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Abstract 
The main objective of this study was to develop a prediction model using artificial neural networks (ANNs) and analyze the 
performance indicators of a green electric energy generation process based on the gasification of Brazilian biomass 
residues. The recovery of energy from renewable resources is a promising avenue for efficiently delivering valuable 
products. To achieve this, sugarcane and orange bagasse, residues from the sugarcane harvest, sewage sludge, residues 
from the corn harvest, coffee residues, eucalyptus residues, and municipal urban waste were used in the proposed 
process. The Aspen Plus software was used to generate simulation data to predict the energy conversion for each biomass, 
and a three-layer feed-forward neural network algorithm was employed to build the model. The developed model showed 
good training and test data accuracy, with an R² greater than 0.993. Regarding the performance of the generation plant, 
the gasification unit provided a maximum of 18.12 MJ/kg of HHV for sewage sludge. Urban and orange waste had the 
highest cold gas efficiency at 82.21% and 80.66%, respectively. Meanwhile, in the gasification process, sugarcane 
bagasse and orange residue showed the highest carbon conversion efficiency at 92.88% and 91.17%, respectively. The 
results indicated that eucalyptus waste gasification could generate more electricity at 12.86 MW. In overall, the study 
highlights the potential of using ANNs to predict energy conversion and analyze the performance of gasification-based 
green electric energy generation processes using Brazilian biomass residues. 

Keywords: 
Biomass gasification, Artificial neural network, Power generation, Exergy analysis. 

1. Introduction 
Biomass is a significant source of renewable energy that has the potential to reduce fossil fuel dependence and CO2 
emissions. Biofuels have accounted for almost 70% of renewable energy production globally, and biomass was responsible 
for 25.5% of Brazil's domestic energy supply [1]. Brazil has enormous biomass potential, and biomass wastes could be 
converted into valuable energy products like hydrogen, ammonia, and electrical energy. This way, energy consumption 
and greenhouse gas emissions could be reduced, along with waste disposal costs and environmental impact. Brazil has a 
vast biomass potential, including sugarcane bagasse, orange bagasse, corn, and coffee residues that could be used to 
produce bioenergy. 

Waste-to-energy systems produce electrical and thermal energy using a variety of processes, including combustion, 
gasification, and power cycles [2]. Sapali and Raibhole [3] examined the combination of air separation and biomass 
gasification techniques. Because it uses less energy, the low-pressure column’s pressure is close to the surrounding 
atmosphere’s pressure of around 1.2 bar, while the high-pressure column operates at about 4 bar. To use less energy than 
the standard procedure, Wu et al. [4] also modeled a multi-column cryogenic air separation (i.e., high-pressure, low-
pressure, and mixed fluid cascade columns) in combination with LNG regasification. 

Banerjee et al. [5] also demonstrated a biomass gasification system under various oxygen and vapor ratio circumstances. 
Five biomass types, including pine, corn, coffee, maple, and straw, were used as fuel for the gasification unit. The fluid 
bed’s gasification temperature was 800°C. Dhanavath et al. [6] have conducted various tests on corn straw, sawdust, and 
sunflower shells in a fixed bed reactor to study the gasification with stea. The outcomes were contrasted with the process 
modeling in Aspen Plus. They concluded by reporting that increasing the gasification temperature to 1000ºC produced 
cold gas with an efficiency of 95% for all inputs. A combined floatation gasification unit and power generation system were 
described by Lan et al. [7]. They discovered that gradually raising the gasifier’s temperature boosted the hydrogen and 
methane output. In any case, the synthesis gas stream’s carbon dioxide content decreased, but the amount of carbon 
monoxide produced grew considerably. 

Artificial neural networks (ANNs) are one of the alternative modeling techniques most utilized at the moment; when 
compared to other techniques, they may be used to forecast and optimize system outputs in a shorter amount of CPU 
(Central Processing Unit) time [8]. Although ANN may learn and predict non-linear correlations between the output and 
input parameters, memorizing the data for training should be avoided [64]. A well-developed ANN model requires careful 
consideration of the transfer function, training algorithm, and model structure. A powerful and popular analytical technique 
for the non-linear model is the multi-layer network structure and feed-forward ANN with the backpropagation method [9]. 
Many studies have adopted ANN models because of their superior effectiveness in predicting the parameters associated 
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with the gasification process. An ANN model was created by Mikulandric et al. [10] to forecast gasification process 
parameters, and the findings demonstrated a good correlation with experimental research. The study realized of Serrano 
et al [11], used an artificial neural network model to predict gas composition and gas yield in a biomass gasification process 
in a bubbling fluidized bed. The effect of different bed materials was included as a new input, and different network 
topologies were simulated to determine the best configuration. The developed models were able to predict gas composition 
and gas yield accurately, indicating that this approach is a powerful tool for efficient design, operation, and control of 
bubbling fluidized bed gasifiers with different operating conditions, including the effect of bed material.. An ANN model for 
a combined biomass gasifier-power system was utilized by Safarian et al. [12] to evaluate power output utilizing the features 
of the biomass and gasifier operation. An ANN model was used by Sozen et al. [13] to look into the energy losses of the 
heat transformer. 

Integrating neural networks and Aspen Plus models present a promising approach to improving the accuracy of power 
generation predictions. Neural networks can learn complex patterns from operational variables and historical data, making 
them helpful in predicting generated power. With that in mind, the primary goal of this research was to convert Brazilian 
waste biomass into renewable energy using waste-to-energy systems, including gasification plants and combined cycles. 
An Aspen Plus simulation program was used to simulate the bubbling fluidized bed gasifier and combined cycle to achieve 
this goal. This simulation generated data on the gasification and power generation process, which were used to create a 
general artificial neural network (ANN) pattern. Some of the significant contributions of this study include proposing a new 
method for evaluating cycle power generation, implementing machine learning methods on simulation data, and calculating 
performance indicators as crucial parameters. Finally, the study achieved a new method for generating renewable 
electricity from waste biomass by integrating these concepts. 
2. Methods 
2.1. Hypotheses for simulation  
In this study, the combustion of volatile and biomass materials is assumed to occur with complete mixing. The Gibbs 
reactor is used to simplify the simulation, assuming that the gasification reactor is in equilibrium. These assumptions and 
the software's capabilities allow for accurate predictions of chemical process behaviour, including the physical and 
chemical properties of mixtures under various operating conditions. 
It is important to note that utilizing Aspen Plus for process simulation has limitations. For example, the software cannot 
account for every factor, such as pressure drops in pipelines or other equipment, and all process-related calculations. 
However, despite these limitations, Aspen Plus is a powerful and valuable tool for predicting the behaviour of chemical 
processes, and its use is widespread in the industry.  
Also, the following assumptions are considered in the simulation: 

1. The system is in a steady state operating condition. 
2. Kinetic energy and potential energy changes are neglected. 
3. All heat exchangers are assumed to have counter-current flow. 
4. Biomass only contains carbon and ash. 
5. The volatile materials in the final product of the gasification process are mainly composed of carbon dioxide, 

carbon monoxide, hydrogen, methane, and water. 
6. The pressure drop in the pipelines and other simulation equipment and process-related calculations are ignored. 

2.2. Drying and milling process 
The flow rate data used in this study were collected through a bibliographic review and data provided by the Basic 
Sanitation Company of the State of São Paulo [14]. The simulations assumed a constant biomass mass flow rate of 26,400 
kg/h, which was kept the same across all simulations, including those performed using neural network analysis. 

Figure 1 illustrates the production route that was proposed and analyzed in this study. The process begins with a rotary 
dryer that removes moisture from the biomass, consuming approximately 15 kWh per wet ton of biomass [15]. The dryer 
reduces the water content of the biomass to 7% [16]. Following the drying process, the biomass is chipped, and the specific 
electricity consumption required for the grinding process to obtain 0.5 mm particle diameters [17] was estimated to be 
approximately 3% of the thermal input of the biomass, based on its lower heating value. 

2.3. Waste gasification process 
Moving on to the next stage, shown in Fig 1, the gasification unit model was employed using the ultimate and proximate 
biomass analyses, as illustrated in Table 1. The gasifier model proposed by Battelle Columbus Laboratory (BCL) [18]–[20] 
was utilized, which is based on an indirect gasification process carried out at atmospheric pressure. This process prevents 
dilution between the nitrogen present in the produced syngas and the combustion gases. The combustion and gasification 
processes are carried out separately in a double-column system, with steam serving as the gasification medium.  

During the combustion process, a portion of the char produced in the biomass pyrolysis step provides the heat necessary 
for endothermic drying, pyrolysis, and gasification reactions. Once these reactions are complete, the syngas exits the 
gasifier, and the produced tar undergoes thermal catalytic cracking. The syngas is then cooled to 400°C and scrubbed 
with water to remove any impurities that could affect downstream equipment. Finally, the syngas is compressed to 30 bar. 

 

 

1656https://doi.org/10.52202/069564-0150



 

 
Table 1: Proximate and Ultimate analysis used for different biomass (dry basis) % 

Biomass Mdb FCdb VMdb Ashdb C H N S Cl O REF. 

Sugar cane bagasse 50.00 14.32 83.54 2.14 46.70 6.02 0.17 0.02 0 44.95 [21] 
Sewage sludge 18.40 7.60 64.90 27.50 33.90 6.30 5.88 0.67 0.21 25.50 [22] 
Sugar cane straw waste 31.30 12.80 20.60 13.00 49.00 5.60 0.80 0.30 0 44.00 [23] 
Coffee waste 8.88 14.48 75.85 0.79 49.33 5.86 0.66 0.04 0 43.24 [24] 
Eucalyptus waste 7.73 16.38 74.91 0.98 48.65 6.16 0.28 0 0 44.91 [25] 
MSW 49.16 13.94 71.83 14.23 42.04 5.90 0.66 0.10 0 29.87 [26] 
Orange bagasse 9.23 13.20 30.60 6.20 46.40 5.54 1.70 0 0 40.15 [27] 
Corn waste 60.29 12.62 84.22 0 47.54 6.33 1.32 0.08 0 42.22 [28] 

M, moisture content; VM, volatile matter content; FC, fixed carbon content; db, dry basis. 
The base of gasification is composed of sequential process pre-treatment (dryer and chipping), pyrolysis, reduction, and 
combustion processes. Besides, the moisture removal simulation uses a FORTRAN subroutine [18]. To estimate the yield 
rates of H2, CO, CO2, methane, tar, char, and water in the pyrolysis reaction, step one uses empirical correlations reported 
in the literature as a function of temperature [29]. For this, it is employed an Aspen-embedded Excel spreadsheet. 

 

Fig. 1. Superstructure used in the process power conversion of the biomass-based. 

2.4. Combined cycle 
Figure 1 presents a comprehensive diagram of the combined cycle, depicting the various stages involved. The gas turbine 
utilized in this system is designed to simulate a Brayton Cycle and is based on the Alstom GT11N2 engine. The 
specifications for this turbine include mass flow, temperature, and pressure ratio. The steam turbine, on the other hand, 
operates using a conventional Rankine Cycle, with the simulation parameters being outlined in Table 2. It's worth noting 
that the same set of assumptions utilized by Silva Ortiz [30] and Medeiros et al [31] have been employed in this study. 

To achieve a desired total exit flow rate of 400 kg/s, it is necessary to determine the mass flow rate of air based on the 
design specifications. The syngas produced during the gasification process serves as the inlet stream in the combustion 
chamber, where the air and syngas streams are directed to a RStoic reactor for combustion at a prescribed pressure ratio 
and constant pressure, as presented in Table 2. The gas turbine is designed to maintain the outlet temperature at 526°C. 
Once the steam temperature is attained, the output gases from the turbine undergo heat exchange with a compressed 
liquid water stream. Posteriorly, the steam follows to the steam turbine, that operates at an 83% isentropic efficiency and 
an outlet pressure of 0.1 bar, follows the previously stated pressure and isentropic efficiency assumptions [48, 49]. 
Ultimately, the water will be cooled in a heat exchanger and pumped back to start a new cycle.  
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Table 2: Combined cycle variables 

Variable Unit Value 
Compressor pressure ratio  -  15.9:1 
Temperature after the gas turbine  °C  526 
Pressure after the gas turbine  bar 1 
Flue gas temperature °C ~130 
Temperature entering the turbine °C 510 
Pressure entering the turbine bar 81 
Isentropic efficiency of steam turbine   -  83 
Pressure after steam turbine bar  0.1 

 

2.5. Validation 
In this study, gasification represents a critical unit operation, given its significant impact on the quality of the final product. 
To validate the results obtained from the gasification system, It was utilized parameters from Almond shell biomass. 
Specifically, It was compared our findings with those from a previous study conducted by Marcantonio et al. [32]. and the 
comparative results are presented in Table 3. The most notable deviation was observed for CO2, with a discrepancy of 
approximately 2.13%. However, the deviations for the other substances were relatively minor, with CH4 showing a deviation 
of only 0.52%.  

Table 3:  Gasification results validation. 

Parameter Experimental 
results [32] 

Simulation 
results 

Standard 
deviation 

Proximate analysis (%)    

FC 18.2 18.2 0.00 
VM 80.6 80.6 0.00 

Moisture 12 12 0.00 
Ultimate Analysis (%)    

C 47.9 47.9 0.00 
H 6.3 6.3 0.00 
O 44.27 44.27 0.00 
N 0.32 0.32 0.00 

Ash 1.2 1.2 0.00 
Volume Fraction (% vol)    

CO 28 29.35 0.95 
CO2 18 14.99 2.13 
H2 44 46.44 1.69 

CH4 10 9.27 0.52 

2.6. Artificial neural network 
A three-layer feed-forward neural network was employed to model the process of connecting each layer to the one below 
it. Unlike feedback neural networks, the information in this architecture flows only in one direction, from the input to the 
output layer. It was  assumed that the data gathered accurately represented the system under investigation, a common 
assumption when working with neural networks. The neural network follows the same structure as described in the work 
of Cavalcanti et al. [33], with modifications to the inputs and outputs. 

To represent the category or categorical-quantitative input variables, one-dimensional zero-arrays were used with a 
composition value of the component other than zero. This means that nine input neurons were used to represent a 
proximate and ultimate analysis of biomass, as well as temperature and steam biomass ratio. The ANN design was then 
expanded to include four neurons in the hidden layer, resulting in 11 input neurons and one output neuron. 

To adjust the data, it was used the NeuralNet package available in the R software environment [34]. The package trains 
an ANN by estimating the weights between two neurons in successive layers, which simulate synapses. During training, 
information is transferred from one neuron to another. The ANN is trained using a sufficiently large dataset to compare its 
predictions. The training procedure stops when all partial derivatives of the error function E/w concerning the weights are 
smaller than a specified tolerance, such as 0.01. To compute the error function, it was summed the quadratic errors 
between observed and predicted values by the ANN. 

To mitigate the impact of variable magnitudes on the model predictions, we pre-processed the data using min-max 
normalization, scaling their values between 0 and 1. The dataset was then randomly split into two subsets: 20% for the 
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test set, which was solely used to evaluate the ANN's performance, and 80% for the training set, which was used to 
estimate the ANN weights.

It is important to note that the test data used to evaluate the performance of the ANN must be representative of the same 
data domain used for training to avoid extrapolations that may result in uncertain predictions. In our case, the ANN included 
a bias neuron that served as an intercept with sigmoid activation characteristics.

The Resilient Backpropagation with Weight Backtracking (RPROP+) algorithm was used to train the network. Unlike the 
conventional Backpropagation algorithm, RPROP+ uses a different learning rate for each weight and can be modified 
during training. This allows for setting a global learning rate suitable for the entire network. RPROP+ only uses the sign of 
the gradient to update the weights instead of their magnitude, ensuring that the learning rate has an equal impact on the 
entire network. Weight backtracking refers to erasing the previous weight iteration and adding a smaller value to it in the 
subsequent step, preventing repeatedly jumping over the minimum. It is important to note that this algorithm is designed 
to avoid overfitting and improve the model's generalisation ability.

The number of neurons in the hidden layer (NH) was determined to prevent overfitting using the k-fold cross-validation 
procedure. This technique aims to run the ANN calculations multiple times with different training and test dataset 
combinations to identify the NH value that results in the lowest mean squared error (MSE) for the test set. This approach 
helps to ensure that the data used in the analysis are suitable for the ANN model, considering that all data from the articles 
were employed for training the ANN  [35]. The MSE is calculated using Eq. 1.

(1)

where for the calculation of MSE; a is the number of data, and are the predicted and real values of the model, 
respectively. 

The topology of the ANN used in this study is shown in Figure 2. The ANN comprises one input layer, one hidden layer 
with four neurons (NH=4), and one output layer. The inputs to the ANN are gasification temperature (labeled as 
"temperature" in °C), steam biomass ratio (labeled as "s/b ratio" in %), ultimate analysis of biomass (labeled as "moisture,"
"volatile material," "fixed carbon," and "ash"), and proximate analysis of biomasses in wt% (labeled as "carbon," "hydrogen," 
"nitrogen," "sulfur," and "oxygen"). In total, there are 11 input neurons and one output neuron. The ANN topology was 
generated using the neuralnet package available in the R software environment [34]

Figure 2. Three-Layer Feedforward Neural Network employed in this work

It is worth noting that none of the covariates directly affect the bias neurons (whose initial value is equal to one) existent to 
the intercept. The estimated weights calculated during the training phase are also presented in Table 4, where the "From" 
column indicates the source neuron and the "To" column indicates the destination neuron, as shown in Figure 2.
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Table 4:  Weights values for each neuron of naeural network 

from to weight from to weight 

Baias n1 -0.753261712 s/b ratio n3 0.284048 

Temp n1 0.961899079 Moisture n3 1.55496 

s/b ratio n1 0.21014481 Fixed Carbon n3 -0.50962 

Moisture n1 -1.711559624 Volatile Material n3 -2.5561 

Fixed Carbon n1 -1.538194587 Ash n3 0.318489 

Volatile Material n1 -0.940108411 Carbon n3 0.09278 

Ash n1 0.918331711 Hydrogen n3 0.228348 

Carbon n1 0.207191253 Nitrogen n3 -0.78659 

Hydrogen n1 -1.386894776 Sulfur n3 -2.62901 

Nitrogen n1 -0.941899465 Oxygen n3 -0.8421 

Sulfur n1 -2.042446266 Baias n4 0.195908 

Oxygen n1 -1.305202095 Temp n4 -0.2577 

Baias n2 -0.029572741 s/b ratio n4 0.00124 

Temp n2 0.036312963 Moisture n4 -1.76798 

s/b ratio n2 -0.483953217 Fixed Carbon n4 -0.24548 

Moisture n2 3.970044275 Volatile Material n4 0.110772 

Fixed Carbon n2 0.661251307 Ash n4 0.157837 

Volatile Material n2 0.106854669 Carbon n4 -1.10524 

Ash n2 -0.008101265 Hydrogen n4 -0.6584 

Carbon n2 -0.447942202 Nitrogen n4 1.105558 

Hydrogen n2 -0.108357221 Sulfur n4 -0.06553 

Nitrogen n2 1.225302782 Oxygen n4 0.005014 

Sulfur n2 0.095169143 Baias n5 1.162488 

Oxygen n2 -0.009455786 n1 n5 1.139094 

Baias n3 -0.602606332 n2 n5 -1.18583 

Temp n3 -0.28335936 n3 n5 0.826087 

      n4 n5 0.642381 

2.7. Performance indicators 
To assess the overall performance of production plants [20], [36], two performance indicators are proposed by Florez-
Orrego et al [37] to allow systematic comparisons among the different designed setups: rational and relative exergy 
efficiencies. The rational efficiency is defined according to Eq. (2), and the relative efficiency by Eq. (3).  

 (2) 

 (3) 

where, B is the exergy flow rate (kW) and  represents the exergy destroyed rate, while W is the electrical power input 
to the plant.  

The efficiency of a gasifier is typically investigated in terms of two types of efficiency: carbon conversion efficiency and 
cold gas efficiency. The carbon conversion efficiency ( ) (Eq. (4)) is defined as the ratio of the reaction carbon ( ) to 
the feed carbon in the gasifier ( ).  

 (4) 
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The higher heating value (HHV) of fuels, including coal, coke, biomass, and municipal wastes, emanates from the heat 
released from the complete combustion of a unit of mass of fuel at a specific temperature and pressure [38]. Based on 
HHVs, the cold gas efficiency ( ) (Eq. (5)) is also expressed as the ratio of the chemical energy of the gas products 
released from the gasifier to the chemical energy of the input biomass. 

 (5) 

The evaluation of each flow’s thermodynamic properties and the mass, energy, and exergy balances of each operating 
unit are evaluated using the Aspen Plus® V8.8 software [39] . Compressors and pumps are modeled using 60% and 80% 
isentropic efficiencies, respectively. Furthermore, pressure and heat losses are not considered in any process. The ratio 
of specific chemical exergy ( b ch) to the lower heating value is calculated employing the correlation proposed by [40] for 
solid fuels with specified mass ratios, Eq. (6) 

 (6) 

where the biomass lower heating value (LHV, MJ/kg) is estimated based on the correlations reported by [41] in Eq. (7) 

 (7) 

and yi are the mass fractions of carbon (C), hydrogen (H), sulfur (S), oxygen (O), nitrogen (N), and ashes (A) in the dry 
biomass and hlv is the enthalpy of evaporation of water at standard conditions (2442.3 kJ/kg).  

Finally, the biomass higher heating value (HHV, MJ/kg) is estimated based on the correlations reported by Parikh et al. 
[42] in Eq. 8 

 (8) 

where FC (%dry basis) is the fixed carbon, and VM is the volatile matter (%dry basis) ASH (%dry basis). The lower heating, 
high heating, and chemical exergy of biomasses are shown in Table 5.  

Table 5: Calculated lower heating value (LHV) and specific chemical exergy value (bCH) for selected materials and fuels  streams. 
Biomass HHV (MJ/kg) LHV (MJ/kg) bCH (MJ/kg) 
Sugar cane bagasse 16.89 15.25 19.50 
Sewage sludge 20.28 18.12 16.13 
sugar cane waste 16.43 14.89 19.28 
Coffee waste 17.06 15.45 19.84 
eucalyptus waste 17.19 15.54 21.75 
MSW 18.92 17.08 18.32 
Orange bagasse 16.79 15.20 20.26 
Corn waste 17.87 16.13 19.93 

3. Results and discussion 
To determine the number of neurons in the hidden layer of the ANN, the data were divided into ten sets using the k-fold 
cross-validation technique. Each set was then used for training and testing purposes. The mean squared error (MSE) for 
the testing set was plotted against the number of neurons in the hidden layer (NH), as shown in Fig. 3a. The graph indicates 
that the MSE value drops to its lowest point at NH = 4 before rising and oscillating, which could be due to overfitting. 

Based on the prediction graphs, it was decided that four neurons were sufficient for the ANN hidden layer without 
compromising the system representation performance. It should be noted that the MSE value for the training set (Fig. 3b) 
tends to decrease as more neurons and parameters are added to the model, resulting in model overestimation. 
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(a) (b)

Figure 3. Mean squared error versus the number of neurons in the hidden layer (a) for the testing set and (b) for the training set.

The training procedure converged after 3309 steps, resulting in an error of 0.04368 for the ANN weights. The accuracy of 
the ANN model for the training set can be seen in Fig. 4a, which shows an excellent match to the data, as indicated by the 
high R2 value of 0.996. The mean square error (MSE) between the observed and projected values was 0.000366. The 
training set consisted of 80% of the overall dataset, and these data were used to estimate the ANN weights, explaining the 
good values for R2 and MSE. Moreover, the residues histogram (Fig. 4b) displayed typical behaviour with an average of 
roughly zero, further confirming the high agreement between the observed and predicted values.

(a) (b)
Figure 4. (a) Comparison between prediction and observed power conversion values for the training set (b) Histogram of 

residues for the training set.

Fig. 5a demonstrates that the ANN model was validated using the test set. The results indicate that the network can 
accurately predict data not used in weight estimation, with an R2 value of 0.994 and an MSE of 0.00909. While these 
metrics are slightly worse than those obtained from the training set, they still reflect a highly credible performance. The 
corresponding histogram of residuals for this validation, as shown in Fig. 5b, reveals a more significant normal distribution 
with a less frequent zero-centred average compared to the training set, further corroborating the accuracy of these results.

(a) (b)
Figure 5. (a) Comparison between prediction and observed power conversion values for the testing set (b) Histogram of residues 

for the testing set.

The results presented in Fig. 6 are based on the entire dataset. A residuals histogram displaying a standard shape and an 
R2 value of 0.993 and MSE of 0.00172, indicating a good match between predicted and observed values without any 
noticeable bias in the fit. These performance metrics lie between those obtained from the training and testing sets but are 
closer to the former, given that the training set contained 80% of the total data and was used to estimate the ANN 
parameters. Overall, the ANN model exhibits good predictive ability across the entire dataset.

1662https://doi.org/10.52202/069564-0150



(a) (b)
Figure 6. (a) Comparison between prediction and observed power conversion values for all datasets (b) Histogram of residues for 

all datasets

To investigate the gasification unit's performance with different fuels, the reactor's initial biomass mass flow rate
(26,640kg/h), temperature (850°C), s/b ratio (0.5), and operating pressure were kept constant. The quality of the produced 
synthesis gas for each fuel was then compared by examining the quantity of its main constituents: H2, H2O, CO, and CH4. 
Fig. 7 displays the mole fraction of hydrogen and carbon monoxide, the two primary syngas components, in the gasifier's 
output stream for each fuel. The results reveal that corn waste and sewage sludge produce a high amount of hydrogen but 
a low mole fraction of carbon monoxide compared to the other biomass fuels.

Figure 7 Comparison of syngas quality by the mole fraction of hydrogen and carbon monoxide.

Fig. 8 provides valuable insight into the net power production of different waste materials after the gasification process. 
The graphic shows that eucalyptus waste, sewage sludge, and sugar cane bagasse have the highest power production 
potential in the gas turbine section, with 15.86 MW, 15.06 MW, and 14.73 MW, respectively. 

Figure 8. Net power of Brazilian biomass wastes in combined cycle and HHV and LHV of produced syngas

This highlights the importance of utilizing these waste materials as potential energy sources, which can generate significant
amounts of power. Additionally, Fig. 8 suggests that the higher the HHV (Higher Heating Value) and LHV (Lower Heating 
Value) of the produced syngas, the greater the power output from the gas turbine. This underscores the importance of 
selecting appropriate waste materials for gasification, as those with higher HHV and HLV values can provide greater energy 
yield and efficiency. Moreover, it is crucial to note that using waste materials for energy production can positively impact 
the environment by reducing greenhouse gas emissions and mitigating the negative impacts of waste disposal.

Based on the information provided in Fig. 9, It can observe that urban municipal waste has the highest cold gas efficiency 
(82.21%) among all waste materials studied. This indicates that a significant proportion of the energy content of the waste 
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material is converted into syngas during the gasification process. On the other hand, sugar cane bagasse exhibits the 
highest carbon conversion efficiency (92.88%), indicating that most of the carbon content in the waste material is converted 
into syngas during gasification.  

It is important to note that cold gas efficiency (CGE) is affected by various factors, such as the HHV and mass flow rate of 
waste and syngas. As depicted in Fig. 9, there is a positive correlation between the HHV of syngas and CGE, implying that 
waste materials with higher HHV values can result in more efficient gasification processes. However, it is also worth 
mentioning that coffee waste has the lowest cold gas (61.88%) and carbon conversion (72.35%) efficiencies among the 
waste materials studied. This highlights the need to carefully consider the waste material selection for gasification to ensure 
optimal efficiency and energy yield. 

 
Figure 9: LHV and HHV of syngas, cold gas efficiency (CGE), and carbon conversion efficiency (CCE) of Brazilian 

biomass wastes in the gasification process. 

Figure 10 presents a more detailed view of the destroyed exergy, considering each residual biomasses’ leading equipment 
and processes. Thus, when analyzing these data, it can be noted that the gasifier and the combustor of the combined cycle 
contribute the largest share of the destruction compared to all biomasses. In addition, it is worth remembering that the 
syngas’ grinding, drying, scrubbing, and compression are also processed internally by the gasification unit. However, 
compared to the gasification process, they present a small share in the contribution of the exergy destruction of the unit. 
In addition, it is worth citing the works of Florez-Orrego et al. [18], where the gasification of sugarcane bagasse was studied, 
and Domingos et al. [19], studying black liquor, obtained similar results. 

Observing only the gasifier for the different waste biomasses, the process representing the highest exergy destruction was 
via RMU, with 68.79%, followed by coffee waste and orange bagasse, with 67.53% and 65.78%, respectively. On the other 
hand, gasification via sugarcane bagasse had the lowest exergy destruction rate, approximately 58.61%. Also, the 
combustion process of the combined cycle corresponds to a variation of 22.95% to 30.63% of the exergy destroyed by the 
entire power conversion process. In other words, exergy destruction in the gasifier is caused by the reactions that 
decompose the large biomolecules into smaller gas molecules presenting the most considerable exergy destruction 
compared with combustor burning only syngas.Another essential point to be highlighted is the compression systems, which 
present intermediate values of exergy destruction. These systems are divided into 3 parts: compression of syngas typical 
to all conversion plants, air compression of the gas cycle, and pump for the Rankine cycle. The highest proportion of exergy 
destruction was located in the sewage sludge (2.78%). This happened because the flow rate of syngas after the gasifier is 
the biggest one compared with other biomasses. 

A way to help reduce the amount of exergy destroyed in biomass-based production plants is to employ better technologies 
to remove the bagasse moisture, hot catalytic cleaning of the syngas, and increase gasifier pressure [43]. 

 

 
Figure 10: Exergy destroyed by equipment or conversion processes for different biomass waste selected types. 

Fig. 11 presents the calculated plantwide efficiencies for different waste materials, revealing that the relative exergy 
efficiencies ranged from 24.42% for sugar cane straw waste to 42.57% for sugar cane bagasse. Similarly, the rational 
exergy efficiencies ranged from 23.71% for coffee waste to 39.09% for sugar cane bagasse. These results highlight the 
significant variability in the energy efficiency of different waste materials. However, it is worth noting that the performance 
of different biomasses was impaired, likely due to differences in the proximate and ultimate analysis of the waste materials. 
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Factors such as moisture content and volatile materials can significantly affect the gasification process, leading to variations 
in energy efficiency. Therefore, it is essential to thoroughly analyse the waste materials before selecting them for 
gasification to ensure optimal performance and energy yield. By understanding the composition of the waste materials 
strategies can be developed  to optimize the gasification process and improve the energy efficiency of the overall plant. 

 
Figure 11. Comparison between the exergy efficiencies of conversion processes for different types of selected biomass. 

4. Conclusions 
The current research aimed to develop a predictive model using artificial neural networks (ANNs) to analyze the 
performance indicators of a green electric energy generation process based on the gasification of Brazilian biomass 
residues. The results indicated that the highest cold gas and carbon conversion efficiencies were achieved using urban 
municipal waste and sugar cane bagasse with 82.1% and 92.89%, respectively. On the other hand, coffee waste had a 
relatively low carbon conversion efficiency of about 72.35%, with cold gas efficiency of 61.88%. Eucalyptus waste was 
found to have the highest renewable power capacity, with 12.86 MW. The relative and rational exergy efficiencies were 
determined for different waste types, ranging from 24.42% to 42.57% for sugar cane straw waste and sugar cane bagasse, 
respectively, and from 23.71% to 39.09% for coffee waste and sugar cane bagasse. Furthermore, the study demonstrated 
the effective use of environmental resources by mapping the exergy destruction reaction to produce a clean and valuable 
energy source. The study's findings provide important insights into the sustainable utilization of environmental resources 
by mapping exergy destruction reactions for producing a clean and valuable energy source.  These outcomes can be used 
to guide future research and improve the performance of similar models. However, further studies are necessary to 
enhance the robustness of ANN models in predicting power generation. More research should be reported in the literature 
to develop more reliable models. It is worth noting that the ANN model developed in this study exhibited high accuracy in 
predicting power generation, with R² values greater than 0.993 for both training and test datasets. Finally, using neural 
networks and Aspen Plus models provides a viable solution to improve power generation predictions and reduce 
computational costs. Applying these methods in this study demonstrates the potential of waste-to-energy systems to 
generate renewable electricity from waste biomass, promoting a more sustainable energy future. 
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