
PROCEEDINGS OF ECOS 2023 - THE 36TH INTERNATIONAL CONFERENCE ON
EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS

25-30 JUNE, 2023, LAS PALMAS DE GRAN CANARIA, SPAIN

Data-driven Modelling of Supermarket Refrigeration
Systems for Model Predictive Control Applications

Max Birda, Salvador Achab, Emilio José Sarabia Escrivac and Nilay Shahd
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Abstract:
With uncertainty in energy markets, and the effects of climate change looming, reducing energy use and
operational cost of existing building systems is more important than ever. To this end, this paper presents a
grey-box modelling approach to characterise the behaviour of chilled and frozen and coldrooms using basic
system specifications and measured data. An overall energy balance is used to devise a discrete state space
model for each cabinet, characterised by unknown empirical parameters relating to heat capacity and heat
transfer properties. Historical system data from a UK supermarket are used in combination with a genetic
algorithm optimisation to determine the optimal empirical parameters for 10 display cases and 10 coldrooms.
The resulting cabinet temperature predictions have a good level of accuracy, achieving a root-mean squared
error (RMSE) of 0.37°C to 0.98°C. Overall this data-driven approach is effective and efficient in modelling
refrigeration systems, and can be easily generalised to any system where historical data is available. Finally,
the use of the proposed approach in cost minimisation or demand response application is presented.
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1. Introduction
Commercial refrigeration systems are highly energy intensive and can be responsible for up to 40-60% of a
supermarket’s overall electricity use [1]. As such, there is clear motivation to reduce energy use and operating
costs of such systems through smart control applications. At a high level these control schemes aim to utilise
the thermal capacity of refrigerated foodstuffs to shift cooling requirements to low-price or low overall grid
demand periods based typically on real-time energy prices to minimise operating costs [2], [3] or demand-
side response scenarios [4], [5] to alleviate periods of high grid demand. Such control methods often require
simulation models in order to test and calibrate the proposed approach ahead of real-world deployment, which
motivates a better understanding of the data requirements and best practices for developing such a model.
A popular refrigeration modelling approach is discussed in [6], which presents 3 separate sub-models to char-
acterise the performance of the chilled cabinets, suction manifold and condenser. A grey-box approach is used
to devise the fundamental mass and energy balances across the sub-systems, for which empirical constants
are then fit using historical data via an iterative prediction-error minimization (PEM) method. Optimal empirical
parameters and temperature fitting results are presented for 7 chilled cabinets, but deliberately excludes be-
haviour during defrost periods and doesn’t consider frozen cabinets. This limits the application of the method
to control of real-world systems. An alternative grey-box modelling approach is presented in [7], which uses
a state-space model derived from thermodynamic heat and mass balances of individual cabinets and evap-
orators. Model parameters were estimated using a maximum likelihood estimation approach, based on 2.5
years of minutely telemetry from 6 chilled and 4 frozen units. The approaches lumps the cabinet air and food
temperatures together, preventing individual tracking of food temperature which is a key variable to monitor in
control applications.
This paper demonstrates a grey-box modelling approach to model temperature dynamics in commercial chilled
and frozen cabinets. This is achieved using a genetic algorithm to fit unknown physical parameters for individual
cabinets, demonstrated using a UK supermarket as a case study. The method improves over existing literature
by modelling temperature dynamics during defrost cycles, as well as explicitly accounting for electric defrost
elements present in frozen units.
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2. Case Study
2.1. System Description
This paper uses two identical R744 CO2 booster refrigeration systems installed in a UK food retail store as a
case study, shown in Figure 1. Each refrigeration loop services roughly 50% of the cabinets and coldrooms
in the store, as detailed in Table 1. They are designed to operate in both the subcritical and transcritical
regions depending on the ambient temperatures, but typically they operate subcritically [8]. The flash tank
feeds saturated liquid refrigerant to the medium temperature (MT) evaporators in the refrigeration cabinets
and coldrooms, as well as feeding the low temperature (LT) evaporators in the frozen cabinets and coldrooms.
”Cabinets” refer to display cases which hold the chilled or frozen food on the shop floor, while ”coldrooms”
refer to large rooms in the back of house area which hold additional chilled or frozen stock. Expansion valves
are present in each individual cabinet or coldroom, which are locally controlled to maintain the specific cabinet
temperature setpoint. A superheat control also operates on the cabinet valves to ensure the refrigerant leaving
the evaporators and entering the compressors is only in the gas phase. The LT evaporator outlet feeds directly
into the low pressure (LP) compressor bank, and then the MT evaporator outlet mixes with this LP compressor
outlet before entering the high pressure (HP) compressor bank. The LP compressor bank is comprised of
three 2ESL-4k Bitzer compressors and the HP bank uses six 4FTC-20k Bitzer compressors, one of which has
a variable speed drive. The HP compressor outlet then passes through a series of plate heat exchangers
which facilitates heat recovery from the refrigeration system into the primary side of the ground-source heat
pump (GSHP) which provides heating and hot water services for the building. Refrigerant then enters the gas
cooler to remove the remaining heat, the outlet of which feeds the refrigerant flash tank.

Figure 1: Schematic of typical CO2 booster refrigeration system.

Due to the subzero refrigerant temperatures required to absorb sufficient heat from the cabinet air, moisture
in the air will condense and then freeze over the evaporator. Over time this ice layer can build up and prevent
sufficient circulation of the cabinet air which dramatically reduces the available cooling capacity. To prevent
this, regular defrost cycles are run in both the LT and MT evaporators. For MT evaporators, an off-cycle defrost
is used meaning the refrigerant valve is fully shut for 15-30 minutes, which warms the cabinet and melts the
ice, and in LT evaporators an additional heating element is used to actively melt the ice. The operating power
of the heating element can be found in the system specification documents for each cabinet. This study is
based on data from 10 cabinets (5 chilled, 5 frozen) and 10 coldrooms (5 chilled, 5 frozen) chosen across the
two refrigeration systems present in this store.
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Fixture Setpoint [°C] Refrigeration
Load* [kW]

Defrost Power
[kW]

System 1
Count

System 2
Count

Fridge Cabinet 1 - 4 2.1 - 7.7 - 36 39
Frozen Cabinet -20 1.0 - 2.6 5.0 - 21.0 11 12

Fridge Coldroom 1 6.2 - 6.7 - 5 4
Frozen Coldroom -21 2.6 5.0 - 8.0 3 3

Table 1: Cabinet specifications for each refrigeration system. *Under 25°C and 60% RH.

2.2. Operating Behaviour
To showcase the operating behaviour of the chilled and frozen cabinets, 12 hours of telemetry data are pre-
sented for each cabinet type in Figure 2. All system data are collected using a cloud-based monitoring platform,
presented in more detail in [9]. As seen in this plot, the cabinet air temperature is maintained at the setpoint
using a local PI controller which manipulates the opening degree (OD) of the expansion valve to provide the re-
quired cooling duty. During the off-cycle defrost periods (highlighted in blue) expansion valves fully shut which
raises the cabinet air temperature and melts any ice build up. Immediately following the end of the defrost,
the valve opens to pull the cabinet temperature back down to setpoint. Frozen cabinet telemetry looks similar
but has some notable differences. Firstly, they operate using hysteresis control on the expansion valve, which
opens and closes the valve as the cabinet air temperature breaches upper or lower temperature bounds. This
control approach is more suitable for frozen cabinets as they use case doors which maintain air temperature
much more steadily compared to doorless chilled cabinets. The lack of doors also causes chilled cabinets to
need more frequent defrosts compared to frozen units, due to increased ingress of warm, humid air from the
shop floor.

Figure 2: Cabinet telemetry for a chilled cabinet (left) and frozen cabinet (right).

In addition to cabinet air temperature and valve OD sensors, the calculated product temperature (CPT), also
referred to as food temperature, in each cabinet is estimated using a proprietary algorithm provided by a
resource data management (RDM) panel which monitors and collects data from the local cabinet controllers.
As seen in Figure 2, the CPT in chilled cabinets only changes by 0.2°C during an off-cycle defrost, but
can change by up 1°C during a frozen cabinet defrost due to the additional electric heating element in the
evaporator.

3. Modelling
3.1. Cabinet Temperature
The proposed cabinet temperature model is adapted from a popular approach seen in [6], based on an en-
ergy balance over an individual cabinet. In cabinets, heat is transferred from the food items to the cabinet air,
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Q̇foods/c , as well as from the internal building to the cabinet air, Q̇load . Heat is then exchanged between the
cabinet air and the evaporator, Q̇e. This paper improves upon previous approaches by including the additional
term, Q̇D, to account for the heat added by the electrical defrost element present in the evaporators of most
frozen units. For all chilled and frozen cabinets, the cabinet air temperature, Tc , and internal building tempera-
ture, Tindoor , are directly measured using temperature sensors and the calculated product temperature (CPT),
Tfood , is estimated using the previously discussed approach. Assuming purely conductive heat transfer, the
energy balance on this system can be written as

MCpfood
dTfood

dt
= −Q̇food/c (1)

MCpc
dTc

dt
= Q̇load + Q̇food/c + Q̇D − Q̇e (2)

Q̇food/c = UAfood (Tfood − Tc) (3)

Q̇load = UAload (Tindoor − Tc) (4)

where MCpfood and MCpc are the product of mass and specific heat capacity for the food and cabinet air
respectively, and UAfood and UAload are the heat transfer coefficients between the cabinet air and the food and
store air respectively. The cooling duty of the evaporator can then be written as

Q̇e = β OD (5)

β = Kv (hoe − hie)
√
ρsuc (Prec − Psuc) (6)

where OD is the opening degree of the expansion valve, Kv is a valve specific constant, ρsuc is the density of
the refrigerant on the suction side, Psuc and Prec are the suction and receiver pressures, and hoe and hie are
the specific refrigerant enthalpies at the inlet and outlet of the evaporator respectively. Under normal operation,
compressor controllers aim to keep the operating pressures and temperatures of the refrigerant constant at
specific points in the cycle, allowing the combination of these parameters into one constant β.
From this point, the above system (1)-(6) can be rearranged and expressed as an LTI state space model.

{
ẋ = Ax + Bu
y = Cx

(7)

with the state values, x = [Tfood , Tc ]T , controls and disturbances, u =
[
OD, Q̇D, Tindoor

]T
, and model parameters

A =

[−UAf/c

MCpf

UAf/c

MCpf
UAf/c

MCpf

−UAload−UAf/c

MCpc

]
, B =

[
0 0 0
−β

MCpc

1
MCpc

UAload
MCpc

]
, C =

[
1 1

]
(8)

In order to fit model parameters from historical data, the continuous state space model (7), should be discre-
tised using the sampling time of the sensors.

{
ẋ [k + 1] = Adx [k ] + Bdu [k ]
y [k ] = Cdx [k ]

(9)
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3.2. Parameter Estimation
The required input data, namely Tfood , Tc , Tindoor and OD are collected for a range of chilled and frozen cabinets
from the case study system. An additional binary variable is collected from the cabinet controllers which
shows when the cabinet is in defrost mode to allow calculation of Q̇D using the rated defrost power discussed
previously. Raw telemetry is collected at irregular 2-3 minute intervals and resampled to 1 minute intervals
using linear interpolation to better capture the dynamics of the system. One day of data from 10/03/2023
is used for each cabinet to show the flexibility of the method using even just a small sample of N total data
points. The system (7) - (9) is expressed using the StateSpace function within the scipy .signal package in
Python [10]. This system is then wrapped within a genetic algorithm (GA) optimisation which finds the optimal
empirical parameters MCpfood , MCpc , UAfood , UAload and β, by using measured system states, x and measured
control and disturbances u to estimate the system states in the next timestep x̂ [k + 1] and compare these to
the measured system states x [k + 1]. This multi-objective optimisation is formulated as

min
Z

(RMSEc , RMSEfood ) (10)

RMSEi =

√
1
N

N∑(
T̂i − Ti

)2
(11)

subject to constraints

⎧⎪⎨⎪⎩
Z = [MCpfood , MCpc , UAfood , UAload ,β]
Z ≥ [0, 0, 0, 0, 103]
Z ≤ [109, 106, 104, 104, 104]

(12)

In this paper we utlilise the Python optimisation package Pymoo [11] and their implementation of a Non-
dominated Sorting Genetic Algorithm (NSGA-II) [12]. Each generation has a population of 100, and the opti-
misation terminates after 100 generations, and all other GA parameters are left at their default values.

4. Results
The optimal empirical parameters for the chilled and frozen cabinets are shown in Table 1, with MCp values
given in [J/K], UA values in [W/K], β in [W/OD%] and RMSE in [K]. For each cabinet, the GA fitting process
took at most 2 minutes to complete on a desktop PC with a Ryzen 5 3600 6-core CPU. On average the chilled
cabinets have a satisfactory fit, with an RMSE of 0.56°C and 0.13°C for cabinet air and food temperature
predictions respectively, while frozen cabinets are slightly higher at 0.89°C and 0.17 °C respectively. Chilled
cabinets also have higher UAload values, ranging from 42-82 W/K compared to only 1-4 W/K for the frozen
cabinets, and higher β values, 3,769 - 6,450 W/OD% compared to 1,000 - 1,576 W/OD% for frozen cabinets.
Both of these differences are due to chilled cabinets not having doors, causing a larger heat transfer from the
building air to the cabinet air, and consequently requiring a larger evaporator cooling duty to keep the food at
setpoint.

Chilled Cabinets Frozen Cabinets
Cabinet ID 1 2 3 4 5 6 7 8 9 10

MCpfood (×106) 942.5 222.5 865.8 138.0 951.0 10.7 13.2 577.4 6.3 36.0
MCpc (×105) 3.2 1.6 2.5 2.2 1.7 2.0 2.1 1.9 1.5 1.8

UAload 82 64 42 60 63 4 3 2 3 1
UAfood 391 254 301 222 100 174 189 191 134 194

β (×103) 5738 3796 6450 6308 4673 1576 1050 1000 1050 1032
RMSEc 0.46 0.37 0.68 0.56 0.72 0.98 0.87 0.84 0.89 0.87

RMSEfood 0.13 0.11 0.15 0.09 0.17 0.18 0.19 0.11 0.18 0.18

Table 2: Empirical parameters and RMSE values for the chilled and frozen cabinets.

Figure 3 shows 24 hours of cabinet air and food temperature predictions from the training sample compared
with measured values for the two best chilled and frozen cabinets. Air temperature predictions are generally
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good, fitting well the temperature spikes due to defrost, but struggling sometimes to predict the smaller, higher
frequency temperature variations when the cabinet is at setpoint. This is particularly noticeable in the frozen
cabinet which use hysteresis control to maintain the air temperature within a bound around the setpoint.

Figure 3: Cabinet temperature predictions based on optimal GA fitting.

Figure 4: Coldroom temperature predictions based on optimal GA fitting.

Food temperature predictions are less reliable, particularly for the chilled cabinets. Over most of these cabinets
the food temperature predictions fail to pick up any of the observed changes in food temperature due to defrost,
instead just predicting a constant value which is on average correct. In addition, the food temperature in the
chilled cabinets only changes by a maximum of 0.3°C during a defrost, which is small temperature change for
this model to account for, especially compared to the air temperature which varies by around 5°C. Empirical
parameters for the 5 chilled and 5 frozen coldrooms analysed can be found in Table 3, and temperature
predictions compared to measured values are shown in Figure 4. The air temperature predictions are not
as accurate compared to the chilled and frozen cabinets, especially during the defrost periods, achieving
an average RMSE of 0.61°C and 0.16°C for cabinet air and food temperature predictions respectively for
chilled coldrooms, which increases to 2.74°C and 0.37°C for frozen coldrooms. This could be due to uneven
temperature distribution in coldrooms, which are much larger than cabinets, and so this effect is not by the
individual air temperature sensors.
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Chilled Coldrooms Frozen Coldrooms
Coldroom ID 1 2 3 4 5 6 7 8 9 10

MCpfood (×106) 22.0 799.7 318.6 998.9 997.9 413.0 5.5 15.1 5.2 9.4
MCpc (×105) 2.3 2.2 10.0 10.0 9.6 0.8 2.7 0.4 0.5 3.0

UAload 15 25 102 111 196 5 27 6 8 75
UAfood 241 339 3831 4501 8775 54 178 34 31 251

β (×103) 1000 1002 1706 2964 1054 1000 2631 1811 1355 6121
RMSEc 0.67 0.92 0.29 0.27 0.91 3.07 1.36 3.60 2.73 2.96

RMSEfood 0.08 0.09 0.14 0.18 0.30 0.26 0.23 0.56 0.31 0.50

Table 3: Empirical parameters and RMSE values for chilled and frozen coldrooms.

5. Application Example
In advanced control applications, simulation models are often required to test and refine the chosen approach
prior to real-world implementation. A schematic demonstrating an example framework for a supervisory model
predictive control (MPC) approach applied to a refrigeration system can be seen in Figure 5. The MPC scheme
will have a user-defined objective function, which is typically minimising operational cost subject to variable
electricity prices, or tracking a reference power consumption sent from the grid for demand-response applica-
tions. In either case, the key control variable is the optimal temperature setpoint, T ∗

sp, which can be forwarded
to the local cabinet controllers to enact the required expansion valve position OD. The devised cabinet models
can then be used to simulate the resulting cabinet and food temperature changes. An equivalent modelling
and control approach has been demonstrated for a commercial HVAC system in the UK and simulations show
the ability to reduce operational costs while adhering to user specified constraints [9].

Model Predictive Control

Local Controller

Display Cabinets

Fa
st

 lo
op Sl

ow
 lo

op

Simulation Environment

Figure 5: Example supervisory MPC application using refrigeration cabinet model.

The proposed cabinet modelling approach is well suited to these control applications for a number of reasons.
Firstly, a large number individual cabinet models can be fit offline with low computational overhead, allowing a
user to easily simulate a entire supermarket refrigeration system. Additionally, the modelling approach shows
satisfactory modelling accuracy when trained on only a small snapshot of 24 hours of data. Finally, once the
optimal empirical parameters are known, the cabinet models are a simple system of linear equations providing
a fast, efficient method to test any proposed control approach.

6. Conclusion
This paper presents a data-driven modelling approach to simulate the behaviour of chilled and frozen cabinets
and coldrooms, using a UK supermarket as a case study. Individual units are modelled using a discrete LTI
state space model, based on an overall system energy balance, for which empirical parameters are deter-
mined using a genetic algorithm fitting approach. The proposed approach is demonstrated using 24 hours
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of historical data from 10 display cabinets and 10 coldrooms, and shows satisfactory performance across the
range of cabinets tested. Finally, a high-level example application of the proposed modelling approach to a
supervisory, model predictive control scheme was discussed. Future work should look to better understand
the food temperature dynamics, perhaps using temperature probes instead of an estimated CPT value, as this
is the most important variable to track in control applications.
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