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Abstract:

Rural areas are strategic assets to ensure sustainable energy transition due to their potential to implement
renewable energy production. In this context, the EU seeks to promote synergies between renewable energy
deployment and rural development, through several funding programs and supporting policies that benefit both
parties. Consequently, the number of rural Energy Communities is increasing, and researchers are focusing
on optimizing their designs. In this regard, one critical aspect when simulating the energy demand of Energy
Communities is the use of weather data which are mostly not available for specific locations. In these cases,
data from nearby urban centers are typically used, if available. But these data may not be representative of
the typical weather conditions of the specific rural area under study which will negatively affect such design.
In this context, this paper studies the impact of using urban areas’ weather data when designing Energy
Communities in the nearby rural areas. Therefore, the case study of the Tarragona province in Spain is
presented, driven by 43 weather stations homogeneously distributed across the region. Findings reveal higher
correlation in temperature and solar irradiation between local data and province's capital data than with third-
party data, despite climatic differences. Heating degree day analysis indicates third-party’s data closer to
reality. Given Spain’s heating demand, accurate data is crucial for HDD, therefore, when local data is
unavailable, third-party data is recommended, despite lower correlation.
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1. Introduction

Increasing global energy demand and costs have been catalyzed by growths in global population and in the
technological input required to drive economies [1]. This is also projected to be amplified by the rising global
temperatures due to global warming. Resultant effects have been seen in rising energy prices due to the
domination of energy supply from non-renewable resources. International agreement was reached, with clear
road maps to reduce the emission of greenhouse gases (GHGs) with clean and renewable energy resources
[2]. The UNEP Emissions Gap Report 2022 [3] indicates that to attain the goal outlined in the Paris Agreement
[4] to reduce global temperatures increase to below 1.5 °C, the current global emissions of GHGs must be cut
by 45%. This calls for greater penetration of cleaner energy into the global energy scenario. Following this, the
European Union (EU) has committed to the attainment of 32 % renewable energy inclusion in its member
states by 2030 [5]. An even bolder commitment of attaining 42% inclusion of renewable energy inputs into its
nation energy mix by 2030 has been made by Spain [6]. Realizing these goals will require paradigm shift in all
sectors, especially in electricity production as the supply of electricity drives many sectors (industrial,
residential, services, transportation, etc). Hence, there is a need to deviate from the traditional centralized
system of power generation to a distributed one which is capable of flexibly accommodating inputs from
complimentary renewable energy sources. The creation of energy communities has been demonstrated to be
a viable approach to meeting energy targets in the EU [7]. The EU in its Green deal commitment to meet
emission targets, recognizes and supports Renewable Energy Communities (RECs) as essential components
of energy transition [8]. This energy model also has the potentials of promoting self-consumption, reducing
energy cost to consumers, and job creation. Thus, a demand is placed on member states to develop national
policies and legal frameworks to promote participation of their stakeholders. However, the current Spanish
energy regulatory framework has limited widespread roll-out of these RECs [9-10].

1725 https://doi.org/10.52202/069564-0156



To maximize self-consumption and stabilize the national electricity grid, different types of renewable systems
can be combined into a hybrid renewable energy system (HRES) [11]. Spain possesses vast renewable energy
potentials which places it at advantage of benefiting from the HRES scenario [12]. On the other hand, the
building sector accounts for about 43% of the total final energy consumption with about two-thirds of this from
the residential buildings [13]. According to the International Energy Agency (IEA), the Spanish residential
sector reliance on energy from fossil fuels still accounts for more than 50% of the sectors’ final energy
consumption [14]. This is even more prominent in the rural areas of the country. Therefore, energy transition
efforts from the angle of the building sector are crucial. To this end, the EU directive 2010/31/EU and its
amendment 2018/844/EU are legislative frameworks binding on member states to improve the energy
efficiency of their buildings. Apart from participating in the energy demand side, buildings are also expected to
participate in the supply side through the incorporation of available renewable energy technologies [15]. The
idea is to achieve nearly zero energy buildings (NZEBs) or even positive energy buildings (PEBs) [16]. The
excess energy generated by a PEB may then be consumed by another member of its HRES or exported to
the national grid.

Dynamic numerical simulation has for some time, been an indispensable tool for HRES and NZEB
researchers/designers in improving buildings’ and HRES’ energy efficiencies. The energy models utilized are
usually run with weather data generated for the climatic conditions around the facility and they are often with
some measure of uncertainties [17]. Different procedures have been used to construct typical annual weather
data by statistically processing a multi-year (usually 10 years or more) actual weather data set as means of
forecasting future weather conditions [18]. The Typical Meteorological Year (TMY) method was developed by
Hall et al. [19] at Scandia laboratories, using Filkenstien-Schafer method, was modified into TMY2 and later,
TMY3, by the National Renewable Energy Laboratory (NREL). The American society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) commissioned the International Weather Energy Calculations
(IWEC) which was later updated to International Weather Energy Calculations 2 (IWEC2) [20]. The
International Organization for Standards (ISO) also presented a procedure (ISO 15927-4:2005) for
constructing a reference year of hourly values of meteorological data [21].

The reliability of the results obtainable from a building’s or/and HRES’ energy performance simulation depends
on the accuracy of the weather data file utilized for the corresponding facility’s location. The weather data used
to compute typical weather conditions are typically obtained from historical measurements from weather
stations which are usually situated at capital cities or airports. Since rural communities are usually far from
such locations, their climatic conditions may differ from those around the weather stations. This will introduce
errors when assessing energy performances in the rural areas [22]. However, generating the weather data for
a specific location through any of the established procedures can be very demanding. A simpler alternative is
to patronize the services of a third-party company which will generate the needed weather files while specifying
the preferred meteorological model and the geographic location of concern.

In summary, the constitution of energy communities in the rural areas requires a precise evaluation of the
energy performance of the involved buildings. However, according to the literature reviewed, no studies have
yet to specifically investigate the impact of utilizing non-local meteorological data on these communities’
design. This paper, therefore, seeks to fill this research gap by examining the implications of using data from
various common sources, such as the capital city of the region or third-party providers, in comparison to
employing local weather data in the design of rural energy communities.

2. Methodology

2.1. Data gathering and preparation.

The multi-year weather data supporting this work have been recorded by the weather stations owned by
METEOCAT (Meteorological Service of Catalonia) during the period 2010 - 2019 at the 12 different locations
around the province of Tarragona in Spain. The locations and main characteristics of these are presented in
Figure 1.

The METEOCAT weather dataset include among others, 30-minutes measures of the following meteorological
variables: dry-bulb temperature, wind velocity, relative humidity, global solar irradiance, maximum dry-bulb
temperature, minimum dry-bulb temperature, maximum relative humidity, and minimum relative humidity.
Despite the good quality of these measured weather data, it contained small gaps of usually a few hours,
mainly in the wind speed data. Therefore, the linear interpolation technique was employed to fill in the missing
data.

In building energy simulation, typical meteorological year weather data is usually a synthesized single year of
weather data that represents multiple years of historical weather data. The collected weather data were then
used to construct typical weather years according to the TMY. This method extracted a monthly weather
dataset each, for all the calendar months, which typifies the weather characteristics of each location, from the
historical data. The twelve selected typical months, which do not necessarily belong to the same year, were
then concatenated to create a typical year.
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bvsmmen esign, CCBY;3:0-- Map data (C) OpenStreetMap contributors.

population altitude latitude longitude

Amposta 21317 40.7078 0.6321

El Perellé 2846 179 m 40.8729 0.7158

El Vendrell 38891 59 m 41.2155 1.5212
Falset 2724 359 m 41.1537 0.8195

Horta de Sant Joan 1138 515 m 40.9513 0.3056
L'Espluga de Francoli 3717 446 m 41.3924 1.0989
Prades 602 926 m 41.3148 0.9816
Roquetes 8159 1055 m 40.797 0.3182
Tarragona 135436 5m 41.1039 1.201
Vila-rodona 1299 287 m 41.3073 1.3626
Vinebre 427 53 m 41.185 0.5938

Vinyols i els Arcs 2193 29 m 41.0802 1.0666

Figure. 1. A map of the province of Tarragona, indicating the locations of the weather stations analyzed in this
study and their key characteristics. The four stations examined in this paper are highlighted for reference.

The TMY methodologies build upon the original method by Hall et al. [23] which utilizes the following nine
parameters that are considered with daily frequency: minimum, maximum and mean values of dry bulb air
temperature (°C) and dew point temperatures (°C); maximum and mean values of the wind speed (m/s); and
the cumulative global horizontal solar radiation (Wh/m2). The weather data obtained from the different
meteorological stations did not include the data for dew point temperature but this was determined from the
data for relative humidity and dry bulb through psychrometrics.
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In the TMY procedure, the Finkelstein-Schafer (FS) [24] statistic was calculated to determine the typical
weather months for a calendar year. The FS statistic defines the absolute value of the difference between
long-term data and each of the historical candidate months. That is, for each weather data month, all historical
months were evaluated and the month which matched most statistically to the long-term weather pattern was
selected. The procedure is summarized below.

a) The daily means p were calculated from the parameter p values of the data series.
b) For each calendar month, the cumulative distribution function (CDFp,,) of the daily means for all the

years in the dataset was calculated by sorting all the daily means values in increasing order and then
ranking them using Eq. (1):

CDFymi = (22), (1)
where K(i) is the rank order of the i values of the daily means of a month m in the total data set and N
is number of days for the month in the total data set.

c) For each year of the dataset, the cumulative distribution function (CDFp,m,y,i) of the daily means within
each month was calculated by sorting all values for that month m and year y in increasing order and
then ranking them using Eq. (2),

CDFypymi = (%) (2)
where J(i) is the hierarchical order of the values i of the daily means within that month and year while
n the number of days in the specific month.

d) For each month, the FS statistic were then calculated for each parameter according to Eq. (3) & (4):
FSy = ~376;, (3)
where §; is absolute difference between the long-term data CDF and the historical candidate month
data CDF, and n is the number of readings in a month.

8; = X11|CDF,ymi — CDF, i (4)

e) The TMY procedures introduced a weighted sum of the single FS statistics calculated for every
parameter for each month as in Eq. (5). The weighting factors W, attributed to each of the nine weather
parameters vary according to their importance on building energy demandand are presented in Table

1. The month with minimum weighted sum of FS displays the most similar weather pattern to the long-
term historical weather.

WS, = X W, * FS(, ®)
The hourly weather data belonging to the minimum WS were then used to fill up the corresponding month of
the twelve-month weather file.

Table 1. Weighting factor used for each meteorological parameter.

Meteorological Parameter TMY [24]
Maximum dry-bulb temperature 0.042
Minimum dry-bulb temperature 0.042
Mean dry-bulb temperature 0.083
Maximum dew point temperature 0.042
Minimum dew point temperature 0.042
Mean dew point temperature 0.083
Maximum wind speed 0.083
Mean wind speed 0.083
Global horizontal solar radiation 0.500

Also, the TMY for each of the 12 municipalities were obtained with the Meteonorm software which has a
database with information from more than 7700 weather stations distributed around the world. The main
advantage of the Meteonorm software is its ability to generate weather date for user-defined locations by
interpolating data from nearby weather stations in combination with data obtained from satellites [25, 26].

2.2. Data analysis

The four locations selected for this study, are each considered to be representative of the 12 different climatic
typologies of the province. Tarragona’s (the capital) station is coastal, Amposta stations is pre-coastal, Falset
is inland at 259 meters above sea level, and Prades is also inland but at the highest altitude of about 926
meters. It should also be noted that the weather station at Prades usually records the lowest temperatures
during winter in the province.
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A correlational analysis of weather parameters (ambient temperature, relative humidity and total solar
irradiation) from the TMY of Tarragona, which was determined from historical data; the TMY for each of the
three locations as determined from their historical data and also the TMY obtained for each location from
Meteonorm, was performed. The Taylor Diagram provides a second approach for comparing weather data
from the on-site weather station, Meteonorm, and the province capital's weather station. This method uses
statistical metrics, such as the Pearson correlation coefficient (R), the centered root-mean-squared error
(RMSE), and the normalized standard deviation (o), to visually represent how closely a weather parameter
sample matches the local observation.

A comparative study of the Heating Degree Days (HDD) and the Cooling Degree Days (CDD) were then
conducted for the municipalities. The HDD relative to a base outdoor temperature of 18 °C were integrated
from mid-October to mid-April, while the CDD relative to a base outdoor temperature of 24 °C were integrated
from mid-April to mid-October. For each municipality, the values of the HDD and the CDD obtained from the
TMY built using the climatic data of its meteorological station were compared with the TMY of the capital
(Tarragona) and with the TMY obtained from the Meteonorm software. The method used for calculating the
degree days are as defined in [27].

3. Results and discussion

3.1. Typical Meteorological Months

Table 2 shows the monthly weather data that were selected to assemble the typical meteorological year for
each of the location considered in this study, based on the TMY procedure.

Table 2. Selected typical months for the different locations based on the TMY procedure.
Location Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Amposta 2018 2013 2014 2016 2012 2018 2013 2015 2016 2012 2016 2012
Falset 2015 2015 2014 2016 2012 2016 2013 2017 2016 2019 2016 2014
Prades 2013 2015 2014 2018 2014 2016 2013 2015 2016 2015 2016 2012
Tarragona 2013 2013 2014 2016 2016 2018 2010 2015 2016 2019 2016 2012

3.2. Taylor Diagram

The Taylor diagram is a useful graphical display of the statitiscal summary of how different models’
performances match each other in terms of correlation, root-mean-square difference and ratio of variance [28].

The weather data from on-site weather stations, the province capital's weather station, and third-party software
(Meteonorm) are compared using the previously introduced statistical metrics and displayed in a Taylor
diagram for each of the three selected municipalities (Amposta, Falset, and Prades), based on three
meteorological variables (temperature T, relative humidity RH, and global horizontal irradiance GHI).

In Amposta (Figure 2), T and GHI from the province capital’s weather station have higher correlation with the
on-site data (R=0.92 and R=0.93) than the Meteonorm’s data (R=0.82 and R=0.73) obtained for the location.

RH however, generally showed much lower correlation (R=0.65 for the capital and R=0.21 for Meteonorm).
The standard deviations are similar in all cases, below the 10% compared with the reference, except for the T
of Meteonorm’s data, around 21%.

In Falset (Figure 3) and Prades (Figure 4), T and GHI from the province capital's weather station also have
higher correlations with the on-site data than Meteonorm's data, while RH has lower correlations. In these two
locations, the standard deviation for all parameters is within acceptable values in all cases, less than 20%
different from the reference data. It is noteworthy that Meteonorm's data are worse than the province capital's
data in all locations, despite significant climatic differences between some of the municipalities. Although it is
expected that Amposta and the province capital would have similar data, as they are both located on the coast
with a Mediterranean climate, Prades and Falset have different climates and are located at higher altitudes
than the capital.
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Figure. 2. Normalized Taylor Diagram for Amposta municipality, which compares the Amposta on-site weather
station data (as reference) with Amposta third-party Meteonorm data, and with the province capital’s weather
station data for the TMY 2010-2019.
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Figure. 3. Normalized Taylor Diagram for Falset municipality, which compares the Falset on-site weather
station data (as reference), Falset third-party Meteonorm data, and the province capital’'s weather station data

for the TMY 2010-2019.
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Figure. 4. Normalized Taylor Diagram for Prades municipality, which compares the Prades on-site weather
station data (as reference), Prades third-party Meteonorm data, and the province capital’'s weather station data
for the TMY 2010-2019.

3.3. Heating degree days (HDD) and Cooling degree days (CDD)

To evaluate the impact of typical weather data sources on building energy demand prediction for the three
locations (Amposta, Falset, and Prades), it is crucial to analyze the representative Cooling Degree Days (CDD)
and Heating Degree Days (HDD) of the different weather datasets. To this end, Figure 5 presents a comparison
of the HDD and CDD values obtained from the TMY built using climatic data from each local weather station
(On-site TMY), the TMY built using climatic data from the province's capital weather station (Capital TMY), and
the TMY generated for each location using the Meteonorm software (Meteonorm TMY).
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Figure. 5. Cooling Degree Days (left) and Heating Degree Days (right) for the 3 municipalities in the study
(Amposta, Falset and Prades), computed from 3 different TMY 2010-2019 datasets: on-site weather station
data, province capital’s weather station data, and third-party Meteonorm data.

For the coastal municipality of Amposta, which is assumed to be more climatically similar to the provincial
capital, the CDD values show significant deviations. Specifically, the onsite weather dataset resulted in CDD
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which deviated from those from Tarragona’s weather dataset by -86%, and even larger deviation of -300%
from those given by the Meteonorm weather dataset. With respect to HDD, the onsite weather dataset
minimally deviated from Tarragona’s weather dataset by +2% while significant deviation of +12% from the
Meteonorm’s dataset is observed. These deviations are consistent with the Degree Days presented on the
METEOCAT website for Amposta and Tarragona [29]. Concerning the implications for building energy
demand, using the weather datasets from both the capital or Meteonorm would result in a large overestimation
of cooling energy demands of buildings in summer. On the other hand marginal underestimation of heating
demand of buldings in winter would result from the use of weather dataset from the capial while significant
underestimation would result with the use of Meteonorm’s dataset.

The CDD from the onsite weather dataset at Falset, which is located inland and at an altitude of 359 meters,
are similar to those resulting from the capital's dataset with a minor deviation of about -2% while a larger
deviation of about -22% resulted compared to the Meteonorm’s dataset. However, the onsite weather data
HDD show a larger deviation of about +34% from the capital's dataset and about +11% from the Meteonorm’s
dataset. This imply that using weather dataset from Meteonorm will result in significant overestimation of
buildings’ cooling demands in summer while datasets from both the province’s capital and Meteonorm will
result in significant underestimation of buildings’ heating demands in winter.

Finally on Prades, which experiences considerably colder winters than the other locations (as evidenced by
the onsite HDD values in Figure 5), the onsite weather dataset's CDD deviates with +475% and +116% with
respect to the capital’s and Meteonorm weather datasets respectively. The HDD from the onsite weather
dataset on the other hand, deviates with +55% and +11% from the capital’'s and meteonorm’s datasets
respectively. Therefore, there is the risk of significantly underestimating buildings’ heating demands during
winter if the local weather dataset are not utilized, especially by using the weather dataset from the provincial
capital. Additionally, significant overestimation of buildings’cooling energy demands will result from using
weather datasets from both the province’s capital and Meteonorm in summer.

Overall, and considering that in the period between 2010-2020, heating accounted for 41.5% of the total energy
consumption in the residential sector in Spain, while air conditioning only accounted for 1% [31], it is crucial to
properly size the heating system as opposed to the cooling system. Thus, in cases of extreme winter
temperatures, it is more advisable to use Meteonorm data instead of relying on data from the provincial capital.

3.4. Conclusions

The objective of this research is to show the impact of using approximate meteorological data instead of using
real local weather data in the design of rural energy communities. The study was conducted in twelve rural
municipalities in the province of Tarragona, which have on-site data from local weather stations, with focus on
three of them. Thus, for each location, the data from the local Typical Meteorological Year (TMY) computed
from the on-site data were statistically compared, in terms of correlation, root-mean-square difference and ratio
of variance, with data from the TMY of the province’s capital and the TMY obtained using third-party software,
Meteonorm. Additionally, the typical cooling and heating demands in buildings at each location were estimated
using Cooling Degree Days (CDD) and Heating Degree Days (HDD) for the three meteorological datasets:
referencial on-site data, province’s capital data, and Meteonorm’s data. The results show that, in all three case
studies, the correlation of temperature and solar irradiation parameters between the local data and the data
from the province’s capital was higher (R=0.85-0.90) than with those from Meteonorm (R=0.70-0.85). This is
despite the apparent climatic differences between the capital, in the coast, and the inland municipalities of
higher-altitude. It should also be noted that the relative humidity data had correlation values lower than R=0.5
with respect to both the province’s and Metenorm’s data, indicating that they are unreliable for replacing the
on-site data in any case. Furthermore, the analysis of CDD indicates that the data from the provincial capital
is closer to the real local data than the data provided by Meteonorm. However, for HDD, the opposite is true,
as the data from Meteonorm was found to be closer to real data, with deviations of 11%, compared to the
deviation of 34-55% with the data from the provincial capital. Given that the heating energy demand in the
residential sector in Spain represents 41.5% of energy consumption in average, while cooling demand barely
reaches 1%, it is vital to use the data that best approximates reality with respect to HDD. Therefore, when local
meteorological data is not available, third-party data yields better results in HDD analysis than the weather
data of the provincial capital, though with low worse correlation. However, it is advisable to study to what extent
the deviations found affect the definition of specific building design parameters for rural energy communities.
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