
PROCEEDINGS OF ECOS 2023 - THE 36TH INTERNATIONAL CONFERENCE ON
EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS

25-30 JUNE 2023, LAS PALMAS DE GRAN CANARIA, SPAIN

A simple truncation criterion in CPCs using constructal
theory
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Abstract:
Compound parabolic concentrators (CPCs), whose origin dates back to the mid-1960s, gave rise to anidolic
optics. Systems of this type allow the thermodynamic limit of solar concentration to be reached; however, in
the case of CPCs, they involve systems with a very large height in relation to the aperture area (svelteness).
Thus, arbitrary criteria have been proposed to reduce the height of the systems (truncation) and to be able to
give them a real application. These truncation criteria establish the elimination of the upper part of the CPCs
at a certain height in order to considerably reduce the height, but this has certainly undesirable consequences,
since the geometric concentration (ratio of aperture area to receiver area) decreases with respect to the original
design, which can limit the operating temperatures. Alternatively, a geometrical criterion has been proposed
to truncate the CPCs without losing geometrical concentration, and still manage to reduce the height of the
system by approximately 30%. This criterion consists of avoiding that the parabolic section mirrors do not
block the incident rays that enter the aperture area with the maximum acceptance angle, thus defining an
optimum truncation angle of 3 times the acceptance angle. However, now, with the help of the constructal law,
it is possible to demonstrate that this angle is the optimum from a geometric viewpoint. Additionally, a new
dimensionless number is defined for solar concentrating systems, relating the entropy generation distribution
ratio, allowing to demonstrate that the Rincón criterion is the optimum for Cg > 2.28.
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1. Introduction
The origin of compound parabolic concentrators (CPC) can be traced back to the mid-’60s by the developments
of different researchers around the world: Baranov and Melinkov in the URSS [1], Ploke in Germany [2], and
Hinterberger and Winston in the US [3], who independently described a novel optical system, unlike traditional
systems, were based on the optimal transfer of radiation from the source to the objective, even if this implies
forming aberrations and losing the shape of the source at the end of the system. This characteristic led to
the coinage of the name non-imaging optics [4], to differentiate it from classical optics, where the image of the
source must be conserved [5, 6]. As a result, in nonimaging optics, the light propagation is analyzed in terms
of phase-space quantities and energy flow patterns This new optics has some advantages, but the possibility
to reach the thermodynamic limit for solar concentrators systems is the principal [7]. Since mid-70s, their
potential as collectors of solar energy was pointed out by Winston [8], and the widespread of this technologies
has been fruitful.
Today, there is already a wide development of CPCs for solar applications, and several geometries have been
generated that take advantage of non-imaging optics to concentrate solar energy on receivers of different
shapes (circular, square, triangular, wedge, flat, elliptical...) [4, 9], Fig. 1 shows four typical CPC designs.
All these geometries had been used for different purposes, like photovoltaics, solar heating and cooling, solar
cooking, solar distillation, among others, that a complete summary of most of the works is out of the scope of
the present paper, but several reviews [10–14] summarize some of the many developments, both experimental
and commercial, that have been developed to date.
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(a) Flat. (b) Circular. (c) Wedge. (d) Elliptical.

Figure 1: Different CPC receiver designs.

The main drawback of the CPCs, is that the ratio of height vs the receiver’s area (svelteness) is too large, i.e.
these concentrators are too high, and this ultimately limits their application even for fixed concentrators [4]. To
overcome this problem, different truncation criteria have been proposed to decrease the total height [15–18]
and consequently reduce the use of mirrors. These criteria had been developed from a purely geometrical
perspective. Therefore, a formal analysis of the geometrical, optical, and thermodynamic aspects is necessary
to establish which of the criteria is the most appropriate. This is fulfilled in the present work analyzing the
original 2D flat receiver CPC with its geometric related parameters (height-aperture ratio and reflector area-
aperture area ratio), optical-energy parameters (average number of reflections and étendue loss) and entropy
related parameters (entropy generation number, optimum concentrator temperature and optimum efficiency)
with the use of Bejan’s constructal law [19, 20]. Although the analysis is done on a flat receiver CPC, the
present work can be extended to any CPC design.

2. Brief description of the CPC
Regardless of the type of absorber the CPC may have, rays entering the concentrator with a maximum half
acceptance angle θmax (extreme rays), must be reflected by the mirror so that they are incident tangent to the
absorber; while all rays entering with an angle θ less than the maximum half acceptance angle (i.e. within the
angular full acceptance angle 2θmax ), are directed to the absorber after passing through the internal optics of
the CPC (reflection or refraction).
With this definition, several receivers can be used, but only the flat receiver uses properly parabolas. In the
present work, the flat receiver CPCs are considered. Equation 1 are the parametric equations to describe a
flat receiver CPC with full height, schematically shown in Fig. 2., where it is assumed that the length of the
trough CPC is l . The geometric parameters that define CPCs are the half-acceptance angle θ0 and receiver
size 2a′. The subscript t stands for the truncated parameter.

⎧⎪⎪⎨⎪⎪⎩
x(t) =

2a′ (1 + sin θ0) cos t
1 − sin (t − θ0)

y (t) =
2a′ (1 + sin θ0) sin t

1 − sin (t − θ0)

t ∈
[
0,

π

2
− θ0

]
(1)
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Figure 2: Schematic of the CPC with flat receiver.

From 1, it can easily be demonstrated that the concentration ratio (Cg) for a full CPC is simply:

Cg =
A
A′ =

2al
2a′l

=
2x

(π
2
− θ0

)
− 2a′

2a′ =
1

sin θ0
(2)

With the parametric equations given in 1, the svelteness Sv (height-aperture ratio) and the reflector area-
aperture area ratio rm,a can be determined by.

Sv =
y (t)

2x(t) − 2a′ (3)

rm,a =

∫ tmax

0

√
x ′2 + y ′2dt

2x(t) − 2a′ (4)

2.1. Truncation of the CPC
As mentioned previously, one of the disadvantages of CPCs is the height of the concentrator; however, as
seen in Fig. 2, the upper part of the mirrors does not contribute substantially to Cg . For this reason, it is
recommended to remove a portion of the mirror to reduce height; this is known as truncation. While truncating
the CPCs, material savings are achieved, but on the other hand, Cg will be reduced too since 2at < 2a.
Winston, Rabl, and O’Gallagher recommend truncating the CPCs about half the fully developed height [7, 8,
17] (named Winston’s criterion), while it can be found that some CPC can be truncated up to 2/3 the full height
to reduce the loss in Cg . Independently, Rincón et al. [18] have proposed to truncate the CPCs to 3θ0, because
at this angle the mirror will not block light in the half-acceptance angle range ±θ0 (Rincón criterion).
2.2. Optical energy related parameters
The thermal power that reaches the absorber can be described by a relation Q̇u ∼ GbCgηo, where Gb is the
beam solar radiation and ηo is the optical efficiency, being a function of the average number of reflections n
in the mirrors with reflectivity ρ as ηo ∼ ρn. As can be seen, the lower the average number of reflections, the
higher the optical efficiency and the higher the power that reaches the absorber.
Originally, Rabl [15] studied the average number of reflections , where it was shown that reducing the value of
n led to an increase in the useful energy of the receiver. A summary of Rabl’s equations for n can be found in
[21]. Briefly, the average number of reflections in the CPC is a function of the type:

n = max
(

F (θ0, x , y , t) , 1 − 1
Cg

)
(5)

However, the most important parameter in optics is the étendue E , defined as a geometric quantity that mea-
sures the amount of “place” available for light to pass [9], as a measure of the power transmitted along a beam
of light. For 2D systems, the étendue is defined as [4, 9, 17, 22]:
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E = 2Anref sin θ cosφ (6)

where A is the area where the light passes, nref is the refractive index, θ is the solid angle where light enters
in A and φ is the incidence angle. Recalling the concept of steady-state balance equations for any physical
property ψ, the imbalance of the property can be determined as ψimb = ψin − ψout [23, 24], where the subscript
imb stands for the imbalance (destruction in the case of a negative value, generation for a positive value).
According to the definition of 6, if the rays enter an optical system with imperfections (the étendue is not
preserved), then, at the output the rays will tend to scatter over the output area, consequently Eout > Ein, thus
the imbalance term will be defined as scattered instead of generated. For full CPCs, the étendue is conserved
[4, 9, 17, 22]. Any scattering in the étendue will cause the optics to fail to properly redirect the incoming light
through the concentrator aperture, so the étendue scattering can be defined as:

Esc = Eout − Ein (7)

or as a normalized scattering value as:

E∗
sc =

Eout − Ein

Ein
(8)

which will have a value of 0, if there is no light scattering (perfect system, with conserved étendue); or 1 if the
light is completely scattered (imperfect system, with non-conserved étendue).
2.3. Entropy related parameters
As described by Bejan [25], the minimization of the entropy generation rate implies the maximization of the
useful power. In general, the entropy generation in a concentrating solar system, as in the thermal devices, will
be due to the heat transfer process (Ṡth

gen) and the fluid friction (Ṡfl
gen) [25], but the étendue loss also contributes

to an entropy generation ṠEsc
gen, so the total entropy generation has the basic form Ṡtotal

gen = Ṡfl
gen + Ṡth

gen + ṠEsc
gen.

Considering an isothermal concentrator with no flow of mass on the concentrator (i.e., heating a plate), it is
possible to eliminate the fluid friction entropy generation. The thermal entropy generation, as described by
Bejan [25], includes the heat transfer coefficient Ur , the net solar transfer rate Q̇s captured by the concentrator
with an aperture A and receiver A′ areas, the ambient temperature T0, and the apparent sun temperature as

an exergy source T ∗ =
3
4

Ts, as suggested by Petela [26], by:

Ṡth
gen =

Ur A′ (Tr − T0)
T0

− Q̇s

T ∗ +
Q̇s − Ur A′ (Tr − T0)

Tr
(9)

The entropy generation for the etendue loss can be related trough the concepts of statistical thermodynamics,
resembling that in general S = k logΩ (E , V , N) + const. [27], and since the étendue is a measure of the trans-
mitted power along a beam of light, a proper relation between this two variables can be developed. Winston et
al. [28] have stated an entropy-étendue per photon relation as:

SE = k log E + const. (10)

where the constant is related to a thermal quantity that can be set aside, since it applies only in the case of a
wavelength shift [28, 29] or computed independently as done in 9, so the relation between entropy and étendue
is firmly established. The entropy change for an irreversible process is equal to the entropy generation, so the
entropy generation in terms of the étendue:

ṠEsc
gen = ṠEout

out − ṠEin
in = Ṅk ln (1 + E∗

sc) (11)

where Ṅ is the number of photons per unit time that cross the aperture area of the concentrator. Note that
under the numerical conditions of 8, the value of the entropy generation due to étendue scattering is always
positive. The number of photons can be determined with Q̇s and the average photon energy Eph ∼ 10−19J as
Ṅ = Q̇s/Eph.
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Therefore, the total entropy generation rate in the concentrator is

Ṡtotal
gen =

Ur (2a′) (Tr − T0)
T0

− Q̇s

T ∗ +
Q̇s − Ur (2a′) (Tr − T0)

Tr
+

Q̇s

Eph
k ln (1 + E∗

sc) (12)

In view of this two discussed entropy generation terms, a dimensionless parameter relating the entropy (irre-
versibility) distribution ratio can be defined as ṠEsc

gen/Ṡtotal
gen , with extreme values of 1 when the étendue scattering

irreversibility dominates, 0 is the opposite limit at which irreversibility is dominated by heat transfer effects, and
0.5 is the case in which the heat transfer and the étendue scattering entropy generation rates are equal. In
addition, when the entropy distribution ratio is zero, the étendue conservation condition is fulfilled. Thus, it is
justified to define this parameter from the étendue concept and not from the heat transfer perspective.
Caution must be taken, since this relation can be confused with the Bejan number (Be) defined by Paoletti et
al. [30] for the generation of entropy through heat and flow. This new relationship involves an optical parameter
(the étendue) as an element that also generates entropy. This dimensionless parameter was originally pro-
posed for entropy analysis in CPCs by González-Mora [31] but can be further generalized to any concentration
geometry, since étendue conservation is a major concern when designing optical systems [4, 9, 22]. Conse-
quently, it is suggested to call the entropy distribution ratio as Mo. The Mo number can then be expressed with
the help of 12 as:

Mo =
γ (θmax − 1) ln (1 + E∗

sc)
θ∗
[
θ2

r − 2θr + θmax
]

+ θr (θmax − 1) [γθ∗ ln (1 + E∗
sc) − 1]

(13)

where θr = Tr/T0, θ∗ = T ∗/T0, θmax = Tr ,max/T0 = 1 + Q̇s/Ur A′T0 and γ = T0k/Eph. Furthermore, from 12 the
optimal receiver temperature can be defined as the one that minimizes the total entropy generation rate, i.e.
dṠtotal

gen /dθr = 0, resulting:

θr ,opt = θ
1/2
max ⇔ Tr ,opt =

√
T0Tr ,max (14)

2.4. Constructal law
The aforementioned truncation criteria were established only through a purely geometrical approach. However,
Rincón’s criterion was recently demonstrated on a simplified parametric energy basis with a first approach of
the constructal law [32]; while González-Mora [31] gave the first approach for entropy related parameters
suggesting the evaluation of the so-called Mo number, as a response to several inquiries to rename the Rincón
criterion. Therefore, a complete discussion of the geometric, optical and entropy parameters of CPCs is
required for an objective comparison of the truncation criteria. To compare these criteria, constructal theory is
used to define a constructal truncation criterion.
In 1997, Bejan [19] stated “For a finite-size system to persist in time (to live), it must evolve in such a way that it
provides easier access to the imposed currents that flow through it”, which is known today as constructal law,
with a vast theory under it [20, 33]. The constructal law has been applied to various engineering systems [34],
and recently in renewable energy systems analyzing a solar chimney and an oscillating water column [35],
in addition to the first approaches in CPCs [31, 32], so the path for the constructal law in sustainable energy
systems is clear and ongoing.
The fundamental concept of the constructal law is to establish the configuration that facilitates the flows in the
system, by defining different parametric relations that establish the system degrees’ of freedom and evaluating
the behavior of the system with its proper restrictions. In the present analysis, the degrees of freedom are Cg
and θr for the parametric relations that are described in the previous sections. Thus, accoring to the different
truncation criteria, different configurations can be easily compared , where the main objective function is the
Mo number described in 13.

3. Results
These results are shown graphically below, including the constructal law results applied with the PIKAIA genetic
algorithm [36]. Although the objective function is the Mo number, all parameters were evaluated and discussed
below. In all the plots, the same color palette is used: black for the full CPC, purple for the truncated CPCs,
red for the truncated CPC under the Rincón criteria, blue for the truncated CPC under the Winston criteria, and
green for the CPC results using the constructal law.
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Figure 3: Geometric results.

3.1. Geometric results
In Fig. 3, the svelteness Sv and the reflector area-aperture area rm,a are plotted as a function of the con-
centration ratio Cg . As can be seen, Winston’s criterion (blue line) reduces the height of CPCs, but Rincón’s
criterion (red line) reduces the height even further compared to the full CPC (black line). Here, a remark must
be done for this, and all the following plots, since Winston’s criterion reduces the concentration ratio one must
find the intersection of the blue curve with the green curves to read the desired parameter, while the Rincón
criterion attains no reduction in concentration ratio since a new acceptance angle must be determined to keep
the original Cg value, and parameters can be read directly.
When applying the constructal law to the geometric parameters (green line), the same result is obtained as
the Rincón criterion. Therefore, from a purely geometric perspective, the Rincón criterion is a geometric result
justified by the constructal law.
3.2. Optical-energy results
The average number of reflections and the étendue scattering are shown in Fig. 4 and can be read like the
previous plots. As can be seen, the Winston criterion (blue line) considerably reduces the average number of
reflections, but the Rincón criterion (red line) reduces even more the average number of reflections, being the
same for Cg between 2.04 and 5.01; however, Rincón’s criterion maintains an almost average value n close
to the minimum average number of reflections. An interesting behavior occurs for the étendue loss, since the
Rincón criterion results in beneficial results only for Cg > 2.28, otherwise the light will start to spread over the
receiver. In view of these results, the optical efficiency will be maximum for the CPC that is truncated with the
Rincón criterion due to a greater reduction of n and, in general a minimum loss of the étendue.
Similarly, the application of the constructal law (green line) to the optical energy parameters yields a curious
behavior. For the average number of reflections, the results are in agreement with the Rincón criterion, but not
so for the étendue scattering. The behavior of the truncation criterion according to the constructal law shows
that the Winston criterion is beneficial up to Cg = 2.28, and subsequently, the Rincón criterion is the one that
minimizes the dispersion of the étendue in the optical system for Cg > 2.28.
3.3. Entropy results
In this case, in addition to Cg , θr is another degree of freedom. Although a 3D surface could be generated, its
interpretation would be complicated. The parameter θr is the dimensionless temperature of the receiver, so it
is greater than 1, and necessarily less than θmax , with the possibility of being θr ,opt . Under these constraints, in
the present analysis θr is proposed as an average of these values.
The entropy parameters under the described conditions are shown in Fig. 5. As expected, for the full CPC
(black line), Mo=0 regardless of Cg . In the case of the Winston criterion (blue line), Mo results lower up to
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Figure 4: Optical-energy results.

Cg < 2.28, subsequently, the Rincón criterion (red line) presents lower values. Applying the constructal law
(green line) gives a result very similar to the dispersion of the étendue, since the truncation of the CPC is
optimized as a function of Cg . As can be seen in the graph of the optimum temperature, the Rincón criterion
allows the optimum temperature of the complete CPC to be reached, just as if the constructal law were applied.

4. Conclusions
The CPC has several advantages for concentration systems; principally the possibility to get mid temperature
ranges with a fixed concentrator, however, its height is the major drawback for its application. As a result,
several truncation criteria had been proposed to increase its use, but, up to date, all had been justified by its
height reduction, despite a first approximation with a simplified energy analysis.
Now, the analysis has been extended to include the rate of entropy generation, identifying that this production
occurs by two factors: dispersion of the étendue and heat transfer process; leaving aside the entropy genera-
tion by fluid friction when considering only the heating of a flat plate for CPC with flat receivers. However, this
analysis can be extended to any receiver geometry.
The present analysis has focused on comparing the behavior of the concentration ratio (Cg) for full CPCs with
respect to truncated CPCs according to Winston’s and Rincón’s criteria and by applying Bejan’s constructal
law. This comparison is made by means of six parameters: two geometrical (svelteness and reflector area-
aperture area ratio), two optical-energy (average number of reflections and étendue dispersion) and entropy
(a new dimensionless group proposed Mo that relates the entropy generation distribution and the optimum
receiver temperature).
When the study is carried out for different values Cg for the geometric parameters, the results of the constructal
law and the Rincón criterion are optimal as Sv and rm,a decrease significantly to a value close to 1/3 of the
full CPC. With respect to the optical-energy parameters, the Rincon criterion and the construct law can be
identified as the conditions for minimizing n; however, with respect to the dispersion of the étendue, the Rincon
criterion is only beneficial for Cg > 2.28, for lower concentrations, the Winston criterion is a better choice, as
shown by the constructal law. For the entropy results, again the Rincon criterion is only beneficial for Cg > 2.28,
as shown by the constructal law; while for the optimal temperature, the Rincón criterion allows reaching the full
CPC temperature.
In view of the results obtained, Rincón’s criterion, although proposed from a purely geometric perspective, is
practically a result of the construction law, provided that Cg > 2.28. This allows, without any doubt, to establish
that, for the great majority of low- and medium-temperature applications, using the Rincon criterion allows ob-
taining the best performance in CPCs, as had been stated as an assumption (without a formal demonstration)
in other previous works.
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Figure 5: Entropy results.
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Nomenclature
Letter symbols

A aperture area, m2

a aperture width, m

A′ receiver area, m2

a′ receiver width, m

Cg concentration ratio, -

F function, -

l CPC length, m

E energy, J

G irradiation, W/m2

h heat transfer coefficient, W/m2K; specific enthalpy, kJ/kg

k Boltzmann constant, J/K

L lenght, m

Mo Mora number, -

Ṅ number of photons per unit time, photons/m2 · s

n average number of reflections, -

Q̇ heat transfer rate, W
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r reflector area-aperture area ratio, -

Ṡ entropy rate, W/K

Sv svelteness, -

T temperature, K

t parameter (angle), rad

U heat transfer coefficient, W/m2 · K

x parametric equation, m

y parametric equation, m

Greek symbols

γ dimensionless photon energy

E étendue, m2

θ half acceptance angle, dimensionless temperature, -

φ incidence angle, -

Subscripts and superscripts

∗ sun

0 ambient

ap aperture

bn beam normal

fl flow

gen generated

imb imbalance

in inlet

out outlet

ph photon

r receiver

s solar

sc scattering

t truncated

th thermal

total total
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