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Abstract:
The efficiency of a Concentrated Solar Power (CSP) plant strongly depends on the temperature at what the
steam is condensed. To date, the conventional systems used to remove the heat from CSP plants are either
water (wet) or air-cooled (dry). The use of wet cooling in CSP plants results in the best plant performance.
This efficiency increase, however, comes at a high cost: huge water use. This fact is crucial since CSP plants
are, in general, located in arid areas where water is scarce. Dry cooling eliminates the water use but suffers
from lower efficiency when ambient air temperature is high. Those hot periods are often the periods of peak
system demand and higher electricity sale price. A combined cooling system (combination of dry and wet
cooling) offers the advantages of each process in terms of lower water consumption and higher electricity
production. The ultimate goal of this research is to model and optimise the performance of a CSP plant
operating alongside with a combined cooling system in terms of water consumption and net power generation.
This paper focuses on the wet cooling tower modelling validated with experimental data from a pilot plant.
In this sense, two different models are compared: the Poppe model and an artificial neural network (ANN).
Both models are compared in terms of performance prediction (water outlet temperature and water use),
experimental requirements and applications. Although both models are reliable (for outlet water temperature,
R2 = 0.97 and RMSE= 1.01◦C with the ANN, and R2 ≈ 1 and RMSE< 0.36◦C for with the Poppe model), it
was found that depending on the variable, each model had its strengths and weaknesses.
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1. Introduction
Concentrated Solar Power (CSP) plants use mirrors to concentrate the sun’s energy to drive steam turbines
that create electricity. This technology currently represents a minor part of renewable energy generation in
Europe. Only approximately 5 GW are installed globally (of which 2.3 GW in Europe, concentrated in Spain).
However, the potential for growth is significant given the capability of CSP to provide renewable electricity when
needed, unlike other technologies that are dependent on the availability of the energy source. This dispatcha-
bility is possible thanks to in-built energy storage and enables plants to respond to peaks in demand, continue
production even in the absence of sunlight, and provide ancillary services to the grid. According to the Interna-
tional Energy Agency forecasts, CSP has a huge potential in the long term, ranging from the 986 TWh by 2030
up to 4186 TWh by 2050 according to the Sustainable Development hi-Ren scenario (Energy Technology Per-
spectives 2014), meaning CSP will account for 11% of the electricity generated worldwide and 4% in Europe.
As the technological leader in the sector, the EU has much to gain from such expansion. To remain a global
leader, the European industry needs to stay ahead with more advanced, competitive technologies. CSP plants
are, in general, located in arid areas, where water is scarce. The efficiency of these plants strongly depends
on the temperature at what the steam is condensed. To date, the conventional systems used to remove the
heat from CSP plants are either water (wet) or air-cooled (dry). The lowest attainable condensing temperature
is the wet-bulb temperature (wet system). This efficiency increase comes at a high cost: huge water use. Dry
cooling eliminates the water use but suffers from lower efficiency when ambient air temperature is high. Those
hot periods are often the periods of peak system demand and higher electricity sale price.
There are different types of innovative cooling systems that can reduce the water consumption: those that
integrate the dry and wet cooling systems into the same cooling device, which are called hybrid cooling systems
[1–3] and those that combine a dry and a wet cooling system, which are called combined systems. In the last
case, different configurations can be found.The most proposed in the literature is the one considering an Air
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Cooled Condenser (ACC) in parallel with a Wet Cooling Tower (WCT) [4, 5]. In this case, the exhaust steam
from the turbine is condensed either through the ACC or through a surface condenser coupled with the WCT.
Another configuration, recently proposed in Palenzuela et al. [6] is a wet and a dry cooling tower (type air
cooled heat exchanger) sharing a surface condenser. In this case, the exhaust steam from the turbine is
condensed through the surface condenser and the heated cooling water is cooled either through the WCT
or through the dry cooling tower. Combined systems are the most suitable option for a flexible operation as a
function of the ambient conditions, allowing to select the best operation strategies to achieve an optimum water
and electricity consumption [7]. To optimise the operation of this kind of refrigeration systems, modelling each
one of its components is required as a first step.
Regarding WCT modelling, two kind of models can be distinguished: those based on physical equations
and black-box model such as artificial neuronal networks (ANN). The analysis of wet cooling towers through
modelling (physical equations) has its origin in [8], where the theory for the performance evaluation of wet
cooling towers was developed. The author proposed a model based on several critical assumptions to reduce
the solution of heat and mass transfer in wet-cooling towers to a simple hand calculation. Because of these
assumptions, however, the Merkel method does not accurately represent the physics of the heat and mass
transfer process in the cooling tower. Bourillot [9] stated that the Merkel method is simple to use and can
correctly predict cold water temperature when an appropriate value of the coefficient of evaporation is used.
In contrast, it is insufficient for the estimation of the characteristics of the warm air leaving the fill and for the
calculation of changes in the water flow rate due to evaporation. These quantities are important to estimate
water consumption and to predict the behaviour of plumes exiting the cooling tower. Jaber and Webb [10]
developed the equations necessary to apply the effectiveness-NTU method directly to counterflow or crossflow
cooling towers. This approach is particularly useful in the latter case and simplifies the method of solution
when compared to a more conventional numerical procedure. The effectiveness-NTU method is based on the
same simplifying assumptions as the Merkel method. Poppe and Rögener [11] developed the Poppe method.
They derived the governing equations for heat and mass transfer in a wet cooling tower and did not make any
simplifying assumptions as in the Merkel theory. Predictions from the Poppe formulation result in values of
evaporated water flow rate that are in good agreement with full scale cooling tower test results. In addition, the
Poppe method predicts the water content of the exiting air accurately.
Although the theoretical analysis of WCT has demonstrated successful results with not excessive complexity,
black box models based on experimental data are also available in the literature. Numerous authors have
designed ANN models for WCT with different objectives, such as performance prediction, simulation and opti-
misation. One of the first works in this area is the one described in [12] where an ANN model was developed
to predict the performance of a forced-counter flow cooling tower at lab scale. In this case, the input variables
were the dry bulb temperature, relative humidity of the air stream entering the tower, the temperature of the
water entering the tower, the air volume flow rate and the water mass flow rate. The outputs of this model were
the heat rejection rate at the tower, the mass flow rate of water evaporated, the temperature of the water at the
tower outlet and the dry bulb temperature and relative humidity of the air stream leaving the tower. The results
obtained with a 5-5-51 ANN demonstrated that cooling towers at lab-scale can be modelled using ANNs within
a high degree of accuracy. At lab-scale there are also ANN models for Natural Draft Counter-flow Wet Cooling
Towers (NDWCT) such as the one proposed by [13]. In this case, the authors used a 4-8-6 ANN structure and
considered some additional variables, such as air gravity, wind velocity, heat transfer coefficients and efficiency
as outputs. All these works at lab-scale can be useful to validate the model development methodology but
may fail predicting the performance of WCT at larger scale. In this sense, special attention deserves the study
carried out by [14] where an 8-14-2 ANN model was proposed to predict the performance (the cooling number
and the evaporative loss proportion) of NDWCTs at commercial scale. The model is based on 638 sets of
field experimental data collected from 36 diverse NDWCTs used in power plants. It is a very challenging work
since it covers samples from a wide range of tower sizes and capacities but the results show that the Mean
Relative Error (MRE) is below 5%. From the ANN models found in the literature, it can be concluded that
these computational models are able to predict WCT performance with satisfactory results, but it is necessary
to deepen and reflect when it is convenient to develop models of this type or to use others, either based on
experimental data or based on physical equations. In the literature, comparisons between ANN and Response
Surface Methodology (RSM) models for WCT can also be found [15], such as the case of where ANN model
is compared with one obtained with the RSM. Although the results obtained show that ANN model predictions
are better than RSM model, the study is based on data from a WCT lab-scale system, with only one output
(the cooling temperature) and no ambient conditions variability.
Based on the previous discussion, the ultimate goal of this research is to optimise the operation of combined
cooling systems integrated into CSP plants in terms of water consumption avoiding a penalty in the plant
performance . This paper presents a comparison between the Poppe model (based on physical equations) and

1The notation n1-...-nl represents the architecture of the ANN model, where l is the number of layers and ni are the nodes in each one
of the layers.
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a model based on an ANN for performance evaluation of wet cooling towers. For the calibration of the physical
model and for the development of the neural network model, experiments have been performed in a 200 kWth
WCT integrated into a combined cooling system pilot plant, located at Plataforma Solar de Almerı́a (PSA).
The comparison between models not only evaluates the outputs accuracy obtained with both models, but also
discusses other aspects such as required inputs/outputs and parameters, minimal number of experiments and
possibility of applying these models for different purposes.
This paper is organised as follows: section 2. contains the description of the experimental facility, the math-
ematical modelling, and the experimental procedure for the performance tests. Next, the results obtained in
the tests are presented and discussed in section 3. Finally, the the most important findings of the research are
summarised in section 4.

2. Methodology
2.1. Description of the pilot plant
The pilot plant of combined cooling systems located at PSA (see the layout in Figure 1) consists of three
circuits: cooling, exchange and heating. In the cooling circuit (see a picture in Figure 2), refrigeration water
circulating inside the tube bundle of a Surface Condenser (SC) can be cooled through a Wet Cooling Tower
and/or a Dry Cooling Tower (type Air Cooled Heat Exchanger), both with a designed thermal power of 204 kWth.
In the exchange circuit, a saturated steam generator of 80 kWth (on the design point), generates steam at dif-
ferent pressures (in the range between 82 and 200 mbar), which is in turn condensed in the surface condenser
that has a thermal power at design conditions of 80 kWth. In this way, the steam transfers its latent heat of
condensation to the refrigeration water, that is heated. Finally, in the heating circuit, a solar field with a thermal
power of 300 kWth at the design point, provides the energy source required by the steam generator, in the form
of hot water. It is a unique, very flexible, fully instrumented and versatile facility, able to operate in different
operation modes: series and parallel mode, conventional dry-only mode (all water flow is cooled through the
dry cooling tower) and wet-only mode (all water flow is cooled through the wet cooling tower). For this work,
the wet-only operation mode has been used, in which the cooling water (FT-003) is pumped by Pump 1 from
the basin of the WCT to the surface condenser, circulating through Valve 2 position I up to the entrance of the
WCT where water is sprayed. The velocity of air going through the tower is regulated by variable frequency
drive (SC-001). The water losses by evaporation in the tower are replaced by demineralised water (FT-004)
when the basin level decreases. The sensors used in this operation mode and their characteristics in terms of
errors are shown in Table 1.

Figure 1: Layout of combined cooling systems pilot plant at PSA.

2.2. Experimental campaign
As mentioned in section 1., two models have been developed for performance evaluation of a WCT: the Poppe
model (based on physical equations) and ANN (based on experimental data). With the aim of calibrating and
validating both models, 19 experimental tests were performed at the combined cooling pilot plant located at
PSA. The physical model focuses on the calculation of the Merkel number, which according to the literature
depends on the water-to-air mass flow ratio (ṁw/ṁa). Therefore, the experimental camping has been designed
to cover different water-to-air mass flow ratios. This criterion is also valid with the neural network model, since
varying ṁw/ṁa allows obtaining different operating points, which helps in collecting information from different
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Figure 2: Picture of the cooling circuit in the combined cooling pilot plant at PSA.

Table 1: Characteristics of instrumentation (a value of the temperature in ◦C, b of reading, c full scale, d mean
value).

Measured variable Instrument Range Measurement uncertainty

Water temperature, TT-001, TT-006 Pt100 0 - 100◦C 0.3 + 0.005·T a

Cooling water flow rate, FT-001 Vortex flow meter 9.8 - 25 m3/h ± 0.65% o.r.b

Water flow rate, FT-004 Paddle wheel flow meter 0.05 - 2 m3/h ± 0.5% of F.Sc + 2.5% o.r
Ambient temperature Pt1000 -40 - 60◦C ± 0.4 @20◦C

Relative humidity Capacitive sensor 0 - 98% ± 3 % o.r @20◦C
Air velocity Impeller anemometer 0.1-15 m/s ± 0.1 m/s + 1.5% m.v.d

scenarios that can occur in tower. At the experimental facility, ṁw/ṁa can be modified in two ways, with Pump
1 (ṁw ) and with the fan frequency SC-001 (ṁa). Both variables were varied within the allowable range for plant
operation. In the case of the water flow, it ranged from 8 to 22 m3/h. The air mass flow rate was modified
by changing the frequency from 12.5 to a maximum of 50 Hz. Therefore, the experimental values of ṁw/ṁa
obtained were in the range 0.5-5. The thermal load was ≈ 170 kWth in all tests conducted.
The standards UNE 13741 “Thermal performance acceptance testing of mechanical draught series wet cooling
towers” [16] and CTI “Acceptance Test Code for Water Cooling Towers” [17] were taken as a reference to
evaluate that stationary conditions were achieved during the tests, in which it is established that the duration
of the test should not be less than one hour. During the test, the maximum deviation of circulating (or cooling)
water flow rate, heat load and range cannot be more than 5%. For the wet-bulb temperature and dry-bulb
temperature, the linear least-squares trends should not exceed 1◦C and 3◦C, respectively. Both variables shall
not have a deviation greater than ±1.5◦C and ±4.5◦C, respectively. Finally, it must be verified that the average
wind velocity did not exceed 4.5 m/s throughout the test and punctually (for a minute) the 7 m/s.
2.3. Modelling
The models presented in this section have been developed to predict two main outputs, the water temperature
at the outlet of the WCT, Twct ,out , and the water consumption, ṁwct ,lost . As inputs, both models require five
variables: the cooling water flow rate (ṁw ), inlet water temperature (Twct ,in), ambient temperature (T∞), ambient
relative humidity (φ∞) and the frequency level of the fan (ffan) (or the air mass flow rate2 (ṁa).
2.3.1. Poppe model

The well-known Merkel number is accepted as the performance coefficient of a wet cooling tower, [18]. This
dimensionless number is defined in Equation 1, and it measures the degree of difficulty of the mass transfer
processes occurring in the exchange area of a cooling tower.

2ANN uses as input f whereas Poppe’s model uses ṁa.
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Me =
hDav V

ṁw
, (1)

where the variables and parameters involved are described in the Nomenclature Section.
The Merkel number can be calculated using the Merkel and Poppe theories for performance evaluation of
cooling towers. The Merkel theory [8] relies on several critical assumptions, such as the Lewis factor (Le)
being equal to 1, the air exiting the tower being saturated with water vapour and neglecting the reduction of
water flow rate by evaporation in the energy balance. For this reason, the Poppe theory [11] is usually preferred.
In this theory, the authors derived the governing equations for heat and mass transfer in the transfer region
of the cooling tower (control volume shown in Figure 3, one dimensional problem). The detailed derivation
process and simplification of the previously-mentioned governing equations can be found in [18]

dz

ṁw + dṁw

hw + dhw

ṁw , hw

ṁa (1 + ω + dω)
h + dh

ṁa (1 + ω), h

dṁw = hD (ωsw − ω) dA
hC (Tw − T ) dA

Figure 3: Control volume in the exchange area of a wet cooling tower for counterflow arrangement.

According to the Poppe theory, the major following equations for the heat and mass transfer are obtained:

dω
dTw

=
cpw

ṁw
ṁa

(ωsw − ω)
(hsw − h) + (Le−1) [(hsw − h) − (ωsw − ω) hv ] − (ωsw − ω) hw

(2)

dh
dTw

= cpw

ṁw

ṁa

[
1 +

(ωsw − ω) cpw Tw

(hsw − h) + (Le−1) [(hsw − h) − (ωsw − ω) hv ] − (ωsw − ω) hw

]
(3)

d Me
dTw

=
cpw

(hsw − h) + (Le−1) [(hsw − h) − (ωsw − ω) hv ] − (ωsw − ω) hw
(4)

where Me in Equation 4, is the Merkel number according to the Poppe theory. The above described governing
equations can be solved by the fourth order Runge-Kutta method. Refer to [18] for additional information
concerning the calculation procedure.
2.3.2. Neural Network model

Machine learning algorithms are unique in their ability to obtain models and extract patterns from data, without
being explicitly programmed to do so. They are more effective with large volumes of data but can also be
applied for steady state modelling with fewer information. Artificial neural networks are part of this set of
algorithms and, as the name suggests, have a behaviour similar to biological neurons. Its structure is formed
by a succession of layers, each one composed by nodes (or neurons) and receiving as input the output of the
previous layer. With this input a calculation is performed and its output is fed as the input for the subsequent
layers.
The training process was done making use of the Neural Network Toolbox of MATLAB, using the Lavenberg-
Marquardt BP algorithm [19]. Several ANN architectures were tested varying the number of hidden layers
between 1 and 2 and the number of neurons in each layer between 1 and 10. The transfer function adopted in
the hidden layers was the logsig, whereas the one employed in the output layer was the purelin. The optimal
architecture was selected according to the performance function (Mean Square Error, MSE).
2.4. Procedure
Figure 4 schematically depicts the steps taken to perform the comparison procedure. Different tests are carried
out with a variety of values in the system inputs (mainly cooling water mass flow rate and fan speed), while
the system timeseries outputs are monitored and stored. The processing of the experimental data is done
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Set: ṁa (variable)

Perform experiment

Measure

f (Hz)=50−37.5−25−15−12.5

Model training and calibration

Physical model (Poppe)Neural network

Prediction calculation

Evaluate models

SC-004 = 4.32 − 1.16 kg s-1

f (Hz)=48.5−39.25−26.75−21−19

FT-001 = 6.15 − 2.17 kg s-1

Set: ṁw (variable)

T∞ , ϕ∞
(TT-001) (TT-006)  (FT-001) (SC-001) (FT-004)

RMSER2 Calculate errors

MODELS COMPARISON

EXPERIMENTAL CAMPAIGN

Twct,out , ṁwct,lost

Twct,in , Twct,out , ṁw , ṁa , ṁwct,lost

SC-004

Figure 4: Methodology scheme for experimental procedure and model calibration and evaluation.

as mentioned in subsection 2.2., when the plant achieves steady state conditions according to UNE 13741
specifications.
Once the experimental campaign is done and the steady state operation points identified, different case studies
are presented. Each case study takes the available operation points and divides them in two subsets: one is
used for calibration/training of the modelling approaches and the second one for testing their performance. The
case studies start with a low amount of points selected for training while the remaining are used for validation
and increase up to a maximum, to have a minimum of 5 points for validation.
The performance metrics used to evaluate the fitness of the models to the experimental data are the Root
Mean Square Error (RMSE) and R-squared (R2). RMSE is a statistical measure of the difference between the
values predicted by a model and the observed values. It is calculated as the square root of the mean of the
squared differences between the predicted and observed values:

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi )2

where yi is the measurement variable for the i − th data point, ŷi is the estimated value of the same variable
and N is the number of data points.
R-squared [20] is a statistical measure that represents the proportion of the variance in the predicted variable
that can be explained by the independent variable in a regression model, the measured output in this case,
with value equal to 1 indicating the best fit. It is calculated as follows:

R2 = 1 −

n∑
i=1

(yi − ŷi )2

n∑
i=1

(yi − ȳ )2
,

where ȳ is the mean value of the experimental values.

3. Results and discussion
Table 2 shows the average values of the variables required by both models, which were obtained from the
experimental campaign described in subsection 2.2.. As can be observed, the range of air and water mass
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flow rates are 1.16-4.32 kg/s and 2.17-6.15 kg/s, respectively. Regarding the environmental conditions, these
were quite similar for all tests: high ambient temperatures (ranging between 32◦C and 41◦C), and low ambient
relative humidities (between 13% and 40%) since it was carried out during the summer season. The table also
lists the output variables: Twct ,out and ṁwct ,lost .

Table 2: Averaged values in the experimental test runs.

Test Qpump (m3/h) ffan(%) T∞ ( ◦C) φ∞ (%) Twb∞ (◦C) Twct ,in ( ◦C) Twct ,out ( ◦C) ṁa (kg/s) ṁw (kg/s) ṁwct ,lost (kg/s)

1
≈8

12.5 33.31 39.58 22.53 48.88 34.79 1.193 2.173 0.050
2 15 35.05 32.38 22.16 46.87 32.95 1.481 2.176 0.081
3 50 36.02 29.94 22.23 43.74 25.43 4.248 2.170 0.091

4
≈9

25 36.76 14.76 18.39 42.56 26.74 2.636 2.449 0.073
5 37.5 36.59 17.43 19.11 39.58 23.74 3.668 2.445 0.080
6 50 34.77 18.46 18.30 39.15 22.26 4.248 2.445 0.092

7

≈12

12.5 40.50 13.11 19.97 46.85 36.94 1.157 3.263 0.058
8 25 39.75 12.97 19.50 40.30 28.42 2.588 3.272 0.075
9 37.5 36.93 22.39 20.79 38.13 26.25 3.648 3.266 0.097

10 50 35.79 16.13 18.24 35.34 23.32 4.319 3.268 0.087
11 50 34.40 23.07 19.32 35.82 23.79 4.312 3.267 0.084

12

≈18

12.5 34.69 32.55 21.94 46.53 39.44 1.177 4.895 0.058
13 25 33.57 27.24 19.83 38.37 30.15 2.619 4.914 0.071
14 37.5 35.66 25.14 20.71 35.39 27.57 3.637 4.942 0.075
15 50 33.53 29.29 20.30 34.50 26.27 4.292 4.940 0.086

16

≈22

12.5 32.84 38.77 21.99 46.25 40.57 1.186 6.096 0.057
17 25 34.25 16.50 17.42 36.41 29.81 2.596 6.127 0.072
18 37.5 35.99 16.91 18.59 33.54 27.04 3.651 6.133 0.078
19 50 35.80 14.73 17.83 31.30 24.87 4.302 6.147 0.085

3.1. Poppe model
Figure 5 shows the variation of the Merkel number as a function of the water-to-air mass flow ratio (ṁw/ṁa)
for two case studies. It can be seen that the expected trend is observed: decreasing Me for increasing ṁw/ṁa
values (linear trend on log-log scale).

10-1 100 101
10-1

100

101

M
e

Case 13
Case 1

Figure 5: Experimental results for the Me number as a function of ṁw/ṁa.

The model based on the physical equations (Merkel number) can be obtained by correlating the values of
Me with the water-to-air mass flow ratio as an independent variable, described by an equation of the form
Me = c (ṁw/ṁa)−n. Constants c and n in the previous equation have been calculated for the different case
studies. In the Case 1, only 2 tests are considered for the fit (solid red line in Figure 5). Subsequently, more
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Table 3: Comparison of results and parameters for each case study between an ANN model and a physical
model based on Poppe equations.

Case
studies

Train
set size

Test
set size

ANN Poppe

Topology
Twct ,out ṁwct ,lost Params Twct ,out ṁwct ,lost

RMSE (◦C) R² RMSE (l/min) R² c n RMSE (◦C) R² RMSE (l/min) R²
1 2 17 5-4-2 5.23 -0.19 0.73 -0.01 1.663 -0.806 0.33 1.00 0.75 -0.06
2 3 16 5-2-2 5.35 -0.19 0.77 -0.06 1.651 -0.817 0.29 1.00 0.78 -0.09
3 4 15 5-5-2 2.11 0.83 0.47 0.62 1.595 -0.850 0.30 1.00 0.84 -0.19
4 5 14 5-5-2 2.03 0.85 0.56 0.50 1.618 -0.823 0.29 1.00 .085 -0.14
5 6 13 5-2-2 1.13 0.95 0.61 0.43 1.631 -0.802 0.31 1.00 0.84 -0.10
6 7 12 5-3-2 1.45 0.93 0.43 0.67 1.631 -0.802 0.32 1.00 0.75 0.00
7 8 11 5-10-2 1.67 0.91 0.46 0.66 1.629 -0.803 0.33 1.00 0.78 0.01
8 9 10 5-2-2 1.74 0.91 0.46 0.65 1.635 -0.790 0.35 1.00 0.76 0.06
9 10 9 5-10-2 1.69 0.91 0.49 0.62 1.640 -0.786 0.37 1.00 0.77 0.06

10 11 8 5-10-2 2.01 0.88 0.54 0.36 1.652 -0.769 0.41 1.00 0.81 -0.43
11 12 7 5-5-2 2.41 0.85 0.44 0.62 1.648 -0.776 0.32 1.00 0.55 0.40
12 13 6 5-5-2 2.72 0.81 0.47 0.59 1.636 -0.793 0.32 1.00 0.51 0.51
13 14 5 5-10-2 1.01 0.97 0.25 0.85 1.647 -0.804 0.36 1.00 0.55 0.31

tests are progressively added for the fit, up to a total of 14 tests in Case 13 (green series). These data are
presented in Table 3.
As can be seen in the Figure 5 and in Table 3, the fit is practically the same for cases 1 and 13. This sug-
gests that not much tests will be needed to get a reliable model of the tower. To evaluate the goodness of the
correlation, the differences between the data calculated with these correlations and those measured experi-
mentally for the outlet water temperature and water consumption of the tower can be verified. The results of
the comparison for both models is presented in subsection 3.3..
3.2. ANN
In Table 3 - Topology column, the configuration of the best obtained networks for each case study are shown.
In the first case study, the data available for training the neural network were too sparse to obtain significant
results, but it was still done to show the strengths of the model based on the first principle. More interesting
results are obtained for the latter case studies that make use of more data for its training, even though better
results could be obtained with a more extensive campaign and thus obtaining more points to work with. For
all of them, one hidden layer was always the best design, which is in accordance with results from literature
[12–15] since there is not enough data to adjust a more complex ANN. Also, the number of neurons tends to
be low, though the most performant networks make use of a higher number of neurons in the hidden layer (10).
As expected, the optimal network, considering as optimal the one that performs best with the available data,
is the one using the maximum amount of available data for training, while leaving enough points for testing. A
high error is obtained for the scarce available data networks.
Detailed parameters for the best obtained model are shown at Table 4. It is composed of five inputs, one
hidden layer containing ten neurons, and two outputs. It is a feedforward neural network (FFNN) that can be
described as 5-10-2 and its predicted output expression is: Ŷ = Φ(2)(LW(1)Φ(1)

(
IW(1)x + b(1)

)
+ b(2)), where

Φi is the layer i transfer function, b the bias matrices, LW and IW are the layer weight matrices (output and
input respectively), x is the network input and Ŷ . The subscripts corresponds with the notation used in the table.

3.3. Comparison between both approaches: prediction, abilities and requirements
3.3.1. Prediction

Table 3 shows the results obtained with both models. Each row shows a case study, which corresponds to
a number of data used for the training (or calibration) of the models. As one progresses through the case
studies, the number of data used for calibration increases. For each case the performance metrics (RSME
and R2) are calculated. Looking at the case of study with the best results (case study 16), the error obtained
in the prediction of the water outlet temperature (Twct ,out ) is almost null using the Poppe model (R2 ≈ 1 and
RMSE = 0.36◦C) whereas the error with ANN model is slightly higher (R2 = 0.97 and RMSE = 1.01◦C). This
comparison is also observed in Figure 6 (b), where the perfect fit is depicted together with the results obtained
with both models. On the contrary, in the case of the water consumption, the results with the ANN model are
better than those provided by Poppe’s model, being the RMSE with ANN model less than half that obtained
with Poppe’s model (0.25 to 0.55 l/min). This is because Poppe’s model predicts the water lost by evaporation
during the process, but it does not consider the water lost as drift (emission of droplets into the atmosphere)
nor other losses such as windage , splash-out, leaks or overflow.
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Table 4: Best performing network parameters.

Input weight matrix IW (10x5)
(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0016 0.0418 0.1239 0.1353 −0.1324
0.0011 −0.0348 −0.1022 −0.1104 0.1098
0.0064 −0.0066 −0.0297 −0.0294 0.0334
−0.0015 0.0252 0.0697 0.0740 −0.0748
−0.0056 0.0109 0.0389 0.0394 −0.0430
0.0035 0.0454 0.1362 0.1494 −0.1452
0.2361 0.1815 0.4889 0.3339 −0.4397
0.0209 0.0641 0.1763 0.1930 −0.1823
−0.0079 −0.0505 −0.1457 −0.1602 0.1539
0.0024 −0.0319 −0.0953 −0.1023 0.1026

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hidden layer bias vector b(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0041
−0.0062
−0.0040
0.0064
0.0048
0.0022
−0.2480
−0.0086
−0.0001
−0.0066

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Output layer weight matrix LW (2x10)T

(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1648 −0.1636
−0.1349 0.1351
−0.0335 0.0430
0.0922 −0.0908
0.0467 −0.0540
0.1814 −0.1799
0.6502 −0.5160
0.2428 −0.2231
−0.1969 0.1897
−0.1246 0.1265

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Output layer bias vector b(2) =

(
−0.0051
−0.1031

)

3.3.2. Experimental requirements

As previously mentioned, Table 3 shows the results obtained varying the number of training experimental
points. Regarding the water outlet temperature (Twct ,out ), it can be seen that the error is almost null for the
Poppe model even using the lowest number of train points (R2 ≈ 1 and RMSE = 0.33◦C), whilst is not the
case for the ANN one (R2 = −0.19 and RMSE = 5.23◦C), as expected. This is reflected in Figure 6 (a), there
is not enough information to adjust the weights and biases in the network and therefore it is unable to capture
the system dynamics. By increasing the available information during training, the results get better obtaining
the best results explained in subsubsection 3.3.1.. In the case of the ANN model, this trend is similar for
(ṁwct ,lost ) predictions; increasing the training point, the results improve (RMSE decreases more than 80% and
R2 changes from being negative to approaching 1). With the Poppe model and the ṁwct ,lost predictions, it can
be observed that, increasing the number of tests, the prediction improvement is low (RMSE decreases less
than 27 % and R2 changes from being negative to 0.31). Therefore, while the ANN model benefits from as
much data as possible, the Poppe model is already able to produce satisfactory results with just two properly
selected points. These two points are easy to identify in advance because they are related to the maximum
and minimum ṁw/ṁa ratio. In the practice, to minimise the error prediction, ≈5 points are often used.
Regarding the instrumentation, Poppe’s model requires measurement of the air flow rate at the outlet of the
WCT, while the ANN model uses as input the frequency of the WCT fan. In addition, to improve the water
consumption estimations provided by Poppe’s model, it would be necessary to carry out an experimental cam-
paign to measure the water losses due to drift.

3.3.3. Scalability, operating and weather conditions

One important advantage of the Poppe model is its adaptability to large scale systems, as long as the sys-
tem configuration remains the same. This allows to study and analyse pilot scale plants and extrapolate the
results to industrial sized plants. In addition, the model obtained is also capable of accurately predicting the
behaviour of the WCT in conditions that have not been tested (different environmental conditions or inlet water
temperatures). It would even be valid for unknown ṁw/ṁa, although the reliability of the model will be lower if
this ratio moves away from those experimentally used for calibration. This is not the case for ANN models that
are only applicable to the system and operating ranges they are trained for. Even though there are techniques
to create new ANN models from previously trained ones [21], this is not as straightforward, requires expertise
and additional experimental data.
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(a) Larger set for training. Case study: 13
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Figure 6: Models performance comparison with different dataset distribution.

3.3.4. Implementation

In the recent years and due to the increase popularity of artificial intelligence, there are many libraries of easy
access for most common programming languages, which makes the development and implementation of ANN
models achievable by non experts or specialised teams. The need of extensive data can be mitigated if an
online steady-state identification is implemented [22], which allows updating the model with a growing dataset.
In the case of the Poppe model, although the number of tests is not a problem, it is necessary to know the
governing equations described in the subsubsection 2.3.1.. Solving the system of differential equations re-
quires a non linear solver, which nowadays it is not a problem since there is a wide variety of software tools
and packages available to face it.

3.3.5. Execution time

The execution time in the case of the ANN model is very low (in the order of milliseconds) and independent
of the input conditions. This is not the case for the Poppe model because it depends on the non-linear solver
used. This issue can have an impact in optimisation applications, such as the determination of optimal operat-
ing conditions to minimise the water consumption of combined cooling systems for CSP plants.

4. Conclusions
In this study, a comparison between an artificial neural network and Poppe model for wet cooling tower per-
formance prediction in CSP plants has been performed. The results obtained during the investigation can be
summarised as follows:
Both models reported good results predicting the outlet water temperature, since the errors were quite low
(R2 = 0.97 and RMSE= 1.01◦C for the best case with the ANN, and R2 ≈ 1 and RMSE< 0.36◦C for all cases
with the Poppe model). However, the Poppe model reached confidence levels with only 2 tests, while the ANN
needed the maximum number of points available.
For the measurements of water consumption, it was shown that the Poppe model does not accurately predict
this magnitude (R2 = 0.51 and RMSE= 0.51 l/min for the best case), since it does not account for the water
lost by drift or other losses. On the other hand, the ANN does present good results in this aspect (R2 = 0.85
and RMSE= 0.25 l/min for the best case), since it only depends on the results measured in similar tests.
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The strengths and weaknesses of each model have also been compared. As for the Poppe model, it is capable
of predicting the operation of the tower, regardless of the tested conditions. It is also possible to adapt it to
large-scale systems, as long as the system configuration remains the same. Unlike the ANN model that can
only be used for the conditions and the tower for which it was developed.
As for the ANN model, it has the advantage of being able to be developed and implemented by non expert
or specialised teams (who do not know the physical process that takes place in a cooling tower). Another
advantage is in the execution time, the ANN model is faster and more constant independently of the input
conditions (in the order of milliseconds for simple networks like the ones presented in this work).
As future lines of work, drift measurements could be carried out on the tower so that the prediction of ṁwct ,lost
can be improved for the Poppe model. Another way could be to parameterise and adjust this model output
to reduce the error. Other possible lines of work would consist of checking other output variables (φa,o and
Ta,o) or evaluating the models under different conditions (other seasons). Finally, these models will be used for
optimisation purposes in combined cooling systems for CSP plants.
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Nomenclature
aV surface area of exchange per unit of volume (m2/m3)
cp specific heat (J/kg K)
f frequency level (Hz)
h enthalpy (J/kg)
hC heat transfer coefficient (W/m2 K)
hD mass transfer coefficient (kg/m2 s)
Le Lewis number (= hC/

(
hDcpma

)
)

ṁ mass flow rate (kg/s)
Me Merkel number (= hDaV V/ṁw )
N number of data points
R2 R-squared
T temperature (K)
Twb wet bulb temperature (◦C)
V volume of the transfer region (m3)
yi measurement variable for the i − th data point
ŷi estimated value of variable yi
ȳ mean value of the experimental values
z height (m)
Greek symbols
φ relative humidity (%)
ω humidity ratio (kg/kg)
Subscripts and superscripts
a air
∞ ambient
fan fan
i inlet
lost consumption
o outlet
s saturated
v vapour
w water
Abbreviations
ACC Air Cooled Condenser
ANN Artificial Neural Network
CSP Concentrated Solar Power
NDWCT Natural Draft Counter-flow Wet Cooling Towers
PSA Plataforma Solar de Almerı́a
RMSE Root Mean Square Error
WCT Wet Cooling Tower
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