derivation of the 1D ejector model from first principles
The base equations of the 1D model are the quasi-1D Euler equations with a force term F :

dx (ρiAiVi ) = 0; dx (ρiAiV 2
i ) = −Aidxpi + Fi ; dx (ρiAiVihti ) = 0 (16)

where the index i denotes either the primary (p) or the secondary stream (s). The following equivalent system
can be derived from these conservation equations (cf. [26] for a detailed derivation):

dxpi

pi
=
[

1 + (γ − 1) M2
i

1 − M2
i

]
Fi

Aipi
+
[

γM2
i

1 − M2
i

]
dxAi

Ai
;

dxpti

pti
=

Fi

Aipi
;

dxTti

Tti
= 0 (17)

The wall friction force acts on the secondary stream and is defined through a classic friction coefficient:

Fw = −1
2

fwρsv2
s = −1

2
fwγpsM2

s (18)
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The shear force is defined in a similar way and depends on the difference in dynamic pressure:

Fps =
1
2

fps
(
ρpv2

p − ρsv2
s
)

=
1
2

fpsγp
(
M2

p − M2
s
)

(19)

The primary and secondary forces are given by Fp = −Fps and Fs = Fps + Fw . Combining the equations above
results in equations (7) and (8). The equation for the static pressure results from the assumption of equal static
pressure in both streams. The first step is to inverse equation (17) in terms of the area:

dxAi =
[
Ai

1 − M2
i

γM2
i

]
dxp
p

−
[

1 + (γ − 1) M2
i

γM2
i

]
Fi

p
(20)

where the static pressure p lost the index because we assume pp = ps. Equations (10) and (11) for the gradient
of the cross-sections follow from the equation above after filling in the forces. We sum the equation above for
both streams and obtain the gradient of the known geometry A = Ap + As:

dxA =

[
Ap

1 − M2
p

γM2
p

+ As
1 − M2

s

γM2
s

]
dxp
p

−
[

1 + (γ − 1) M2
p

γM2
p

]
Fp

p
−
[

1 + (γ − 1) M2
s

γM2
s

]
Fs

p
(21)

The first term corresponds to the compound choking indicator β from equation (12). We reverse the equation
above, to obtain the following expression of the pressure gradient:

dxp
p

=
1
β

(
dxA +

[
1 + (γ − 1) M2

p

γM2
p

]
Fp

p
+
[

1 + (γ − 1) M2
s

γM2
s

]
Fs

p

)
(22)

Equation (6) follows after filling in the forces and some simplifying operations.

Nomenclature

Letter symbols
e specific internal energy, J/(kgK)
fps shear coefficient, −
fw wall friction coefficient, −
lps perimeter of the primary cross-section, m
lw perimeter of the wall, m
ṁ mass flow rate, kg/s
p pressure, Pa
r radial coordinate, m
t time, s
u axial velocity, m/s
x axial coordinate, m
A cross-section, m2

F force per unit length, N/m
L length of the ejector, m
M Mach number, −
R wall radius, m

T temperature, K
p vector of closure parameters, −
u state vector, −
w weight vector, −
Greek symbols
β compound choking indicator, m2

γ ratio of specific heat capacities (air: 1.4), −
ρ density, kg/m3

Subscripts and superscripts
·̂ cross-sectional average of a variable
·̃ observation of a variable
b back, outlet of the ejector
p primary stream
s secondary stream
t total quantity (pressure, temperature, inter-

nal energy)
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