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Abstract:
This paper presents a method to find the optimal topology, pipe sizing, and operational parameters of a district
heating system under consideration of one design point. The current high costs of district heating systems
set limits regarding the minimum heat demand density required for economic network expansions. Optimized
routing with ideal pipe sizing and optimal operating parameters offers a potential for cost reduction. With a lower
network temperature, the consideration of nonlinear transport phenomena within the district heating network
becomes increasingly important. Therefore, a new nonlinear optimization method is introduced, where graph
preprocessing reduces the computational effort of the subsequent nonlinear optimization. A cost penalization
method, using a smooth approximation of a Heaviside function is applied to pipe investment costs to account for
discrete piping diameters. To guarantee fast convergence of the optimization algorithm, the Jacobian matrixes
are calculated and the problem is solved with an interior point algorithm. As a proof of concept, the district
heating system for a small fictional town with 42 consumers is optimized and analyzed. The whole nonlinear
optimization is performed in 19.37 sec and in most cases discrete or near discrete diameters are achieved in a
nonlinear continuous optimization.
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1. Introduction
District heating systems can play a key role in a socially accepted, economic transformation towards a renew-
able energy system due to numerous advantages over a building-specific heat supply [1]. Currently, the high
total costs of district heating systems usually require a high heat demand density for economic network expan-
sions [2], as until recently there was very strong competition in the form of cheap individual heating from oil
and gas. In addition, long amortization periods frequently prevent expansions from being economically feasible
without subsidies. One possibility to reduce investment costs of district heating networks is a detailed nonlin-
ear topology optimization, allowing optimized routing with ideal pipe sizing, as well as optimized operating
parameters. Especially in less urbanized or rural areas, an untapped potential of environmentally friendly heat
supply could be exploited [3]. In urban areas, [4] shows that an integration of industrial waste heat into district
heating systems could further improve the potential of these systems. In the next section, different optimization
techniques for district heating systems are explained in the following order: Mixed-integer linear programming
(MILP), mixed-integer nonlinear programming (MINLP), heuristics, and adjoint-based optimization.
The discrete nature of network expansions and commercially available pipe diameters often leads to a mixed-
integer programming formulation. [5] shows that most publications on district heating topology optimization
are using MILP. In [6], mixed-integer linear programming is used to solve this structural optimization for a
district cooling system. In [7], a similar MILP approach is used to perform a topology optimization of a single-
commodity flow network. The optimization is reduced to a power flow in the network, neglecting e.g. mixing
effects at junctions. Pressure dependencies are omitted. Different supply technologies, operational parameters
and network topology are optimized in [8]. Heat losses are considered by calculating the enthalpy loss in a pipe
with an average heat loss per unit length and pipe. Pressure losses in pipes were considered by linearizing the
Haaland equation. Similar MILP formulations can be found in [9, 10]. In [11], a method is presented to create
network topologies based on Geographic Information System data. In a second step, pressure losses are
estimated in the network at the heat demand’s peak load, and the pipe diameters are sized accordingly. [12]
improved the method presented in [7] by calculating a maximal linear power flow with the help of a linearization
based on a specific pressure loss and commercially available pipe diameters. [13] further improves on [12]
by reducing the number of binary variables used in the optimization problem formulation. However, all these
methods are not able to depict the nonlinear effects of district heating networks. Flow patterns in systems with
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multiple spatial distributed producers, mixing temperatures at junctions or loops, can hardly be linearized while
respecting the physical interrelations.
To combat these problems, mixed-integer nonlinear programming is used more frequently in recent publica-
tions. In [14], an MINLP is proposed to solve an operational-based optimal scheduling strategy to minimize the
daily operational cost of an energy station with a heating and cooling demand, as well as storage. However, the
distribution of the heat by a district heating network is neglected. The commercial MINLP solver DICOPT within
GAMS is used in [15] to solve a nonlinear and discrete representation of a steady-state district heating system.
In [16], the same method is used in a small-scale district heating system with 19 consumers. Moreover, the
nonlinear effects of energy, as well as momentum conservation, are considered and solved with commercial
solvers in [17, 18]. However, due to the nonlinear equations and the discrete nature of some variables, these
methods are limited to a few consumers. [19] shows, solving the full MINLP leads to an exponential scaling of
computational costs with network size during the discrete topology optimization.
Another method for solving district heating optimization problems is the use of heuristic optimization ap-
proaches. These procedures may provide a sufficiently good solution to an optimization problem while not
always guaranteeing a local or global optimum. This becomes especially difficult with scaling dimensions of
the problem. A commonly used heuristic approach are nature-inspired algorithms like the ant colony optimiza-
tion or the genetic algorithm. In [20], the ant colony optimization was used to minimize fuel consumption while
modelling a nonlinear gas flow. A parallel ant colony system algorithm is used in [21] to find a cost-optimal route
between one producer and one consumer while neglecting the nonlinear effects of pressure or temperature
dependencies, only considering investment costs of piping influenced by the surface condition. Similar in [22],
the genetic algorithm is used to optimize a single long-distance heat transport system considering hydraulic
and thermal nonlinear aspects. The genetic algorithm is used in [18] to optimize the district heating network
topology and pipe diameters of a small network with ten heat consumers. Meanwhile, in [23], a hybrid strategy
with a genetic algorithm and MILP is used to minimize the fuel costs of different heat producers. In [24], a
methodology focusing on the optimal sizing of pipe diameters using a genetic algorithm to generate a set of
Pareto-optimal sizing choices is presented.
The last presented optimization method is adjoint optimization. In [25], the adjoint method is used to opti-
mize robust hydraulic district heating systems while neglecting thermal aspects within the network. Another
adjoint method is presented in [26] that optimizes simultaneously the district heating topology and operational
parameters of a district heating system. The method is further expanded in [27] and applied to a district of 160
consumers. The discrete optimization problem is transformed into a continuous optimization problem by using
Heaviside functions. Moreover, constraint aggregation is used to increase the performance of the optimization
procedure. In [28], the method of [27] is further developed by introducing a solid isotropic material with a pe-
nalization approach to reach discrete diameters.

2. Methodology
In this paper, the considered heat carrier medium is water at 60 ◦C. It is assumed to be liquid and therefore
incompressible. Additionally, by assuming temperature changes smaller than ΔT = 40 ◦C, temperature de-
pendencies of the fluid properties (e.g. density ρ, heat capacity cp and dynamic viscosity μ) can be neglected.
Moreover, this reduces the dependencies between the thermal and hydraulic parts of the optimization. During
the nonlinear topology optimization of the district heating system, the following two main challenges occur:

• The formulation of equations in dependence of potential pipe connection (e.g. pressure or thermal losses
in a pipe)

• The direction of the flow in pipes (e.g. mixing temperature in a node)

Therefore, a new preprocessing method is proposed to solve and improve the problems mentioned above.
First, a linear thermal power flow optimization is performed on the district heating topology to determine flows
through the network, eliminate unnecessary piping connections, and reduce the available choice of discrete
piping diameters. Afterward, a detailed nonlinear optimization is performed on the preprocessed district heat-
ing system. In this optimization the nonlinear pressure and temperature drops as well as discrete diameters
are determined, thus giving a far more realistic depiction of the network. First, in section 3. the graph repre-
sentation of a district heating system is introduced. In section 4., the preprocessing method is explained, while
the nonlinear optimization model is introduced in section 5.. Finally, in section 6. the results for a small district
heating system of 42 consumers are shown and in section 7. a conclusion is drawn.
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3. Representing a District Heating System as a Graph
To represent pipes, junctions, producers, or consumers mathematically a graph representation of a district
heating system has to be introduced. The pipes of the district heating systems correspond to the arcs of the
graph and the network’s junctions to the nodes. The district heating network consists of a feed and return
network which have arcs of opposite directions. This superstructure contains all possible connections and
pathways from the heat source to the consumers. The set of all nodes N can be subdivided into three diffident
subsets:

Nint ∪ Np ∪ Nc = N (1)

In Equation 1, int refers to all nodes without a consumer or a producer. The subscript p describes all nodes
with a connection to at least one producer and the subscript c all nodes with a connection to at least one
consumer. Similarly, Aint represents the geometrical pipe connection between two different internal nodes. Ap
and Ac denote the state transition between the district heating system and a producer or a consumer. The set
A representing all arcs of the network is given by:

Aint ∪ Ap ∪ Ac = A (2)

A certain node of the network will be referred to as n, whereas a directed arc going from node i to node j as
ij ∈ A.

4. Linear District Heating Model
In order to linearize the maximal power flow in a district heating pipe with length l , the maximal mass flow
m with the corresponding velocities v of each considered piping diameter d has to be determined. First, the
Bernoulli equation with a head loss Δhf is used to calculate the pressure loss between two nodes i and j with
equal height connected by a pipe:

pi

ρ
+

v2
i
2

=
pj

ρ
+

v2
j

2
+ Δhf (3)

The head loss Δhf is calculated according to Darcy-Weisbach:

Δhf = fij ·
lij
dij

·
v2

ij

2
(4)

The Reynolds number Re is calculated as:

Reij =
ρ · vij · dij

μ
(5)

For Reynolds numbers Re < 2320 the friction factor fij is calculated by:

fij =
64

Reij
(6)

The friction factor fij for Re ≥ 2320 is given by the Haaland equation with the pipe roughness ε: [29]

fij =

[
−1.8 · log

((
ε

3.7 · dij

)1.11

+
6.9
Reij

)]−2

(7)

According to [30], the specific pressure drop per meter pipe length should range from 70 Pa/m to 350 Pa/m. In
this study, a maximum specific pressure drop Δpmax of 250 Pa/m is assumed for the optimization. An iterative
calculation is used to determine the maximal velocity in a pipe with a given inner diameter. Starting at an initial
velocity of 0.01 m/s, the following equation is iterated until the relative difference of v between two consecutive
steps is smaller than 10−6:

vi+1 =

√
2 ·Δpmax · d

f · ρ (8)
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Finally, the maximal thermal power flow Q̇max is calculated with the corresponding inner diameter and the feed
and return line temperature. Next, the thermal aspect of an insulated pipe buried underground is considered.
Therefore, the temperature difference Θ between the water temperature in the pipe T and the outside temper-
ature T∞ is introduced. In this study, T∞ is set to 0 ◦C. The exit temperature Θij of a pipe segment ij due to
heat loss to its environment with an entry temperature Θi of the corresponding node is given by:

Θij = Θi · exp
( −lij

cp · ṁij · Rij

)
(9)

The combined thermal resistance of pipe and soil per unit length is calculated with the ratio r between outer
and inner diameter: [27]

Rij =
ln 4h/rdij

2πλg
+

ln r
2πλinsul

(10)

The ratio r in Equation 10 is determined with the actual inner diameter and the insulation thickness 1 based
on [31]. After the hydraulic and thermal calculations, a linear regression of the investment costs and the thermal
losses per trench length, using SciPy [32], is performed and shown in Figure 1. The total investment costs for
piping are adapted from [2]. In this study, pipes ranging from DN20 to DN400 are considered.

Figure 1: Optimization parameters of the district heating pipelines; (A) Thermal losses of the district heating
pipes per trench length. (B) Costs of the district heating pipes per trench length.

.

Based on [7, 12], a mixed-integer linear programming model is introduced to calculate the optimal power flow
through the district heating network, determine flow directions, and omit unnecessary connections. Therefore,
a bi-directional pipe model is built. The thermal power input and output of every pipe are modelled according
to the directed graph of the network. In order to allow flows in the opposite direction, every potential pipe ij is
also modelled in the direction ji . The use of a pipe in a unique direction is assured by the objective function
(see Equation 16). For simplicity, only the equations for pipes in the direction ij are provided. The heat outflow
Q̇out of each pipe results from the inflow Q̇in minus the thermal loss Q̇loss:

Q̇ij ,in − Q̇ij ,out − Q̇ij ,loss = 0 (11)

Q̇ij ,in ≤ Q̇max ,cons · λij (12)

Q̇ij ,in ≤ Q̇max (13)

In Equation 12, the binary variable λij shows the usage of a potential pipe. Moreover, Q̇max ,cons can be seen
as a Big-M-constraint, enforcing zero thermal flow if the direction ij of the pipe is not used. Meanwhile, in
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Equation 13 the actual maximal thermal capacity Q̇max is determined. This value is independent of the flow
direction (ij or ji). The thermal losses are determined by the linear regression factor atherm and btherm:

Q̇ij ,loss =
(

atherm · Q̇ij ,in + btherm · λij
)
· lij (14)

Each connection of a consumer to the district heating grid is modelled unidirectional, and thus no heat feed-in
from a consumer is possible. Moreover, energy conservation is assumed in every node under consideration of
the consumer’s heat demand and the heat source’s feed-in:∑
ij∈Ai

Q̇ij −
∑
ji∈Ai

Q̇ji −
∑
c∈Ac

Q̇c +
∑
p∈Ap

Q̇p = 0 (15)

Finally, the objective function aims to minimize the total investment costs of the district heating network under
a set of given consumers which need to be connected to the grid. As every consumer’s connection to the grid
is mandatory, the investment costs in the objective function are not distributed over the depreciation period
and no operational costs are considered. The investment costs are determined by the linear regression factors
acost and bcost from Figure 1:

min
{∑

Ai

(
acost · Q̇max + bcost · (λij + λji )

)
· lij

}
(16)

The corresponding pipe diameter to the maximal heat flow Q̇max can be calculated with fsolve from [32] with
Equation 8. The initially assumed flow direction in the graph can be corrected according to λij and λji :

• λij = 0 and λji = 0: The pipe is not used and can be deleted from the graph.

• λij = 1 and λji = 0: The assumed flow direction in the graph is correct.

• λij = 0 and λji = 1: The flow direction in the graph is the opposite of the assumed one and needs to be
corrected.

The linear diameter d and the corrected graph can be used to facilitate and speed up the nonlinear topology
optimization, described in section 5.. Here, based on the linear diameter, determined by the preprocessing
method, the choice of the available diameter is limited to the next and the following larger one.

5. Nonlinear District Heating Model
To account for more complex influences, such as mixing temperatures or pressure drops, a nonlinear transport
model has to be developed. First, a nonlinear model for district heating pipes is presented. Subsequently,
nonlinear models for consumers and heat sources are introduced. Finally, the objective functions and the pipe
discretization method used are shown.

5.1. Transport Model
Similar to section 4., the pressure loss through any given pipe in the network has to be determined. By
using the Haaland equation (see Equation 7) during the pressure loss calculations, the flow in the pipes is
assumed to be turbulent. This flow regime is desired in a district heating network, to ensure a well-defined
and continuous flow through the pipes. When Equation 3-5 are combined and the velocities converted to mass
flows (mij = (vij · π · d2

ij )/(4 · ρ)), the pressure loss can be calculated as:

pi − pj =
8 · fij
π2 · ρ · lij

d5
ij
· ṁ2

ij (17)

Analogical to section 4., a maximal specific pressure drop Δpmax in a pipe ij is imposed:

pi − pj ≤ lij ·Δpmax (18)

In each node i mass conservation must be fulfilled:∑
ij∈Ai

ṁij −
∑
ji∈Ai

ṁji −
∑
c∈Ac

ṁc +
∑
p∈Ap

ṁp = 0 (19)
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Moreover, inside a node of the district heating system, perfect mixing of the incoming fluids is assumed. All
outgoing flows depart from the node with the corresponding node temperature Θn and energy is conserved in
every node of the system:∑
in∈A

(
ṁin ·Θij

)
−
∑
nj∈A

(
ṁnj ·Θn

)
= 0 (20)

Heat losses are calculated analogously to section 4.. Only in Equation 10 a fixed ratio do,ij = r · dij between the
outer and inner diameter of a pipe is assumed. In this study, r is set to 4.

5.2. Producer Model
At the producer, a fixed exit temperature of 90 ◦C is imposed as a boundary condition for the district heat-
ing system. In addition, a reference pressure is defined in one of the producer’s return nodes to define the
pressure throughout the network. As only pressure differences influence the mass flow solution, the solution
is independent of the chosen reference. In Equation 21-22 flh refers to full load hours of the district heating
network. In this study, the district heating network is assumed to have 2500 full load hours [33]. To consider
pumping costs Cpump during the optimization, the electric power consumption of the pump is modelled with a
constant efficiency ηpump and the specific electric power costs cel :

Cpump =
ṁp

ρ
· 1
ηpump

· (pi − pj ) · flh · cel (21)

Moreover, the optimization has to be able to benchmark different heat producers against each other. Therefore,
the fuel costs Cfuel at each producer with the specific fuel costs cfuel are considered:

Cfuel = ṁp · cp,water · (Θp −Θi ) · flh · cfuel (22)

5.3. Consumer Model
In the nonlinear optimization, every consumer is modelled with an individual substation. Each substation is
composed of a heat exchanger and a throttle. This throttling configuration, shown in Figure 2, allows a variable
mass flow in the district heating’s and the consumer’s circuit to control the heat transferred to the consumer,
as well as low return flow temperatures with low flow velocities during partial load [31].

Feed line

Return line

C
on

su
m

er

Figure 2: Configuration of a consumer substation in the district heating system.

The pressure drop over a consumer c which connects node f in the feed line and node r in the return line is
assumed to be of the following form:

pf − pr − pthrottle = Δpdes (23)

In this study, the design pressure drop Δpdes over each substation is set to 0.5 bar. To increase the numerical
stability of the optimization, the heat demand of every consumer connected to the grid must be satisfied within
a range of 95 % to 110 %:

0.95 · Q̇c ≤ cp,water · ṁc · (Θf −Θc) ≤ 1.10 · Q̇c (24)

Here, the minimal cooling temperature Θc at the exit of each substation is set to 55 ◦C.
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5.4. Pipe Discretization
Thus far, the presented algorithm still allows continuous diameters. In order to perform a more realistic topology
optimization, the algorithm should be able to do discrete choices in a continuous optimization. Therefore, based
on [27], a numerical continuation strategy that gradually forces the continuous diameter variables into discrete
diameter choices is introduced. A smoothed projection of the diameters onto the discrete diameter set is
gradually enforced and intermediate diameters are more and more penalized through the piping cost relation
(see subsection 5.5.). For the projection of the diameters on the discrete diameter set, a smooth approximation
of a Heaviside function is used: [27]

P(x ,σ,χ) =
tanh(χ · σ) + tanh(χ · (x − σ))
tanh(χ · σ) + tanh(χ · (1 − σ))

(25)

In Equation 25 the continuous decision variable x ∈ [0, 1] is gradually projected onto a binary decision variable
x̃ ∈ {0, 1}. The variable χ ∈ ]0,∞[ controls the steepness of the Heaviside approximation, while σ ∈ [0, 1]
determines the threshold above which the variable x is projected onto the upper limit [27]. To account for the
gradient-based optimization and to improve the stability of the optimization, the projection P is interpolated with
a linear function, controlled by the factor ν: [27]

−10−3 ≤ ν ·
(

d1 + (d2 − d1) · P
(

d − d1

d2 − d1
, 0.01,χ

))
+ (1 − ν) · d ≤ 10−3 (26)

In Figure 3 different parameterizations for χ and ν of Equation 26 are shown with d1 = 0.1603 m and d2 =
0.2101 m.

Figure 3: Function for pipe discretization for different values of χ and ν with d1 = 0.1603 m and d2 = 0.2101 m

.

5.5. Objective Function
Similar to the pipe discretization method, the smooth approximation of a Heaviside function (see Equation 25)
is used to penalize intermediate piping diameters during the optimization. To improve stability and to account
for the gradient-based optimization, the projection is also interpolated with a linear function, controlled by the
parameter ν. The investment costs for district heating pipes in the feed and return line Cpipe, connecting node
i and j , are given by:

Cpipe =
[
ν ·

(
c1 + (c2 − c1) · P

(
d − d1

d2 − d1
, 0.5,χ

))
+ (1 − ν) ·

(
c1 + (c2 − c1) · d − d1

d2 − d1

)]
· lij · 2 · A (27)

In Equation 27, investment costs are distributed over the depreciation period n, using the annuity method.
Without discounting, the annuity A is calculated with an interest rate i :

A =
(1 + i)n · i

(1 + i)n − 1
(28)
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After [34], the depreciation period is set to 20 years and the interest rate i to 0.08. The objective function
is formed by combining Equation 21, 22, and 27 and thus minimizing investment and operational costs. In
Figure 4, different parameterizations of χ and ν for the investment costs of pipes are shown.

Figure 4: Heavyside projection of pipe investment cost for d1 = 0.1603 m and d2 = 0.2101 m with different
values of χ and ν.

6. Example
The linear optimization is solved with Cplex 12.10.0 [35] using Pyomo [36, 37]. The nonlinear optimization is
formulated with pyoptsparse [38] and solved with the interior point optimizer Ipopt [39]. An exemplary district
heating system with 42 consumers is used to demonstrate the presented method. As every connection of a
consumer to the grid is mandatory, independent of its economic efficiency, the preprocessing algorithm can
only find the most favorable pathway to connect all consumers and delete dispensable pipes in the graph.
The original network consists of 72 pipes. After the linear optimization, this is reduced to 69 pipes and 5 flow
directions have been corrected, as shown in Figure 5. Here, the orange point represents the producer, grey
nodes junctions, and blue nodes consumer in the district heating system. During preprocessing, the linear
diameters, with their corresponding mass flows are determined and handed to the nonlinear optimization to be
discretized. Due to the formulation of Equation 26, slight deviations from discrete diameters are allowed, but
occur only in rare cases, as shown in Figure 6.

(a) Original (b) Preprocessed

Figure 5: Representation of the original and preprocessed network.
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(a) Linear diameters (b) Discrete diameters

Figure 6: Distribution of the inner diameters before and after the nonlinear optimization with 100 bins between
DN20 and DN200.

The nonlinear optimization is iteratively performed while increasing in each iteration the value of ξ and ν. Over
ten iterations, ξ is evenly spaced out from 0.001 to 100 and ν from 0 to 1. The whole nonlinear optimization
is performed in 19.37 sec. Linear diameters below DN20 are assigned either to DN20 or DN25, as shown
in Figure 6. For some connections to smaller consumers, DN25 is oversized, as the optimizer tries to find a
viable solution under consideration of all thermohydraulic equations and Equation 26. If an oversized solution,
respecting the constraints is found, it can be difficult for the optimizer to revert to the smaller diameter, as the
differences in operational and investment costs for two subsequent diameters are rather small. The resulting
pressure profile of the district heating network can be seen in Figure 7. The highest cumulative pressure
losses can be observed at the most remote consumer, defining the pressure level at the heat source. By
comparing Figure 7a and 7b, a maximal pressure difference, larger than the assumed constant pressure drop
over a consumer’s substation, can be seen. In the modelled throttle, a pressure offset occurs between the
feed and the return network, which raises the pressure level in the feed network artificially. As the pressure
level does not affect the sizing of the pipes but only the pressure differences and as the pumping costs are
rather small compared to the investment costs of the district heating system, this offset is not reduced during
the optimization.

(a) Feed network (b) Return network

Figure 7: Resulting pressure profile in the feed and return network.

Figure 8 shows the resulting temperature profile after the nonlinear optimization. As shown in Figure 8b the
consumer always tries to maximize the energy available to them in order to satisfy their demands and are
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cooling the fluid down to 55 ◦C. The desired heat demand is met with 95 % of the desired heat, thus minimizing
the operational costs. Overall a total efficiency for the heat distribution of 98.01 % is reached.

(a) Feed Network (b) Return Network

Figure 8: Resulting temperature profile in the feed and return network.

7. Conclusion and Outlook
A two-step methodology for the optimization of a district heating network, based on a thermohydraulic model,
is derived and successfully implemented as an optimization problem. This method allows a fast nonlinear
optimization of a district heating system. The method presented in this paper allowed the optimization of a
small exemplary district heating system. Given a set of possible pipeline configurations to connect all the
consumers to the grid regardless of its economic viability, the simulation was able to derive an optimal network
design. The determined network configuration aimed at minimization of investment and operational costs.
In further works, the method should be applied to larger districts to prove the scalability of the method. More-
over, the discrete pipe sizing method should be improved to eliminate all non-discrete diameters in the final
results of the optimization. The optimization should also be developed to account for the profitability of the
considered district heating network. Therefore, the preprocessing method could be extended to determine
the profitability of a potential connection of a consumer to the grid. Moreover, the nonlinear depiction of the
district heating grid could be further improved. In this study, a constant ratio between inner and outer diame-
ter is assumed. In real pipes, this ratio decreases with increasing inner diameter. Gradient-based nonlinear
optimization converges always into a local optimum, a global optimum is not guaranteed. Therefore, it should
be investigated how different possible local minima can be compared to one another and how the optimization
can efficiently choose between the different local minima that occurred during the optimization. At last, the
influence of the preprocessing method on the final results should be investigated.
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[3] A. Jentsch, K. Bohn, A. Pohlig, C. Dötsch, S. Richter, and M. Manderfeld, “Handbuch zur Entscheidung-
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[6] J. Söderman, “Optimisation of structure and operation of district cooling networks in ur-
ban regions,” Applied Thermal Engineering, vol. 27, no. 16, pp. 2665–2676, 2007. doi:
10.1016/j.applthermaleng.2007.05.004

[7] J. Dorfner and T. Hamacher, “Large-Scale District Heating Network Optimization,” IEEE Transactions on
Smart Grid, vol. 5, no. 4, pp. 1884–1891, 2014. doi: 10.1109/TSG.2013.2295856

[8] C. Haikarainen, F. Pettersson, and H. Saxén, “A model for structural and operational optimization of
distributed energy systems,” Applied Thermal Engineering, vol. 70, no. 1, pp. 211–218, 2014. doi:
10.1016/j.applthermaleng.2014.04.049

[9] B. Morvaj, R. Evins, and J. Carmeliet, “Optimising urban energy systems: Simultaneous system
sizing, operation and district heating network layout,” Energy, vol. 116, pp. 619–636, 2016. doi:
10.1016/j.energy.2016.09.139

[10] C. Bordin, A. Gordini, and D. Vigo, “An optimization approach for district heating strategic net-
work design,” European Journal of Operational Research, vol. 252, no. 1, pp. 296–307, 2016. doi:
10.1016/j.ejor.2015.12.049

[11] Marcus Fuchs and Dirk Müller, “Automated Design and Model Generation for a District Heating Network
from OpenStreetMap Data,” 2017.
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