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Abstract:
The optimization of multi-energy systems (MESs) in which multiple energy carriers interact with each other is a complex
problem. Their optimal operation and design can be determined through mathematical programming. A classical technol-
ogy used in MESs is the combined heat and power units (CHP) whose efficiency is modeled through non-linear equations.
These non-linear functions are approximated through piecewise linear ones by introducing binary decision variables, which
generates a mixed-integer linear program (MILP). Consequently, optimizing such systems over a long time period with a
high temporal resolution becomes infeasible in a reasonable amount of time. In this work, we propose a fast heuristic
algorithm to optimize the design and operation of such an MES. Our case study is an MES at the scale of a district with
five types of generation units, including a CHP, over a time period of one year with a temporal resolution of one hour.
Comparison of the proposed heuristic and a state-of-the-art MILP solver over smaller time periods shows that the heuristic
is up to 99.9 % faster, with a mean error of 2.3 × 10−4 % compared to the optimal solution. The heuristic can also solve the
optimal design and operation problem over a year in about 10 minutes.
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1. Introduction
Energy systems may include several types of energy carriers, such as electricity or heat. However, these
carriers are classically considered as separate systems. Combining them into a single multi-energy system
(MES) can increase the energy efficiency of the system by taking advantage of the synergies and interac-
tions between the energy carriers [1]. It helps to reduce costs or reduce environmental impact by integrating
renewable energy sources (RES) more easily in the form of intermittent energy sources [2].
An MES can be optimized using techniques from Operational Research by modeling the system as a mathe-
matical program. Optimization of an MES generally focuses on improving two main areas of the system: its
design, and its operation. Optimizing the design aims to select which production technologies to use in the
system, along with their installed capacity, configuration, etc. Optimizing the operation deals with planning the
use of the technologies to meet the energy demands by choosing at each time step how much energy each
technology produces [3].
Two important points to consider when optimizing an MES are the time horizon and the temporal resolution
of the optimization problem [4]. A large time horizon is more accurate to optimize the design, but more com-
plex to solve. Similarly, high temporal resolution impacts the accuracy, especially when intermittent RES are
considered in the system [5].
Two main approaches are typically used to solve such optimization problems: exact or approximate methods.
Exact methods (e.g., branch-and-bound) solve the problem to optimality; however, they are computationally
expensive and may not be able to even solve medium and large instances of the problem due to the high
complexity of MES models. [6] review different exact methods and their properties to solve an MES. On the
other hand, approximate methods employ approximate algorithms (e.g., heuristics or metaheuristics) to solve
the problem. As their name implies, the approximate algorithms do not guarantee optimality but are able to
provide good solutions (i.e., close to optimal) in a reasonable computation time for complex MES models. As
an example, [7] use Particle Swarm Optimization algorithm, as a metaheuristic algorithm, to minimize the cost
of an MES with three energy carriers.
To deal with the high complexity of MES models, simplifications are sometimes necessary [8]. An example is
the use of design days to make the model less complex. Instead of solving the model over a long time period
(e.g. a full year), it is solved over smaller time periods of one or a few days that represent typical days (i.e.,
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design days) of the year. [9] divide the year into 12 representative periods with a resolution of one hour, plus
an extreme event, prior to the optimization. [10] represent the year using shiftable 24-hour periods.
There can also be simplifications in the mathematical model. Modeling an MES typically generates some non-
linearities. Considering the difficulties in solving non-linear models, it can be more efficient to linearize the
non-linear parts of a model to solve it using linear solvers. [11] linearizes the part-load efficiency of a combined
heat and power unit (CHP) and optimizes the model over several typical 24-hour periods.
In this work, we aim to optimize a non-linear MES over a time period of one year with a temporal resolution
of one hour. To do so, the system is first formulated as a non-linear mathematical programming model, which
is then linearized using a set of auxiliary binary decision variables. Finally, the initial non-linear model is
transformed into a mixed-integer linear programming (MILP) model. Solving the proposed MILP model for
a period of one year with a temporal resolution of one hour is practically impossible using exact methods.
Consequently, an innovative heuristic algorithm is proposed to solve the linearized model. Our proposed
algorithm is significantly faster than commercial exact solvers (e.g., branch-and-bound) to solve the problem,
while still obtaining good solutions very close to optimal ones.
The rest of this paper is organized as follows: Section 2. introduces the definition of the optimization problem
and its mathematical formulation. Section 3. presents the proposed heuristic algorithm used to solve the
problem. In Section 4. we employ the proposed algorithm to solve a real case study and compare the results
of our algorithm with exact methods. Finally, Section 5. concludes the paper and provides further perspectives.

2. Problem definition
In this work, we study an MES with three energy carriers: electricity, heat, and gas, the latter being only used
as fuel. The goal is to meet the energy demand of the system by optimizing the design and operation of the
MES with a time resolution of one hour over a time horizon of one year.
The system is characterized by different generation technologies: a combined heat and power unit (CHP) to
provide heat and electricity from gas using an internal combustion engine and a heat recovery system [12];
an electric boiler (EB) and a gas boiler (GB) to provide heat; two renewable energy sources (RES) that are
photovoltaic (PV) panels to provide electricity and solar thermal (ST) panels to provide heat. The system can
also interact with the grid to buy electricity or sell the surplus electricity produced by PV panels.
The system must provide energy to respond to the heat and electricity demands while optimizing two objectives:
minimizing the cost of the system and maximizing the rate of RES. Therefore, the aim is to determine the design
and operation of the MES while optimizing the two objectives and respecting the energy balance of the system.
2.1. Mathematical formulation
To perform the optimization, the MES is modeled as a mathematical program, shown in Equations (1a) to
(1l). In this program and in the rest of this article, independent decision variables, which represent the optimal
values to determine, are shown in bold (e.g. Pe,PV ,t ). The other elements are parameters, i.e. fixed input data
of the model.

maximize ATCR = 100 ∗ (1 − ATCMES

ATCref
) (1a)

τRES = 100 ∗
∑

t∈T (Pe,PV ,t + Ph,ST ,t )
∑

t∈T (Le,t + Lh,t )
(1b)

subject to

APV + AST ≤ Atotal (1c)

Pe,CHP,t ≤ PCHP,nom ∀t ∈ T (1d)

Ph,GB,t ≤ PGB,nom ∀t ∈ T (1e)

Ph,EB,t ≤ PEB,nom ∀t ∈ T (1f)

Pe,CHP,t = (a + b( Pe,CHP,t
PCHP,nom

) + c( Pe,CHP,t
PCHP,nom

)2)Fg,CHP,t ∀t ∈ T (1g)

Ph,CHP,t ≤ ηth,CHP (Fg,CHP,t − Pe,CHP,t ) ∀t ∈ T (1h)

Ve,t + Pe,PV ,t = APVηDC/ACηref (1 − α(30 + 0.0175(Gβ,t − 300)

+ 1.14(Ta,t − 25) − Tref ))Gβ,t ∀t ∈ T (1i)

Ph,ST ,t ≤ AST (Gβ,tη0 − Uloss(Tw ,m − Ta,t )) ∀t ∈ T (1j)

Pe,CHP,t + Pe,PV ,t + Ue,t − Ph,EB,t
ηEB

= Le,t ∀t ∈ T (1k)

Ph,CHP,t + Ph,GB,t + Ph,EB,t + Ph,ST ,t = Lh,t ∀t ∈ T (1l)

Aj ∈ [Amin
j , Amax

j ] ∀j ∈ {PV , ST} (1m)
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Pj ,nom ∈ [Pmin
j ,nom, Pmax

j ,nom] ∀j ∈ {CHP, GB, EB} (1n)

Pe,CHP,t , Ph,CHP,t , Fg,CHP,t , Ph,GB,t , Pe,PV ,t , Ph,ST ,t , Ue,t , Ve,t ≥ 0 ∀t ∈ T (1o)

The first two formulas are the objective functions that are maximized: (1a) as the annual total cost reduction
of the MES compared to a reference cost ATCref , and (1b) as the rate of RES used to respond to the energy
demand. The annual total cost ATCMES in (1a) is expressed as (2):

ATCMES =
∑

j∈M
(CO&M,j + crf · Cinv ,j ) −

∑
t∈T

Igr Ve,t +
∑
t∈T

(Cgr ,tUe,t + Cg(Fg,CHP,t + Ph,GB,t
ηGB

)) (2)

with M = {CHP, GB, EB, PV , ST} the set of technologies, T = (1, ..., 8760) the set of time steps of the year. Ig
is the price of electricity sold, Ve,t the electricity sold at time t , Cgr ,t the cost of the electricity bought depending
on the time of day t , Ue,t the electricity bought at time t , Cg the cost of gas bought, Fg,CHP,t the gas used by
the CHP at time t , Ph,GB,t the heat of the GB at time t , and ηGB the efficiency of the GB.
The dependent variables CO&M,j and Cinv ,j represent the operation and maintenance cost and the investment
cost of each technology j ∈ M, summarized in Table 1. crf is the capital recovery factor and represents
the value of an annuity based on the number of annuities n and a discount factor i . It is expressed as crf =
i(1 + i)n/((1 + i)n − 1). Each technology j has an investment cost γinv ,j , and an operation and maintenance cost
with a fixed part γO&M,j ,f and a variable part γO&M,j ,v . Ppanel ,nom is the nominal power of a PV panel.

Table 1: Investment and operation costs of the technologies

Technology j Cinv ,j CO&M,j
CHP γinv ,CHPPCHP,nom γO&M,CHP,v

∑
t∈T Pe,CHP,t

GB γinv ,GBPGB,nom γO&M,GB,f PGB,nom
EB γinv ,EBPEB,nom γO&M,EB,f PEB,nom + γO&M,EB,v

∑
t∈T Ph,EB,t

PV γinv ,PV Ppanel ,nomAPV/Apanel γO&M,PV ,f Ppanel ,nomAPV/Apanel
ST γinv ,ST AST γO&M,ST ,f AST

The reference cost is calculated as the cost of responding to the demand using only the GB to generate heat
and only buying electricity from the grid, calculated as (3):

ATCref = γO&M,GB,f max(Lh,t ) + crf · γinv ,GB · max(Lh,t ) +
∑
t∈T

(Cgr ,t Le,t + Cg
Lh,t
ηGB

) (3)

The other equations and inequations in the model represent physical constraints. Equation (1c) constrains
the maximum area of solar panels, with APV and AST the area of PV and ST panels and Atotal the total area
available for solar panels. (1d) to (1f) represent the limitation of the production by the installed capacity of the
technologies with Pe,j ,t the electricity generated by technology j at time t , Ph,j ,t the heat generated by technology
j at time t , and Pj ,nom the installed capacity of technology j . Equations (1g) and (1h) represent the power and
heat production of the CHP. Fg,CHP,t is the gas consumption of the CHP, a, b, and c are the coefficients
of electrical efficiency of the CHP, used by the function a + b(Pe,CHP,t/PCHP,nom) + c(Pe,CHP,t/PCHP,nom)2 that
represents the electrical efficiency, depending on the part-load ratio of the CHP [12]. ηth,CHP is the thermal
efficiency of the CHP. Equation (1i) represents the electricity production from the PV panels. PV panels can
sell the surplus produced power to the grid, represented by the variable Ve,t . ηDC/AC is the efficiency of
PV inverters, ηref is a reference efficiency for PV, α the temperature coefficient of the PV, Gβ,t the global
solar radiation at time t , Ta,t the ambient temperature at time t , and Tref a reference temperature. (1j) is the
production of heat from ST panels. η0 is the optical efficiency of ST, Uloss the thermal loss coefficient, Tw ,m the
mean water temperature in the ST collector. Equations (1k) and (1l) force the power and heat balance of the
MES, with ηEB the efficiency of the EB, Le,t the electricity demand at time t , and Lh,t the heat demand at time t .
Finally, (1m), (1n), and (1o) represent the domain of the design and operation variables, respectively.
However, as seen in (1g), the CHP is governed by a non-linear efficiency function representing the part-load
efficiency of the power generation of the CHP. Using a non-linear solver to solve a non-linear problem does not
guarantee the optimality of the solution. We, therefore, propose to approximate this non-linear function by a
piece-wise linear function to be able to model the system as a MILP.
2.2. Linearization
The efficiency function of the CHP in (1g) is linearized through a piece-wise linearization with two decision
variables, adapted to the shape of the function. The proposed method of this paper is inspired by the so-called
“triangle method” proposed by [13], which we adapt to the problem at hand. This type of method works by
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Figure 1: Linearization methods examples

adding binary variables in the mathematical model to know which linear piece is selected. The mathematical
program resulting from the addition of these binary variables is a MILP model, which can be solved by exact
methods (e.g., branch-and-bound, branch-and-cut) [14], guaranteeing the optimality of the solution found.
The “triangle method” of [13] linearizes a function by introducing piece-wise linear parts in the form of triangles.
However, in this work, half of those triangles are outside the feasible region of the problem. Figure 1a is an
example of the application of the “triangle method”. The x-axis is the variable PCHP,nom, the y -axis the variable
Pe,CHP,t , and the z-axis would be the function Fg,CHP,t to linearize. αn,m,t and hn,m,t represent the variables
introduced in the model by this linearization method, N and M being the number of breakpoints on the x
and y axes, respectively. As can be seen, half of the triangles are grayed out because they are outside the
feasible region in our problem, enforced by Constraint (1d) of the model. This means that some variables and
constraints would be added to the model without being useful in the present study. It also needs a large number
of triangles to work with a small installed capacity of the CHP for this problem. Looking again at Fig 1a, for the
linearization to be effective, the value of PCHP,nom must be greater than x2, otherwise it would be equivalent to
a linearization with a single triangle. Furthermore, a MILP model, with binary or integer variables, while being
able to be solved to optimality, is still harder to solve than a linear program (LP) with only continuous variables.
Accordingly, reducing the number of binary variables can greatly reduce the complexity of the problem.
We therefore propose an “adapted” version of the triangle method to use fewer triangles and ignore the area
outside the feasible region. The adapted method better follows the function we are looking to linearize and
uses fewer binary variables, and it is not subject to the inaccurate linearization mentioned for the triangle
method when there is a small installed capacity. It introduces continuous variables, noted αn,t ∈ [0, 1], ∀n ∈
{1, ..., N}, t ∈ T , and binary variables, noted hn,t ∈ {0, 1}, ∀n ∈ {1, ..., N − 1}, t ∈ T , for each breakpoint
n ∈ {1, ..., N} in the linearization and at each time step t ∈ T . N is a parameter of the linearization and is the
number of breakpoints introduced (and therefore N − 1 is the number of triangles). We choose to linearize the
function Fg,CHP,t written as (4).

Fg,CHP,t =
Pe,CHP,t

a + b Pe,CHP,t
PCHP,nom

+ c( Pe,CHP,t
PCHP,nom

)2
(4)

We need the value of this function at different breakpoints over Pe,CHP,t , noted yn = Pmax
CHP,nom × (n − 1)/(N − 1):

f (yn) =
yn

a + b yn
Pmax

CHP,nom
+ c( yn

Pmax
CHP,nom

)2 (5)

Equations (6a) to (6f) represent the linearization constraints used to replace (1g). We consider N breakpoints,
and a convex combination of the values αn,t can approximate the values of the linearized variables PCHP,nom,
Pe,CHP,t , and Fg,CHP,t . Equation (6e) ensures that only one triangle h is selected at each time step, and (6f)
ensures that only the coefficients α associated with the selected triangle have non-zero values, with dummy
values h0,t = 0 and hN,t = 0. (6g) and (6h) constrain the domain of the linearization variables. An example with
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N = 4 breakpoints is presented in Fig 1b.

∑N
n=1 αn,t ≤ 1 ∀t ∈ T (6a)

PCHP,nom =
∑N

n=1 αn,tPmax
CHP,nom ∀t ∈ T (6b)

Pe,CHP,t =
∑N

n=1 αn,tyn ∀t ∈ T (6c)

Fg,CHP,t =
∑N

n=1 αn,t f (yn) ∀t ∈ T (6d)
∑N−1

n=1 hn,t = 1 ∀t ∈ T (6e)

αn,t ≤ hn,t + hn−1,t ∀n ∈ {1, ..., N}, t ∈ T (6f)

αn,t ∈ [0, 1] ∀n ∈ {1, ..., N}, t ∈ T (6g)

hn,t ∈ {0, 1} ∀n ∈ {1, ..., N − 1}, t ∈ T (6h)

The problem is studied through a multi-objective perspective, optimizing both the cost of the MES and the rate
of RES producing energy. It is not possible to improve both objectives at the same time, since the improvement
of one objective implies a degradation of another one. Therefore, we calculate a set of non-dominated solutions
on the so-called Pareto front. The ε-constraint method [15] is used to calculate a set of solutions on the Pareto
front, from which the decision maker can choose the solution that best corresponds to his or her preferences,
as a trade-off between the two objective functions. This method works by maximizing one objective function
while setting a constraint on the other objective function. Modifying the value of this constraint allows us to
obtain several optimal solutions.
Although linearizing the non-linear model makes it computationally easier to be solved, solving the proposed
MILP model is still challenging. The binary variables introduced to the model make it combinatorial and NP-
hard to solve. It is possible to obtain optimal solutions for shorter time horizons, up to a few weeks, but the
resolution of the model over the time horizon of one year is intractable in a reasonable computation time.
In this work, our goal is therefore to improve the resolution time of this model while obtaining good quality
solutions. To this end, we propose in the next section a heuristic to solve the problem over long time horizons
while maintaining good-quality solutions.

3. Solution approach
We propose a heuristic algorithm to reduce the complexity of the model by letting the binary variables be
continuous while guaranteeing the binary value of these variables. Heuristics are approximate algorithms that
aim to provide good solutions to a specific problem in a limited computation time [16]. They do not guarantee
the optimality of the solution, but are generally faster than exact methods.
The proposed heuristic is composed of two subsequent steps: 1) Initialization and 2) Iterative local search.
The initialization generates an initial solution by relaxing the binary variables of the proposed MILP model, and
the local search aims to iteratively improve the generated initial solution toward the optimal solution.
These two high-level steps are summarized in Algorithm 1. First, the MILP model is generated with the set
of parameters P of the case study (line 2). A relaxed MILP model, detailed in Section 3.1., is then created
from the MILP (line 3), and an initial solution is found after solving this model (line 4). Second, a local search,
described in Section 3.2., is used iteratively on the initial solution until there is no improvement. The values of
the objective functions are compared to their best values so far (line 5 of Algorithm 1), and if the new solution
is better, the next iteration of the local search starts.
As there are two objective functions ATCR and τRES in the model, subscripts 1 and 2 indicate the first and
second objective functions, respectively. In the proposed heuristic algorithm, the vector (bestObj1, bestObj2)
represents the best value of the objective functions found so far, and (obj1, obj2) is the vector of the objective
functions of the current solution. We consider that the solution a is better than the solution b if the first objective
function of a is better, or if the second objective function of a is better and the first objective function of a is at
least as good. As an example, consider ATCR and τRES as the first and second objective functions, respectively.
Solution a is better than b if ATCRa > ATCRb, or τa

RES > τb
RES and ATCRa ≥ ATCRb.

3.1. Initialization
As the first step of the heuristic algorithm, a relaxation method is used to generate an initial solution to the
problem: the binary variables that allow knowing which triangle is selected at each time step are relaxed to be
continuous (i.e., have a value between zero and one), transforming the MILP model into an LP model which is
much easier to solve by using, for example, the Simplex class of algorithms. All other variables and constraints
remain unchanged. The relaxed MILP model is solved as a linear model and, therefore, the continuous relaxed
variables hn,t have a value in [0, 1].
This process is explained in Algorithm 2. The first relaxed MILP model is solved on line 2. Then, at each time
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Algorithm 1 High-level algorithm
1: (bestObj1, bestObj2) ← (−∞,−∞)
2: MILP ← GENERATEMILP(P)
3: relaxedMILP ← RELAX(MILP)
4: (obj1, obj2), sol ← CREATEINITIALSOLUTION(relaxedMILP) � Find initial solution
5: while obj1 > bestObj1 or obj1 ≥ bestObj1 and obj2 > bestObj2 do
6: (bestObj1, bestObj2), bestSol ← (obj1, obj2), sol
7: (obj1, obj2), sol ← LOCALSEARCH(relaxedMILP, bestSol) � Improve the solution
8: end while
9: return bestSol

step t ∈ T , the variable with the highest value among h1,t , ..., hN−1,t is selected, and a constraint is added to
the model to force this variable to be equal to 1, on line 3 of the algorithm. The relaxed MILP model is again
solved with these additional constraints on line 4, obtaining this time a feasible solution with all the relaxed
variables hn,t having a value of 0 or 1, which gives us the initial solution for the heuristic.
In these algorithms, N is the ordered set of the triangle indices: N = (1, ..., N − 1). H is the set of variables
representing the triangles selected: H = {hn,t , ∀n ∈ N , t ∈ T }. They have binary values in the MILP model or
real values in the relaxed MILP model. sol is a vector of the index n of the triangle selected at each time step,
i.e. sol = ({n : hn,t = 1,∀n ∈ N}, ∀t ∈ T ) if the variables are binary.

Algorithm 2 Initial solution search algorithm
1: function CREATEINITIALSOLUTION(relaxedMILP)
2: (obj1, obj2), H ← SOLVE(relaxedMILP) � Solve relaxed MILP
3: Hmax

N ← (arg maxn(hn,t ), ∀t ∈ T ) � Get the max. argument n for each time step
4: C ← {hn,t = 1, ∀n ∈ Hmax

N , t ∈ T } � Construct set of constraints to force a triangle to 1 at each time step
5: (obj1, obj2), H ← SOLVE(relaxedMILP ∪ C) � Solve relaxed MILP with additional constraints C
6: sol ← ({n : hn,t = 1, ∀n ∈ N}, ∀t ∈ T ) � Get vector of arguments n where hn,t = 1 for each time step
7: return (obj1, obj2), sol
8: end function

3.2. Local search
The second step is to improve the initial solution found. For this aim, we developed a local search method to
improve the initial solution by looking at its neighborhood. A local search method works by applying small local
changes to a solution with the aim of improving the solution and is applied iteratively until a stopping criterion
is reached, e.g. the solution does not improve further, or a time limit fixed in advance is exceeded.
In this work, the local search starts from the initial solution found previously using Algorithm 2. Adjacent
linearization triangles of this initial solution are selected to obtain a better solution. For example, in Fig 1b, we
can see that if h1,t = 1, the first triangle is selected, and if α2,t > 0 and α1,t = 0, that would mean that the
point selected is on the edge between the first and second triangle, and we could choose to select the second
triangle without degrading the solution.
Using this knowledge, our local search method selects the other triangle each time a value of the linearization
is on the edge of a triangle, executed on lines 2 to 9 of Algorithm 3. For each time step t ∈ T , for each triangle
n selected, if the value of αn,t = 0 we select the next triangle, and otherwise if the value of αn+1,t = 0 we select
the previous triangle. If no value αn,t or αn+1,t is null, we are not on the edge of the triangle and therefore keep
the same triangle selected. The selected triangles become constraints in the linear program, i.e. a constraint
hn,t = 1 is added for the triangle n selected at time step t , ∀t ∈ T . The linear model is again solved with the
newly selected triangles. The new constraints to force the selected triangles are created on line 10, the relaxed
MILP model is solved with these constraints on line 11, and the new solution is then constructed on line 12.
A new iteration of the local search is started if the new solution is better than the previous one. Otherwise, the
algorithm stops and the best solution found is considered as the solution of the algorithm.

4. Case study
4.1. Description
An instance of the problem defined in Section 2. is used to compare the solutions of the heuristic algorithm and
the MILP resolution with real-world data. The MES studied in the present case study covers an area of 33.5
hectares in the vicinity of Nantes, France. It includes the campus of IMT Atlantique, a French technological
university, and 45 single-family houses. There are two objective functions to optimize: the maximization of the
cost reduction of the MES (i.e. the minimization of the cost of the MES compared to a reference cost), and the
maximization of the rate or RES used to respond to the energy demand. The values of the parameters of the
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Algorithm 3 Local search algorithm
1: function LOCALSEARCH(relaxedMILP, sol)
2: for all t ∈ T do
3: n ← solt � Index n of triangle selected for time t
4: if αn,t = 0 and n < N − 1 then
5: solt ← solt + 1
6: else if αn+1,t = 0 and n + 1 > 1 then
7: solt ← solt − 1
8: end if
9: end for

10: C ← {hsolt ,t = 1, ∀t ∈ T } � Construct set of constraints for the new triangles
11: newObj , H ← SOLVE(relaxedMILP ∪ C) � Solve relaxed MILP with selected triangles sol
12: newSol ← ({n : hn,t = 1,∀n ∈ N}, ∀t ∈ T )
13: return newObj , newSol
14: end function

model for this case study are summarized in Tables 2 and 3. The energy demands, the temperature, and the
global solar radiation over the year are time series parameters.

Table 2: Cost (investment and operation) parameters per technology

Technology j γinv ,j γO&M,j ,f γO&M,j ,v

CHP 1140e/kW - 21e/MWh
GB 90e/kW 3.15e/(kW year) -
EB 100e/kW 1e/(kW year) 0.8e/MWh
PV 1000e/kW 15e/(kW year) -
ST 615e/m2 10e/(m2 year) -

4.2. Methodology
The model is solved using an MILP solver and the proposed heuristic algorithm to compare the two resolu-
tion methods. Three periods of the year of one week are studied: one week in winter when there is high
demand variability and low RES generation, one week in summer when there are lower demands and high
RES potential, and one week in mid-season when the demand is lower but there is still a high RES potential.
The time horizon of one week allows us to obtain the optimal solution for the MILP model, and therefore, by
comparison, to evaluate the quality of the output of the proposed heuristic algorithm. For each of the three
periods, 10 solutions are calculated on the Pareto front using the ε-constraint method explained in Section
2., with solution 1 being the solution with the most RES and solution 10 the solution with the highest cost
reduction. The number of breakpoints for the linearization was set by trial and error at a value N = 10 (i.e.
N − 1 = 9 triangles), giving a good trade-off between the precision of the linearization and the complexity of
the model.
The two methods are compared in terms of the quality of the solution using a Mean Ideal Distance indicator
to compare the Pareto fronts obtained. This indicator compares the solutions of the two Pareto fronts, as
the mean difference of the distance of each solution to an ideal point at the origin, as detailed in (7), with
S = {1, ..., 10} the 10 solutions calculated.

mean distance =
1
|S|

∑
s∈S

(√
ATCRoptimal

s
2

+ τRES
optimal
s

2 −
√

ATCRheuristic
s

2
+ τRES

heuristic
s

2
)

(7)

An error indicator also allows us to compare the result of the heuristic algorithm with the optimal solution, by
calculating the error between the heuristic solution and the MILP solution for the two objective functions and
the |S| solutions, as in (8).

error =
{∣∣∣ f optimal

s −f heuristic
s

f optimal
s

∣∣∣ , ∀f ∈ {ATCR, τRES}, s ∈ S
}

(8)

The maximum, mean, and standard deviation are calculated and shown in the table.
The solutions are also compared in terms of the total computation time for the |S| solutions.
An energy analysis is also performed to compare the two methods. The difference between the values of
the operation variables for the two variables is presented at each time step, in the form of a boxplot. As an
example, the set v = {Pheuristic

e,CHP,t −Poptimal
e,CHP,t , ∀t ∈ T } would be presented as a boxplot for the electricity produced

by the CHP. Whiskers are represented to show the 5th and 95th percentiles of each set. These figures are
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Table 3: General parameters of the case study

Pmin
CHP,nom = 100 kW, Pmax

CHP,nom = 1000 kW Minimum and maximum nominal power of the CHP
Pmin

GB,nom = 100 kW, Pmax
GB,nom = 3000 kW Minimum and maximum nominal power of the GB

Pmin
EB,nom = 100 kW, Pmax

EB,nom = 3000 kW Minimum and maximum nominal power of the EB
Amin

PV = 0 m2, Amax
PV = 10 000 m2 Minimum and maximum area of the PV panels

Amin
ST = 0 m2, Amax

ST = 10 000 m2 Minimum and maximum area of the ST panels
Le,t (kW) Electricity demand of the system
Lh,t (kW) Heat demand of the system

a = 0.1, b = 0.4, c = −0.2 Electrical efficiency coefficients of the CHP
β = 0.3 Constant CHP electrical efficiency

ηth,CHP = 0.8 Thermal efficiency of the heat recuperation system of the CHP
ηGB = 0.8 Efficiency of the GB
ηEB = 0.8 Efficiency of the EB

ηDC/AC = 0.9 PV inverters’ efficiency
ηref = 0.155 Reference efficiency for PV

Gβ,t (W m−2) Global solar radiation
α = 0.43 %/°C Temperature coefficient of PV

Tref = 25 °C Reference temperature
Ta,t (°C) Outdoor temperature

Ppanel ,nom = 250 W Nominal power of a PV panel
Apanel = 1.6 m2 Area of a PV panel

η0 = 0.8 Optical efficiency of ST
Uloss = 5 W m−2 °C−1 Thermal loss coefficient of ST

Tw ,m = 45 °C Mean water temperature in the ST collector
Atotal = 10 000 m2 Total area available for solar panels

Cgr ,t = 0.13e/kWh Cost of electricity bought from the grid (0h–7h)
Cgr ,t = 0.17e/kWh Cost of electricity bought from the grid (8h–23h)
Cg = 0.076e/kWh Cost of gas bought

Igr = 0.1e/kWh Price of electricity sold to the grid

presented for each of the three one-week periods, each time for the |S| = 10 solutions of the Pareto set. These
figures will show the difference in the MILP and heuristic solutions from an operation standpoint by highlighting
the difference in the power generated by the different technologies.
An energetic analysis will also be presented, with the energy balance of each technology being calculated
for the worst solution of each season. Energy is calculated as the integral of the power generated by each
technology over the time period, e.g. Ee,CHP =

∑
t∈T Pe,CHP,t for the electric energy balance of the CHP.

Capacity factors are also presented, showing the difference in the usage of each technology between the MILP
and heuristic solutions. It is the ratio of the energy output of a technology over the maximum theoretical energy
output based on the installed capacity. As an example for the GB, it is calculated as (9):

CFGB = 100 ×
∑

t∈T Ph,GB,t

|T |PGB,nom
(9)

For the RES the maximum theoretical energy depends on the environmental conditions, as in 10 for the ST:

CFST = 100 ×
∑

t∈T Ph,ST ,t∑
t∈T AST (Gβ,tη0 − Uloss(Tw ,m − Ta,t ))

(10)

The installed capacity of the CHP is expressed in its electrical installed capacity, so the maximum theoretical
heat energy is calculated using ηe,CHP = 0.3, which is the best theoretical electrical efficiency given the values
of the parameters a, b, and c, which gives a capacity factor for the heat of the CHP calculated as (11):

CFh,CHP = 100 ×
∑

t∈T Ph,CHP,t

|T |PCHP,nomηth,CHP(1 − 0.3)
(11)

Finally, a resolution of the model is performed over the full year using the proposed heuristic algorithm. The
computation time is compared with the resolution of the full year using a MILP solver with an optimality gap as
a stop criterion, to have an idea of the time required to solve the full year to optimality.
4.3. Results
The optimal solutions are obtained using the Gurobi solver (version 9.5.2), and the heuristic was implemented
in Python with the same version of Gurobi used to solve the relaxed MILP. All the solutions were computed
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on a computation server with 400GB RAM and Intel Xeon Gold 6138 @ 2.00GHz CPUs, using 32 threads for
Gurobi and one thread in Python.
Table 4 shows the computation times of the two methods for the three different periods (winter, summer, and
mid-season). The optimal time and the heuristic time are the total time necessary to obtain the 10 solutions for
each method and each period. The improvement is the relative difference between the two durations.

Table 4: Comparison of the total computation time over 3 one-week periods

Period Optimal time Heuristic time Improvement
Winter 1182.4 s 4.1 s 99.7 %

Summer 42.3 s 1.1 s 97.4 %
Mid-season 1802.0 s 2.0 s 99.9 %

As can be seen for the mid-season period, the MILP solver can take a really long time to find the solution. This
period is especially complex because it is the season where the energy demand varies the most from day to
day, but there is still enough solar radiation to make the RES a good option to generate energy. On average,
for the three periods computed here, the heuristic algorithm is 99.0 % faster than the MILP solver.
Table 5 shows the error of the heuristic method compared to the optimal solutions found when solving the MILP
model, i.e. the maximum, mean, and standard deviation of the errors calculated from (8). It also shows how
many times the heuristic algorithm found the optimal solution.

Table 5: Precision of the heuristic algorithm

Period Error Nbr. optimal solutions
Max. Mean SD (out of 10)

Winter 6.6 × 10−5 6.8 × 10−6 1.6 × 10−5 4
Summer 2.5 × 10−15 7.2 × 10−16 6.9 × 10−16 6

Mid-season 3.1 × 10−10 1.6 × 10−11 7.0 × 10−11 4

We can see that the heuristic obtains good solutions, the maximum error being 6.6 × 10−5 and the average
mean error 2.3 × 10−6. Furthermore, the heuristic found the optimal solution 14 times out of the 30 solutions
computed.
This shows that the heuristic method works well for small time periods, giving good-quality solutions with a
much smaller computation time than the MILP.
Figure 2 presents boxplots of the difference between the values of the operation variables of the MILP and
the heuristic resolutions. The x-axis of each subplot represents the 10 solutions of the Pareto front, and the
y -axis is the difference in the operation’s variables. When there is no symbol for ST, that means that no ST
panels are installed for this solution. We can see that the ST panels are installed only in winter and on the first
solutions, when we focus on maximizing the RES. In these boxplots, the whiskers represent the 5th and 95th
percentiles, and the points are the outliers outside this range. As can be seen in the figure, the “box” is never
visible, meaning that the first and third quartiles always coincide with the median; therefore, at least 50 % of
the operation variables of each technology are identical between the solutions of the MILP and of the heuristic.
Most of the time, the 5th and 95th percentile whiskers also coincide with the median, meaning that more than
90 % of the solutions are the same. The difference is larger in winter and smaller in summer. This can be
explained because the energy demands have a larger variability with a greater maximum demand in winter.
Another analysis that can be drawn from Fig 2 is that the two resolution methods can have different operation
plans but still be optimal in terms of the mathematical program. During the winter week, for solutions 2, 3, 4,
and 5 the MILP solver and the heuristic give the same values for the two objective functions, the same installed
capacities, and the same triangles selected for the linearization. However, solutions 2, 3, and 4 on the boxplots
2a show that the operation variables are slightly different. The same is true for the summer week, with solutions
1, 2, 3, 4, 5, and 10 being optimal but having different values for the operation variables for solutions 2, 3, 4,
and 5 on 2b, and for the mid-season week, with solutions 1, 2, 3, and 10 being optimal but solutions 2 and
3 having different operation values on 2c. This can happen because the energy balance is identical, but the
energy might be used at different times of the week.
It can also be observed that ST panels are not installed during the summer and mid-season weeks, and ST
panels appear in winter only when there is a high value for the objective function τRES.
Table 6 presents the energy balance of the solution with the largest difference between the MILP and the
heuristic solution for each time period. The underlined cells show the technologies with a difference between
the two solutions. The relative differences in the values of the objectives functions for these solutions are
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(a) 1 week in winter

(b) 1 week in summer

(c) 1 week in mid-season

Figure 2: Difference in the operation of the MILP and heuristic resolutions

6.6 × 10−3 %, 1.6 × 10−13 %, and 3.1 × 10−8 % for ATCR, and 0 %, 3.3 × 10−14 %, and 1.9 × 10−14 % for
τRES, for the winter, summer, and mid-season week presented, respectively. As can be seen, the difference is
small even in the worst cases. For the summer and mid-season solutions, only the heat produced by the CHP
and the GB are different between the MILP and the heuristic solution, with the CHP heat energy being slightly
higher for the heuristic and the GB energy slightly lower. For the winter week, the energy produced by the EB
is also different, and there is also a difference in the electrical energy produced by the CHP and the electricity
imported from the grid.
Table 7 presents the capacity factors, calculated using (9), (10), and (11), for the same selected solutions. For
these solutions, the installed capacity is the same for the summer and mid-season solutions. The installed
capacity is different for some of the technologies for the winter week, with the largest difference being only
11 kW for the GB or a relative difference of 0.8 %. The capacity factor is also very similar, the largest difference
being 0.4 % for the electrical capacity factor of the CHP for the winter solution.
As an example, Fig 3 shows the operation of the 8th solution of the winter week for the MILP model and the
heuristic algorithm. As can be seen in the figure, the operation can be different at certain time steps. However,
the values of the objective functions are very similar, with a relative difference of 6.9 × 10−6 % for ATCR and
8.4 × 10−4 % for τRES. This can be explained by the fact that the operation variables intervene always as the
sum of the variables over the time period considered, i.e. as the energy over the time period. Two solutions can
be very similar in terms of energy but have different operation plans to reach the same energy. In other words,
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Table 6: Energy balance of the most different solutions

Winter, solution 1 Summer, solution 7 Mid-season, solution 5
Technology MILP Heuristic MILP Heuristic MILP Heuristic
CHP (heat) 135.65 MWh 135.21 MWh 8.89 MWh 8.92 MWh 46.27 MWh 46.38 MWh

GB 84.78 MWh 85.25 MWh 273.60 kWh 246.06 kWh 18.32 MWh 18.22 MWh
EB 261.66 kWh 245.40 kWh 0.00 Wh 0.00 Wh 132.62 kWh 132.62 kWh
ST 24.47 MWh 24.47 MWh 0.00 Wh 0.00 Wh 0.00 Wh 0.00 Wh

CHP (elec) 69.10 MWh 68.97 MWh 3.58 MWh 3.58 MWh 23.60 MWh 23.60 MWh
PV 16.51 MWh 16.51 MWh 27.01 MWh 27.01 MWh 22.62 MWh 22.62 MWh

Grid (bought) 3.00 MWh 3.11 MWh 23.48 MWh 23.48 MWh 8.63 MWh 8.63 MWh

Table 7: Capacity factors of the most different solutions

Winter, solution 1 Summer, solution 7 Mid-season, solution 5
MILP Heuristic MILP Heuristic MILP Heuristic

Technology Factor Capacity Factor Capacity Factor Capacity Factor Capacity Factor Capacity Factor Capacity
CHP (heat) 82.0 % – 82.3 % – 29.6 % – 29.7 % – 52.2 % – 52.4 % –

GB 36.2 % 1395 kW 36.1 % 1406 kW 1.6 % 100 kW 1.5 % 100 kW 22.4 % 486 kW 22.3 % 486 kW
EB 1.6 % 100 kW 1.5 % 100 kW 0.0 % 100 kW 0.0 % 100 kW 0.8 % 100 kW 0.8 % 100 kW

CHP (elec) 74.6 % 552 kW 75.0 % 547 kW 21.3 % 100 kW 21.3 % 100 kW 47.6 % 295 kW 47.6 % 295 kW
ST 67.9 % 4756 m2 67.9 % 4756 m2 – 0 m2 – 0 m2 – 0 m2 – 0 m2

PV 100.0 % 5244 m2 100.0 % 5244 m2 63.6 % 10 000 m2 63.6 % 10 000 m2 58.8 % 10 000 m2 58.8 % 10 000 m2

the technologies produce almost the same energy at different time steps over the time period. However, the
difference is acceptable in the objective of optimal design taking into account the operation (control aspects
being out of the scope of this work).

Figure 3: Operation for a MILP and heuristic solution (winter week, solution 8)

Finally, the model was solved with the heuristic algorithm for the full time period of one year, and a MILP solver
was used to try to solve the same model for the entire year. The solver was stopped when its optimality gap
reached 0.1 %, as it is not possible to obtain an optimal solution in a reasonable time.
The heuristic algorithm took 549.9 s to find results for the 10 solutions of the Pareto front. The MILP solver took
5.6 × 105 s, or 156.7 h to find the 10 solutions. That represents an improvement of 99.9 %. The average relative
differences for the 10 solutions of the Pareto front are 1.1 % and −1.7 % for ATCR and τRES, respectively, with
the heuristic giving better solutions than the MILP solver for ATCR. However the MILP solver was stopped
before obtaining an optimal solution.

5. Conclusion and perspectives
This paper presented the modeling of an MES as a non-linear mathematical programming model. A piece-wise
linearization method was used to linearize the model and obtain a MILP model. However, it has been shown
that the computation time can be intractable for optimizing the MILP model over a long time period of one year.
Consequently, a heuristic algorithm was proposed to solve the MILP model. The proposed algorithm finds an
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initial solution through a relaxed MILP model, then uses a local search to iteratively improve the initial solution
by finding which piece of the linearization to select.
A comparison of the resolution of small time periods of one week of the model through a MILP solver and
through the heuristic algorithm showed that the heuristic is capable of finding solutions close to the optimum.
It has also been shown that different operations of the MES can be optimal with regard to the mathematical
program. Even when the solution found by the heuristic is not optimal, the capacity factors of the different tech-
nologies are close to the optimum values. The heuristic algorithm was shown to be faster than the resolution
using a MILP solver, with an improvement of more than 99.9 % when solving a long time period of a year.
Although the proposed heuristic algorithm is very fast on the MES model presented in this article, further ex-
perimentation on other linearized models is still needed to determine if this method is generalizable for solving
other problems. Additional work is also needed to evaluate the robustness of the initialization method and the
local search, as relaxation of the MILP model could theoretically lead to infeasible solutions. Further experi-
ments should also be conducted to compare the solutions of the heuristic algorithm and the MILP resolution
over the full year, to assess whether the heuristic is still efficient when solving long time periods.
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