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Abstract:
Packed beds are essential components for future utility-scale long duration energy storage, such as A-CAES
and Carnot batteries, and are expected to operate under a large variety of operating conditions. The operating
behaviour can be visualised compactly within Ragone plots, which show the extractable energy over a range of
discharge powers. They can additionally demonstrate the effect of different operational limits. Ragone plots are
a well-known framework within electrochemical energy storage, but have not been applied to packed bed ther-
mal energy storage. In this work, Ragone plots of packed beds are developed, to quantify off-design behaviour
and the energy-power trade-off. For this purpose, a one-dimensional, two-phase, transient, Schumann-style
model for a non-pressurized packed bed is implemented in the modelling language Modelica. It is charged up
to a nominal thermal energy of 100 MWh and subsequently discharged with two different discharge regimes,
namely a constant mass flow discharge or a constant heat tranfer rate discharge. The shape of the obtained
Ragone plots is characterised by limited self-discharge and little decline in available energy at high constant
mass flow discharges. The enforcement of the mass flow limit and imperfect heat transfer dynamics lead to a
residual thermal energy within the storage, which can be extracted at lower heat transfer rates. Analogies to
electrochemical energy storage are drawn, where polarisation causes a conceptually similar residual energy.
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1. Introduction
In this paper, a packed bed thermal energy storage (TES) is studied and characterised within the Ragone plot
framework and analogies between electrochemical energy storage are demonstrated. This is important since
packed beds are considered strong contenders for TES components in future long-duration energy storage,
such as Carnot batteries [1], compressed air energy storage (CAES) [2] and in the decarbonisation of industrial
heat [3], due to their favourable characteristics. These characteristics include excellent heat transfer, low
material costs, a low environmental impact, a high operational temperature range and high output temperature
levels, due to thermal stratification. The study of packed beds has attracted considerable research attention,
especially their modelling [4,5], parametric optimisation [6] and performance aspects [7].
The Ragone plot shows the available energy as a function of discharge power and thus characterises the
inherent energy-power trade-off of energy storage [8]. It is a very fundamental relation and can be construed
as a “common language” of energy storage [9]. The characterisation of packed beds within this framework
therefore enables the direct comparison with different energy storage technologies, across their respective
fields.
The Ragone plot was first introduced by David Ragone in 1968 [10], and over the following years established
itself a concept in the field of electrochemical energy storage, e.g. batteries and supercapacitors. They have
recently also been applied in the field of TES (and associated technologies). Latent heat TES has been
characterised with Ragone plots by [11–13]. Of these, Woods et. al. [12] presents a comprehensive Ragone
plot analysis of different phase change materials. Here, the energy-power trade-off in a finite volume is shown,
whereby heat transfer is improved at the cost of energy capacity. The publication lays the foundation for Ragone
plot characterisation of TES as standalone components. The thermal energy is extracted at different constant
heat transfer rates q̇, as the thermal equivalent to electric power.
Christen [9] characterised pumped thermal energy storage (PTES) with both latent and sensible TES via
Ragone plots. Here the TES is not characterised directly, but as a component within electric energy storage.
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The analysis employs endoreversible thermodynamics [14] (perfect heat engine with irreversible heat transfer)
to estimate the electric power delivered. Further, a lumped-model approach is used, which means there
is no spatial temperature variation. This implies perfect mixing within the sensible TES, where the output
temperature decays during the entire discharge process. In contrast, in a thermally stratified packed bed, a
high, nearly constant output temperature can be held over the first part of a discharge until thermal front has
migrated towards the outlet. A packed bed therefore lies somewhere between mixed sensible and latent TES
in terms of maintaining high output temperatures, which is beneficial in a thermodynamic power cycle.
The contribution of this paper is to conduct the first analysis of packed beds within the Ragone plot framework,
as this has not been attempted before. For this, a state-of-the-art packed bed model is used. Analogies
between packed bed TES and electrochemical energy storage discharge modes are developed, to effectively
translate the Ragone plot framework. An assessment of off-design performance of packed beds follows, both
in the context of pure thermal energy storage and as a thermal reservoir for a power cycle. The remainder of
the paper is structured as follows: Section 2 describes the methodology of the Ragone plot and the employed
packed bed model. Section 3 shows the obtained results and highlights key findings. Section 4 summarises
the results and derives the conclusion from the presented analysis.

2. Methodology
2.1. The Ragone plot framework and discharge regimes
A Ragone plot essentially is a collection of energy-power value pairs from full discharges of any kind of energy
storage. These value pairs form a Ragone curve or energy-power (E-P) curve. Ragone curves are often
presented as specific values, based on storage mass (gravimetric energy and power density) or on storage
volume (volumetric energy and power density) However, absolute values are also used, depending on what
makes most sense in the given context.
Christen and Carlen [8] have expressed the Ragone curve as stemming from constant-power (CP) discharges,
where a constant power P can be applied to an fully charged energy storage for a finite time tend until an
internal operating limit terminates the discharge. This results in the following E-P relation:

E(P) = P · tend(P) (1)

However, the electrochemical ES community routinely characterises batteries with constant-current (CC) dis-
charges. This does not result in an unambiguous energy-power point, because the power varies in the course
of this type of discharge. In these cases, the E-P value pair for a constant current I is obtained by averaging
the power over the discharge time, resulting in

E(I) = Pave(I) · tend(I) (2)

These two fundamental discharge regimes found in batteries (CC/CP) have direct equivalents in packed bed
TES, which are all shown together for illustration purposes in Fig. 1. All subfigures show the potential variable
of the energy storage (voltage U for the lithium-ion battery and the specific enthalpy difference Δh of the fluid
at inlet and outlet for the packed bed) and the flow variable (current I for the lithium-ion battery and mass flow
rate ṁ for the packed bed) over the course of the discharge time.
Fig. 1 a) and b) are the respective constant flow discharge regimes. In a CC-discharge of a lithium-ion-battery
in a), the output voltage decays until the discharge is terminated by reaching the predefined operating limit
Umin. The output power P(t) = U(t) · I also decays. Analogously, in Fig. 1 b) Δh decays during the constant
mass flow discharge (referred to as “CF”-discharge hereafter), until termination at Tmin. Here the potential
variable and flow variable multiplied result in a decaying heat transfer rate q̇(t) = Δh(t) · ṁ delivered to the
application. The Ragone plot from a CF-discharge of a packed bed can thus be expressed as:

E(ṁ) = q̇ave(ṁ) · tend(ṁ) (3)

To compensate the decaying voltage in lithium-ion batteries, the current can be increased during the discharge
to deliver a constant power, see Fig. 1 c). The packed bed equivalent is increasing the mass flow to compensate
the decaying Δh and deliver a constant heat transfer rate q̇, referred to as a “CQ”-discharge hereafter. The CP
and CQ discharge regimes have a higher control effort, but are necessary if load-following must be achieved [9].
Here, the discharge can be terminated by reaching a potential variable limit (i.e. Umin or Tmin) or by reaching a
flow variable limit, here Imax or ṁmax. The Ragone plot derived from multiple CQ-discharges become simply:

E(q̇) = q̇ · tend(q̇) (4)

It must be noted, that in [12], the constant heat transfer rate for the latent heat TES Ragone plots is realised by
adjusting the inlet temperature instead of the mass flow. We consider an increase in mass flow better suited for
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Figure 1: Equivalent discharge regimes for electrochemical ES, represented here by a lithium-ion battery, in
a) and c) and packed bed TES in b) and d).

this analysis. The adjustment of the inlet temperature premises another heat source/sink apart from the TES
itself, which is deemed impractical. In the course of this analysis, a representative packed bed will be studied
under both CF and CQ discharge regimes.
2.2. Packed bed sizing
The packed bed is sized for a nominal energy capacity Enom = 100 MWh in a top-down design approach, with
inlet temperatures assumed at Tin = Tmax of 550 ◦C during charge and 20 ◦C = Tamb = Tmin for discharge.
The packed bed is considered a non-pressurised rock-air system. The amount of rock mass ms needed is
calculated from [6] as follows:

Enom =
ms

β
· cp,s · (Tmax − Tmin) (5)

The packed bed is oversized by a factor β = 1.5 to prevent energy and exergy lost by exiting hot air, in
accordance to results from Cardenas et. al. [6]. The basic geometry, namely radius r and height H is calculated
via (6) and (7), for an aspect ratio of α = 0.7 [6].

r =
(

ms

2π · α · ρs · (1 − ε)

)1/3

(6)

H = 2 · r · α (7)

The nominal discharge time is set at tnom = 10 hours. From this, the nominal mass flow ṁnom can be calculated
via the following simplified relation:

ṁnom =
Enom

tnom · cp,f ·ΔT
=

Enom

tnom · cp,f(Tmax) + cp,f(Tmin)
2

· (Tmax − Tmin)
2

(8)
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The according specific mass flow Gnom is:

Gnom =
ṁnom

2π · r2 (9)

The key design parameters of the packed bed are summarised in Table 1, where the values are colour-coded
according to their degree of freedom in the design process. The design process chronology is from the top to
bottom of the table.

Table 1: Overview over packed bed design parameters, colour-coded according to their degree of freedom in
the design process. With = high degree of freedom, = limited degree of freedom and = resulting value.

Design parameter Unit Value Source
Enom MWh 100
Tmin

◦C 20
Tmax

◦C 550 [4]
solid specific heat capacity cp,s J/kgK 960 [15]

solid density ρs kg/m3 2560 [15]
rock mass ms t 1061.3
aspect ratio α - 0.7 [6]

oversize factor β - 1.5 [6]
porosity ε - 0.40 [4]

rock diameter d m 0.02 [4]
radius r m 5.40
height r m 10.80

cross section A m2 91.47
tnom h 10

nominal mass flow ṁnom kg/s 36.33
nominal specific mass flow Gnom kg/sm2 0.3972

The wall is composed of three layers, adopted from [16]: an internal tube, an insulation layer and an outer steel
vessel. Their respective parameters are listed in Table 2.

Table 2: Wall composition of packed bed

Design parameter Unit Tube Insulation Steel vessel
thickness r m 0.001 · 2r 0.05 · 2r 0.001 · 2r

thermal conductivity k W/mK 0.12 0.15 20

2.3. Packed bed model description and validation
The Ragone plot analysis is conducted on the basis of a dynamic physical model of the packed bed, according
to current standard modelling practise. The model is a transient, two-phase, Schumann-style model, widely
used in the study of packed beds. The model is governed by mass conservation and by an separate energy
balance for solid and fluid respectively, linked through the convective heat transfer between fluid and solid. The
model further considers axial conduction through the solid and losses from fluid to ambient. The equations are
taken from [4]. For the fluid phase this is:

ε ρf cp,f(Tf) A
∂Tf

∂t
= hV A (Ts − Tf) + cp,f(Tf) G A

∂Tf

∂x
+ Uwall 2π r (Tamb − Tf) (10)

with the volumetric heat transfer coefficient hV from the correlation of Coutier and Faber [15] and the overall
loss coefficient through the wall Uwall. Uwall is calculated as conduction through a multi-layered cylinder wall [19]
with no thermal capacitance of the wall. The convection at the inner wall is from [20], while the convection at
the outer wall is considered as free convection near a vertical surface [18]. For the solid phase the energy
conservation equation is:

(1 − ε) ρs cp,s
∂Ts

∂t
= hV (Ts − Tf) + kbed

∂2Ts

∂x2 (11)

with the axial thermal conductivity of packed bed kbed. This is evaluated according to the model of Zehner,
Bauer and Schlünder [18]. The two-phase formulation is important to capture transient effects, i.e. when fluid
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and solid are not in thermal equilibrium [17]. The energy E contained in the packed bed is determined via
the temperature of the solid [4] and is given in (12). The pressure loss in the packed bed is calculated via the
Ergun equation [18].

E =
∫ H

0
ρs cp,s A (Ts(x) − Tamb) dx (12)

2.3.1. Implementation

The numerical model is implemented in the acausal, multi-physics modelling language Modelica and solved
within the open source modelling environment OpenModelica. As OpenModelica cannot solve partial differen-
tial equations (PDE), a finite volume discretisation is applied to (10) and (11) to form a set of coupled ordinary
differential equations (ODE), where each control volume is governed by an ODE. The discretisation scheme
and structure of the layer-based equations are adopted from [17]. The temperature-dependent thermodynamic
properties of air are calculated at every point in time with the integrated “ReferenceAir” medium model con-
tained in the Media library. This is a real gas model for dry air in the range of 130 K to 2000 K, based on
Helmholtz equations of state.
2.3.2. Validation

The packed bed model is validated with the experimental data of Meier et. al. [21], further described by
Hänchen et. al. [4], by scaling the model to the geometric dimensions specified. The result is shown in Fig. 2.
The model shows good thermal agreement, but overestimates pressure losses by approx. 10 %, which is a
known effect of the Ergun equation for randomly packed, spherical rock beds [22]. However, the equation is
standard practise [18] and agreement is deemed satisfactory for the scope of this work.

Figure 2: Validation of a) thermocline behaviour and b) pressure drop of the packed bed model with
Uwall = 0.678 W/m2K at 523 K and a bypass flow of 15 % reported in [4]. Comparison with experimental
data from [21]. The model is discretised into 30 layers.

2.4. Consideration of auxiliary components
In a non-pressurised packed bed, airflow is driven by an auxiliary fan/blower and the pressure drop Δp incurred
through the bed must be compensated [6]. This must be considered in the Ragone plot analysis, because
high mass flows result in higher pressure drops. Additionally, because the mass flow will be varied between
discharges in the CF regime and during the course of a discharge in the CQ regime, a reasonable ṁmax must
be determined. Whether the auxiliary is considered a fan or a blower depends on the pressure ratio, but the
distinction is not clear-cut in literature [23]. For simplification purposes, we only refer to “fan” from this point
onward.
The required auxiliary fan power is expressed as [24]:

Paux =
V̇ ·Δp
ηfan

(13)

with ηfan assumed at 80 % [24] for all operating points. This is a simplification, as the fan will operate in
unsteady, off-design conditions. Even in a constant mass flow CF charge/discharge, the pressure loss to be
compensated varies in the course of the charge/discharge, as the thermodynamic properties of the fluid inside
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the packed bed change. This is also confirmed experimentally in Fig 2 b). The off-design behaviour of fans
can be characterised with performance maps, which are usually determined experimentally and are specific to
a fan type and geometry. However, with variable speed drives, satisfactory efficiencies can be achieved over a
large range of mass flows, respective volume flows [24]. Therefore the consideration with a single efficiency is
considerd sufficient and analysis with detailed performance maps is not deemed expedient.
Up to a pressure ratio of 1.3, air can be assumed as a incompressible medium [25], and therefore Paux is
calculated with the volume flow at inlet in 13. This is often viewed as the limit between fans and compres-
sors [25]. This limit adopted here as the maximum allowable fan pressure ratio and higher pressure losses are
a priori deemed impractical. From this condition, a maximum mass flow ṁmax can be iteratively determined
from simulation runs, resulting in ṁmax = 158 kg/s or 4.3 · ṁnom. The maximum specific mass flow is thus
Gmax = 1.727 kg/sm2.

3. Results and Discussion
3.1. Ragone plots from CF-discharge
In a first step, Ragone plots are developed from multiple constant mass flow (CF) discharges, as specified in
Section 2.1. The packed bed is fully charged to nominal energy, then subsequently immediately discharged
until the cut-off temperature is reached. This is repeated multiple times, starting from a mass flow of 0.1 · ṁnom
up to ṁmax = 4.3 · ṁnom. The result is shown in Fig. 3 a) for a cut-off temperature of Tmin = 20 ◦C and in b) for
Tmin = 100 ◦C.

Figure 3: Ragone plots from multiple CF-discharges.

The Ragone curves (in black) show the available thermal energy over the average heat transfer rate. Certain
mass flows are demarcated by dots; these are multiples of the nominal mass flow (conceptually similar to the
C-rate in lithium-ion batteries). Classically, the Ragone curve is shown without any other descriptive elements.
In this case, a novel visualisation is implemented to demonstrate how the Ragone curves are composed. The
area above the curve (thermal energy that cannot be extracted) is color-coded, where red equals energy lost
to environment and blue is residual energy in the storage. Further included is the electric energy required by
the auxiliary fan to achieve the respective mass flows (yellow). This is not subtracted from the Ragone curve,
because it does not lessen the available thermal energy, but is included for reference. It rises sharply for higher
mass flows.
The Ragone curves confirm known packed-bed qualities. Thermal energy can be contained well, even for
long discharge durations at low mass flows, signalled by low losses to the environment. Additionally, higher
mass flows don’t negatively impact available thermal energy to the extent that, e.g. high currents limit available
energy in Li-Ion batteries. The forced convective heat transfer is still very good at high mass flows. Because of
these characteristics, the shape of the Ragone curve in the CF-discharge regime is relatively flat. It is important
to note that thermal front degradation does not show itself in Fig. 3, because the energy content remains the
same and the bed is oversized to the extent that the thermal front degradation does not reach the outlet in the
discharge durations considered.
The location of the Ragone curve on the E-Q plane is largely determined by the cut-off temperature. In Fig. 3 a),
no thermal energy remains in the packed bed, whereas in Fig. 3 b) the higher cut-off temperature moves the
entire Ragone curve downward, resulting in residual thermal energy. This is shown in Fig. 4, for multiple
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different Tmin. The residual energy and energy lost to the environment are not included here for visual clarity,
only the auxiliary energy.

Figure 4: Ragone plots with varying cut-off temperature limits Tmin.

One thing that becomes clear in Fig. 4, is that there is no single unique assignment between q̇ave and ṁ.
Depending on Tmin and the resulting discharge end time, a specific ṁ might result in different q̇ave. Secondly,
one can observe a slight decrease in available energy at higher q̇ave. This can be attributed to an effect
that is equivalent to polarisation in lithium-ion batteries. Polarisation is when charge transfer from and into
the electrode cannot keep up with high current demands, resulting in overpotentials [26]. These lead to a
premature termination of discharge and cause a residual energy that can only be extracted at lower currents.
In the packed bed, imperfect heat transfer dynamics at high mass flow rates results in a temperature difference
between fluid and solid. At the end of the discharge, the solid still has a higher temperature, but the fluid outlet
temperature is lower and triggers the discharge cut-off. This effect is shown in Fig.5. It shows the temperature
difference ΔT between solid and fluid, plotted over the specific mass flow G for several different lower cut-off
temperatures.

Figure 5: Temperature difference ΔT (tend) between solid and fluid at the end of discharge for different Tmin.

From Fig.5 it can be seen that higher mass flows generally result in higher ΔT and thus higher “polarisation”.
But ΔT is also dependent on Tmin. The temperature difference is highest within the thermocline, and stopping
the discharge as the steepest point of the thermocline exits, results in highest ΔT (here at Tmin = 350 ◦C). This
in turn leads to the highest amount of residual energy due to heat transfer limitations.
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3.2. Ragone plots from CQ-discharge
In the second part of the analysis, Ragone plots constant heat transfer rate (CQ) discharges are developed,
presented here in Fig. 6. As in Section 3.1., the packed bed is fully charged and immediately discharge until
termination by either reaching the predefined maximum mass flow ṁmax or the cut-off temperature Tmin. This
is repeated for multiple heat transfer rates, with the E-Q value pairs forming the Ragone curve. In 6 a), the

Figure 6: CQ-Ragone plots, curve composition in a) and variation of Tmin.

Ragone plot for Tmin = 20 ◦C shows a very different curve, than its CF-counterpart in Fig. 3 a). Here, the
minimum temperature cut-off does not come into play, because the Ragone curve (in black) is limited by the
maximum mass flow ṁmax in every discharge. As shown in Section 2.1., the mass flow is increases towards
the end of the discharge, to compensate the decaying output. In this case, ṁmax is always reached before
Tmin = 20 ◦C. This cut-off leaves a residual energy (blue) within the storage that can only be extracted at lower
heat transfer rates, even in the case of Tmin = 20 ◦C. The auxiliary energy needed is more evenly distributed,
because the fan only operates at high mass flow rates at the end of the discharge.
Figure 6 b) shows the Ragone curves for different lower temperature limits Tmin. Here, for higher Tmin limits,
the Ragone curves are each composed of two distinct sections, a relatively flat temperature-limited section
and a mass-flow-limited section, where the available energy drops quickly. The mass flow limit forms an outer
enveloping curve for all the Ragone curves.
It must be noted, that the available energy reaches a limit of 0 at q̇max . This is not shown in Fig. 6 b) as it is
not considered an actual practical operating point and the axes are identical to the CF-discharge in Fig. 3 b)
for comparison purposes. At this point E −→ 0, q̇ is only applied for infinitesimally short discharge duration, and
the maximum mass flow limit ṁmax is immediately enforced.
3.3. Packed bed as a thermal reservoir for a power cycle
The Ragone plots presented in Section 3.2. and 3.1. show only available energy and do not differentiate
between exergy and anergy. This energy-based analysis is valid, as packed beds can be utilised purely in a
thermal energy storage context, e.g. in the recuperation of waste heat, that is used to preheat fluid streams at
a later point. If desired, energy quality (i.e. exergy) demands can be encoded in these Ragone plots, by setting
a certain Tmin, but this is a quite roundabout way.
Alternatively, a simple way to evaluate the packed bed as a thermal reservoir for a power cycle is to apply a
Carnot efficiency ηcarnot = 1 − Tout/Tamb to the output, which has been employed by [9]. This is a theoretical
analysis, as there is no consideration of control regimes or any other irreversibilities apart from those included
in the packed bed model, but it is a quick and convenient manner in which to produce electric energy over
power Ragone plots, based on a specific TES. Fig. 7 a) shows the result of such an analysis, where the output
power P is kept constant, until the storage is unable to deliver it and the discharge is terminated. Unlike the
analysis in Section 3.1. and 3.2., the maximum mass flow is set as ṁmax = 1.5ṁnom because the achievable
mass flow variations are more limited in a power cycle.
Here, also E(Pmax) −→ 0, which Christen [9] generally asserted for sensible heat storage. However, the shape
of the Ragone curve is bulged outwards towards higher E and P values, instead of inwards like the mixed
sensible TES [9]. The thermal stratification and good heat transfer of the packed bed enable a higher Carnot
efficiency over a longer part of discharge. This Ragone plot can easily be compared to the E-P relation of other
electric storage technologies, regardless of their functional principle. This is demonstrated in Fig. 7 b), where
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Figure 7: a) Ragone plot from CP-discharge of the 100 MWh packed bed via a Carnot engine. b) Gravimetric
Ragone plot of the packed bed-based PTES and comparison to mixed sensible and latent heat PTES from [9],
in addition to a commercial Li-ion battery cell.

the specific-value Ragone curves of perfectly mixed sensible and latent heat PTES from [9] are included for
comparison purposes, in addition to a commercial Li-ion battery cell. It should be noted that the specific-value
Ragone curve of a full Li-ion system with periphery would have lower specific values. The Ragone curve shape
of the packed bed PTES underlines its characteristics, as it shares both the property of mixed sensible heat,
where E(Pmax) −→ 0, but also the convex Ragone curve shape of latent heat. As a storage technology, packed
bed-based PTES have relatively low gravimetric energy and power densities.
3.4. Comments on cyclic stability
Packed bed behaviour is known to reach quasi-stationary cyclic temperature profiles in charge-discharge cy-
cles of constant duration [7]. This is achieved after a certain number of cycles (5-20 cycles is the range typically
found in literature). In the packed bed analysed here, the cyclic stability is reached after ten cycles, as shown
in Fig. 8. Packed bed analyses are often conducted on the basis of these quasi-stationary temperature pro-

Figure 8: Cyclic stability in the packed bed temperature profile: Final temperature Ts(tend) after charge.

files [4, 5, 7], however in case of Ragone plots, we have not integrated this into the analysis. Several issues
arise when applying the cycle stability logic into the Ragone framework. Firstly, the stable temperature profile
is different for every cycle length [7], introducing an additional level of variability. Secondly, the energy in the
packed bed after reaching cyclic thermal stability will differ from the nominal energy. In Fig. 8 it is approx.
25 % higher than Enom. Additionally, the losses incurred along the way by the multiple cycles cannot be cleanly
integrated into a subsequent Ragone plot analysis. Cyclic analysis makes sense in a cyclical load regime,
e.g. storage for concentrated solar power. However in a thermal load-following paradigm or variable discharge
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waste heat output, cyclic operation will not be given in any case. And while the Ragone plot also does not cover
all possible load scenarios, its benefit lies in the formulation of a consistent scenario [9] and the comparability
to other storage technologies.

4. Conclusions
The presented analysis aimed to evaluate packed bed TES within the Ragone plot framework and draw analo-
gies to the field of electrochemical energy storage. An exemplary 100 MW packed bed model was sized and
simulated under different discharge regimes. The main conclusions are derived as follows:

• Two discharge regimes are identified for packed beds, namely CF (constant mass flow) and CQ (constant
heat transfer rate), which have direct counterparts (CC and CP) in the field of electrochemical energy
storage.

• The energy-power trade-off of packed beds, quantified here with Ragone plots, is low and the analysed
packed bed shows good performance over a large range of discharge demands.

• Imperfect heat transfer dynamics cause a residual energy in packed beds, that is conceptually equivalent
to polarisation in electrochemical energy storage.

• The Ragone plot framework is well-defined, simple-to-use scenario, that is well-suited for off-design
characterisation of TES. This can be done both within the function as pure thermal energy storage and
as a thermal reservoir for a power cycle. The obtained results can be compared directly and quantitatively
with any other energy storage technology.
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