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Abstract: 
Energy system optimization models (ESOMs) often contain time coupling constraints, some of which couple 
short time frames as of daily storages or load changes of components, while other constraints couple longer 
periods like seasonal storages, peak load prices, or upper bounds to overall yearly CO2 consumption.  
Those ESOMs have binary constraints for minimal loads, efficiency curves, or discontinuous energy prices 
that are relevant for the short-term operation of the equipment. Calculation times for solving a whole year or 
longer as a coupled MILP problem are in many cases too high for practical applications that normally should 
not exceed one hour. Typical decomposition strategies to reduce calculation times are often designed for 
subclasses of energy system models and are not generally applicable. In order to have a generalized approach 
to solve these models efficiently, we investigate strategies that are based on a problem specific relaxation of 
integer constraints and downsampling of the input time series of the models.  
A rolling horizon strategy is proposed that relaxes and downsamples the time steps from the end of the rolling 
horizon to the end of the year to consider the operation during the rest of the year. In order to reduce the error 
of the relaxation, binary constraints are reformulated to get the best LP approximation of the original MILP 
model. Using this rolling horizon strategy, models that are almost unsolvable as coupled MILP can be solved 
efficiently and very robustly and deliver a result that is feasible for the original problem and very close to the 
optimum of the original problem. 
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1. Introduction to solving time-coupled energy system optimization 
The optimization of the design and operation of energy supply systems plays an important role in the 
decarbonization of the industrial, commercial, and communal sector. Due to the vast number of new 
technologies and the interactions between different kinds of energy (sector coupling), designing and operating 
energy systems is a complex task which in most cases requires mathematical optimization models. Although 
some decisions can be made using simulation models, energy system optimization models (ESOM) are much 
more flexible and versatile to handle different kinds of decisions and target functions. Linear programming (LP) 
or mixed integer linear programming (MILP) has evolved as the state-of-the-art method to do these kinds of 
optimizations, although the problems themselves are often nonlinear. The complexity of these kinds of models 
is high if spatial, temporal, and/or technological dimension is high [1,2].  
Many references in scientific literature deal with capacity planning of energy systems of countries [3,4] or even 
networks of more than one country [5,6]. Because electricity is very hard to store and has to be produced at 
the same time it is consumed, most of these models focus very much on electricity supply. In this paper, we 
focus on smaller sized energy systems, for example in industry, commercial buildings, or communal quarters. 
In contrast to countries or continents, those energy systems have an almost negligible spatial resolution. The 
technological options and temporal resolution on the other hand are often more versatile than in ESOMs for 
geographically large networks.  
Optimizations are modeled as quasi-stationary states of operation for every piece of equipment and every 
point in time. Typical resolutions are hourly or quarter-hourly for a whole year or even longer. In cases where 
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the energy suppliers and demands are separated spatially and the energy distribution (grid) is also relevant, a 
spatial structure of the energy system can be taken into account as well.  
In this paper, we focus on models that take hours to solve due to the coupling of time steps by storages or 
other effects. From a practical standpoint, these models are often considered unsolvable, as for some real-
world applications it is not possible to wait for so long. The aim is to solve these models in less time by solving 
simplified models with results very close to the original model. Other scientific work often focuses on certain 
kinds of time-coupling variables or equations and propose very good solutions to solve these ESOMs very 
closely to the original full model. Many of these publications use the target function value of the replacement 
models as quality measure for the methodology. An overview of different approaches to tackle complexity in 
ESOMs is given in [1] and [7]. In this work, we want to evaluate the operation of the equipment as well, because 
for practitioners this is an important criterion to decide whether a solution makes sense.     
1.1. Non-scientific requirements in energy system optimization 
In this work, we focus on non-scientific use cases of energy system optimization. The GFaI develops a software 
toolkit called TOP-Energy for the optimization of industrial and communal energy systems [8,9]. The 
constraints to the methodology discussed here arise from customers and reflect practical considerations like 
economic constraints or usability constraints.  
A very important boundary condition of solving time-coupled ESOMs in a consulting use case is the time to 
solve the model. Energy consulting projects often have a scope of one or two months and include data 
acquisition, modeling, scenario optimization, scenario comparison, and presentation of results. It is necessary 
to solve several models per day, so the time to solve one model should not exceed one hour.  
Another important criterion is the comprehensibility of the results. Parameter variations should result in a 
reasonable change of the solution. This affects parameters like the gap of the MILP solver. Very high gaps 
can lead to solutions that are close to the optimal solution but are not explainable anymore. The operation of 
the energy system in the result should be reasonable. This is especially important for design optimization, in 
which errors in the target function may affect certain time points disproportionately and make them look wrong. 
This has happened in real world problems in the past and is a problem for the credibility of the ESOM itself.    
Some applications exploit the convex nature of some constraints relative to the target function. Electric feed-
in for example, usually does not need a constraint that forbids buying and selling electricity at the same time, 
as prices are usually pointing in the direction of minimizing feed-in. Practical applications nonetheless are very 
generic and can’t exploit the seeming complexity of the constraint. Changing the target function from operating 
costs to CO2 emissions for example changes the convexity, but is a very common feature in real-world models. 
1.2. Idea of the paper 
The idea of the paper is to propose a method that can handle all kinds of relevant time-coupling constraints in 
models of typical industrial or communal energy systems without exploitation of certain convex parts of the 
model or behavior of technical components. Some decomposition approaches only work for a subset of 
ESOMs. We are trying to use a very general approach that is based on a relaxation of binary variables and a 
downsampling of the time series rather than a decomposition. We do not want to use Benders or Dantzig-
Wolfe decomposition because they rely on a very specific mathematical structure of the problem that cannot 
be guaranteed in every case. In order to get a reasonable mode of operation for every device in the final 
solution, the previously relaxed binary variables have to be set to 0 or 1 in a later stage of the optimization. By 
doing this, the solution presented to the user is feasible for the original problem. 
We propose a multi-stage optimization approach, in which the first couple of stages determine the design 
variables and the peak power prices, and the last stage uses a rolling horizon with a relaxed look-ahead in 
order to calculate results that fulfill all constraints of the original problem. The complexity of the original problem 
is thus reduced by relaxation of binaries and downsampling of the input time series in a way, that the difference 
between the original and the downsampled time series is as small as possible.  
In order to improve the quality of the relaxed solution, problem specific substitute formulations are used for 
specific binary variables. They are used to replace piecewise-linear functions and SOS1 formulations for feed-
in prices in a way that the difference between the binary formulation and the LP formulation is as small as 
possible.  

2. Structure of optimization problem 
2.1. Mathematical structure of the design and operation optimization problem 
The mathematical formulation of the optimization problem was stated similarly in many cited publications. We 
look for a generic formulation, which works for many energy conversion units (electricity, heat, cooling, steam, 
compressed air), many operational side conditions (minimum part load, minimum runtime, ramp-up behavior, 
maintenance), and many operating costs (costs per operating hour, costs per full load hour, costs per year).The 
mathematical formulation will only be given very briefly. In most cases, the total annualized costs (TAC) are 
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minimized, although in some cases minimizing CO2 emissions is also relevant. So, inspired by [10] the target 
function is formulated like this:  min௏̇೙,೟,௏̇೐,೟,௏ᇱ̇ ೐,೟,ఋ೙,೟ ܥܣܶ = ܺܧܱܲ + ܺܧܲܣܥ

= ෍ቌΔݐ௧ ൭෍ ௡݂,௧൫ܸ̇௡,௧൯௡∈஼ + ෍ܿ௘,௧ܸ̇௘,௧ − ̇′௘,௧ܸݎ ௘,௧௘∈ா ൱ቍ + ෍ܿ̂௘,௧ܸ̇௘,௧௠௔௫௘∈ா + ܽ௜௡௩෍ ௡݂௜௡௩൫ܸ̇௡ே൯௡∈஼௧∈்  

෍ ܸ̇௡,௘,௧௡∈஼೐ − ෍ ܸ̇′௡,௘,௧௡∈஼೐ + ܸ̇௘,௧ − ܸᇱ̇ ௘,௧ − ௘,௧ܦ̇ = 0 ∀ ݁ ∈ ∧ ܧ ݐ ∀ ∈ ܶ (1) (energy balance) ܸ̇௡,௧ = ௡݂௘௙௙൫ܸ̇′௡,௧൯ ∀ ݊ ∈ ∧ ܥ ݐ ∀ ∈ ܶ (2) (energy conversion efficiency) ܸ̇௡ே ≥ ܸ̇௡,௧ ∀ ݊ ∈ ∧ ܥ ݐ ∀ ∈ ܶ (3) (nominal power per device) ܸ̇௘,௧௠௔௫ ≥ ܸ̇௘,௧ ∀ ݁ ∈ ∧ ܧ ݐ ∀ ∈ ܶ (4) (peak power grid connection) 0 ≤ ܸ̇௡,௧ ≤ ݊ ∀ ௡,௧ܸ̇௡௠௔௫ߜ ∈ ∧ ܥ ݐ ∀ ∈ ܶ (5) (minimum part load) Δݐ௧ܸ̇௡,௘,௧ ≤ ௡ܸ,௘,௧  ∧ Δݐ௧ܸ̇′௡,௘,௧ ≤ ௡ܸ,௘,௧௡ − ௡ܸ,௘,௧ ∀ ݊ ∈ ௦௧ܥ  ∧ ݐ ∀ ∈ ܶ (6) (charging and discharging) Δݐ௧൫ܸ̇௡,௘,௧ − ܸ̇′௡,௘,௧൯ = ௡ܸ,௘,௧   ∀ ݊ ∈ ௦௧ܥ  ∧ ݐ ∀ ∈ ܶ (7) (filling level storage) ߜ௡,௧ ∈ [0,1];  ܸ̇௡,௘,௧ ∈ ℝା;  ܸ̇′௡,௘,௧ ∈ ℝା; ௡ܸ,௘,௧ ∈ ℝା; ൫ܸ̇௘,௧ ,ܸᇱ̇ ௘,௧൯ ∈ ܱܵܵ1 
 

The operating expenditures consist of operating costs for running a certain piece of equipment ݊ ∈  at a ܥ
certain point of time ݐ ∈ ܶ. The operating costs are a function of the amount of energy ܸ̇ of a certain energy 
form ݁ ∈  at that point in time. Additional costs for purchasing energy from the grid ܿ௘,௧ܸ̇௘,௧ and revenues from ܧ
selling energy to the grid ݎ௘,௧ܸ′̇ ௘,௧ as well as peak power costs ܿ̂௘,௧ܸ̇௘,௧௠௔௫ are included in the OPEX. The capital 
expenditures (CAPEX) consist of the investment costs for a device ݊ multiplied by the annuity factor ܽ௜௡௩. The 
investment costs are a function of the nominal power ܸ̇௡ே. The target function has to be minimized subject to 
other constraints, most importantly the energy balance. This implies that the demand of each energy form at 
a certain point in time ̇ܦ௘,௧ has to be met by the sum devices producing that energy form ∑ ܸ̇௡,௘,௧௡∈஼೐  plus the 
supply from the grid minus feed-in and the consumption of that energy form by other devices. The feed-in and 
grid supply are part of a special ordered set I (SOS1), so both cannot be non-zero at the same time. The 
energy supplied by a device is a function of other energy forms consumed. This function can be a constant 
efficiency of a piecewise-linear function. The minimum part load is modeled using a binary variable ߜ௡,௧ and a 
Big-M formulation using ܸ̇௡௠௔௫  as Big-M. Storage components (ܥ௦௧) can only supply the amount of energy 
represented by their actual filling level ௡ܸ,௘,௧ and can only be charged up to the maximum filling level ௡ܸ,௘,௧௡ .  

2.2. Time-coupling constraints 
Typical ESOMs for optimizing the design and operation of energy systems can have different kinds of time-
coupling constraints, which can be divided into two different categories: On the one hand, there are couplings 
that introduce a variable as an upper limit for another variable for every single time step. This is the case for 
design variables, like the nominal power of devices that limit the power of a device for every single time step, 
and grid peak power variables that limit the power that can be taken from an energy supply grid for every single 
step in time. These coupling variables introduce complicating variables into the MILP. On the other hand, there 
are cumulating variables. Examples for these constraints are storage variables and upper limits to CO2 
emissions of an energy system. These variables introduce complicating constraints into the MILP.  
One way to deal with these complicating constraints and variables in an MILP that otherwise has a block 
diagonal structure is Bender or Dantzig-Wolfe decomposition. Because we deal with all kinds of energy 
systems with very heterogeneous mathematical formulations and mixtures of complicating constraints and 
variables, these kinds of mathematical decompositions are not used in this work. There are some approaches 
to use Bender and Dantzig-Wolfe decomposition in literature ([11–13]), but they are tailored to a subset of use 
cases that are investigated in this work. Instead, the approach of this paper is a generic use of relaxations and 
downsampling to simplify the overall MILP model.  

2.2.1. Upper limit (power price, capacity) 
Complicating variables that represent an upper limit to another variable in every single time step occur, for 
example, in peak power pricing where a certain price has to be paid for the highest energy amount consumed 
from the electric grid per 15 minutes ((4) in Section 2.1). Another common example of variables representing 
an upper limit for every time step is the nominal power of a technical component in a design problem. The 
nominal power is an upper limit to the energy produced by that component per time step ((3) in Section 2.1). 
 
 

2776https://doi.org/10.52202/069564-0249



2.2.2. Daily storage
Storages introduce complicating constraints into the ESOM. The state of charge of the storage couples two 
consecutive time steps and depends on the charged and discharged energy ((7) in Section 2.1).
Storages can be distinguished on the basis of their main application. Storages are economically most feasible, 
when they have many charging cycles throughout a year. Therefore, daily storages, which store electricity from 
photovoltaic, for example, are very common today. ESOMs containing these storages can be decomposed 
using typical days for calculating the storage operation ([14–19]). This kind of decomposition typically uses a 
cyclic constraint that couples the filling level of the first hour with the last hour of a typical day thus separating 
the solution of different typical days from each other. 

2.2.3. Seasonal storage
Seasonal storages work exactly as daily storages, and the mathematical formulation of the overall problem 
looks exactly the same. However, the use case is different. Seasonal storages are designed to store energy 
for very long periods. They often have only one charging cycle throughout the year. A typical example is an 
ice storage that freezes water during the winter using the cold side of a heat pump. This ice can be used during 
the summer to cool buildings and thus be thawed again. Because we focus on models with a time frame of 
only one year, a cyclic constraint for seasonal storages has to be added to the mathematical formulation above, 
which couples the state of charge of the first time step with the last time step:௡ܸ,௘,଴ = ௡ܸ,௘,௠௔௫ ∀ ݊ ∈ ௦௧ܥ
Due to the long-term storing of energy, decomposed typical days do not work for the design of these kinds of 
applications. There are approaches to couple typical days by a superimposed state of charge variable for every 
day of the year ([17,20,21]). These approaches do not perform very well for the design of seasonal storages 
because the order of the typical days has a very big influence on the design of the storage. Calculations with 
simplified energy system models resulted in deviations in the size of the storage between the full model and 
the decomposed model of over 85 %. Typical days are often determined using a clustering algorithm. Grouping 
of typical days by “charge-days” and “discharge-days” improves the design of the storage but still does not 
give reliable results.

Figure. 1. State of charge of a seasonal storage designed using typical days compared to the fully coupled 
original model.

Figure. 1 shows the resulting state of charge using coupled typical days compared to the result of the original 
model. The underlying model consists of an oversized photovoltaic plant that produces electricity for hydrogen 
during the summer in order to produce electricity in a fuel cell during the winter season. The hydrogen is stored 
in a hydrogen storage of the size which is shown in the figure above. The fully coupled model results in a 
storage size of 215 MWh, whereas the decomposed model calculates a size of 33 MWh. The design of 
seasonal storages is one of the main reasons a method is developed that maintains the order of time steps in 
the reduced model in this paper. 

2.2.4. Integral values
Another reason to have complicating constraints from cumulating variables in an ESOM are integral values. 
Typical examples are upper limits for CO2 emissions of an energy system or performance indicators that should 
be met throughout the year. These constraints often come from corporate ecological goals or government 
regulations [22]. Equations of integral values are not included in Section 2.1. A typical formulation might look 
like this: 
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෍෍ߠ௘,௧൫ܸ̇௘,௧ − ܸ̇′௘,௧൯௧∈் ≤ ௘௠௔௫௘∈ாߠ ∀ ݁ ∈ ܧ (8) (CO2 emission limit)∑ ∑ ܸ̇௘,௧௧∈்௘∈௡∑ ∑ ܸ′̇ ௘,௧௧∈்௘∈௡ ≥ ௖ߟ̂ ∀ ݊ ∈ ܥ (9) (Overall efficiency constraint)

In formulation (8), ߠ௘௠௔௫ is an upper limit of an integral value: in this case, the CO2 footprint of all energy forms 
bought from the grid minus the ones fed into the grid. In (9) the quotient of produced energy and consumed 
energy throughout the year of one component (overall efficiency) should be higher than a target efficiency ̂ߟ௖. 
These formulations exist in cogeneration subsidies in Germany, for example. 
2.3. Binary variables and their relaxations
The main idea of this paper is to use LP relaxations combined with the downsampling of time steps in order to 
reduce the complexity of the ESOM, while maintaining the chronological order of the time steps. Therefore, 
different typical applications of binary variables in ESOMs will be discussed in the following Section. 

2.3.1. Part load characteristics and cost functions
Some variable relations in ESOMs are non-linear and have to be linearized in order to use them in MILP 
models. Typical examples are part load characteristics of technical equipment, which represent energy 
conversion efficiencies in part load ((2) in Section 2.1). Another common example are cost functions of 
technical components that usually have an economy of scale effect, which means the specific price of a 
technology is lower, when the plant size is bigger ( ௡݂௜௡௩ in Section 2.1). The relation between variables is mostly 
described using piecewise linear functions (PWL) that are characterized by supporting points and interpolation 
in between those points. These PWLs can be modeled using special ordered sets (SOS) using the following 
formulation: 

෎ߣ௜ݔ௜ = ;ݔ ෍ߣ௜ݕ௜ = ݕ ;௡
௜ୀଵ

௡
௜ୀଵ ෍ߣ௜௡

௜ୀଵ = 1
௜ߣ ≥ 0; ௜ߣ ∈ SOS2; ݅ = 1, … ,݊

in which the PWL is defined by the supporting points (ݔଵ, ,(ଵݕ ,(ଶݕ,ଶݔ) … , ௡ݔ) ௡). In a SOS constraint of typeݕ, 2 
(SOS2), not more than two variables are allowed to take a non-zero value, and these non-zero variables must 
be consecutive in the list. SOS constraints are often reformulated using binary variables.  

   
Figure. 2. Typical structure of part load curves and investment cost function.

The figure above shows two piecewise linear functions (black) and the space of possible solutions with relaxed 
binaries (grey). In this paper, we use a linear regression of the PWL function instead of an LP relaxation. This 
way, the deviation between the LP formulation and the PWL is smaller. The linear regression is also shown in
Figure. 2 (red).
Typical part load curves have a convex structure due to inefficiencies in part load. Cost functions are usually 
concave due to economy of scale effects. However, in relation to the objective function, the PWLs are typically 
concave. In case of the part load curve, the objective function favors higher output power; in case of the cost 
function, the objective function favors lower investment costs. Therefore, binaries are needed for the 
formulation of the PWLs, and regression functions are used as replacement formulation in this work. 

2.3.2. Semi-continuous variables for minimum part load and start/stop restrictions
Many energy conversion devices cannot be operated continuously between 0 % and 100 % of power output. 
In most cases, the part load behavior is continuous down to a point called minimum part load below which the 
device has to be turned off ((5) in Section 2.1). Therefore, the use of semi-continuous variables is very common 
in order to model this kind of behavior. Semi-continuous variables can either be 0 or in a range between a 
lower (ℓ) and an upper bound (u). They are reformulated using a binary variable (δ) by MILP solvers: 
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ℓ ⋅ δ ≤ x ≤ u ⋅ δ δ ∈  {0,1} 
Relaxing these kinds of variables leads to a continuous solution space between 0 and u for the variable x. So, 
in the LP relaxation, the minimum load of the component is not taken into account.  
Because the binary variable δ is also the indicator for whether a component is on or off, this also cannot be 
distinguished in the LP relaxation leading to other constraints not being considered. Start and Stop constraints, 
for example, are often modeled in a way that a component cannot be switched on and off very frequently. If 
the on/off state cannot be determined anymore, start/stop constraints can also not be included.  

2.3.3. Binary variables for buying and selling energy  
Another typical application for special ordered sets represented by binaries are prices for buying electricity 
from the grid and the respective revenues for selling electricity to the grid. This can be represented by an SOS1 
constraint, which means electricity can either be bought or sold, but not both at the same time. The amount of 
electricity bought and sold is represented by a variable that is part of an SOS1 in each case. So only one of 
them can be different from 0 at the same time step. These variables are then multiplied with the purchase or 
feed-in price and added to the target function.  
In the LP relaxation, the variables in the SOS1 can both be different from 0 at the same time, which means 
buying and selling electricity at the same time step is allowed. As prices for buying electricity are usually much 
higher than the revenues for selling electricity to the grid, this is not a problem in most cases. Because the use 
cases discussed here are very heterogeneous, there might be situations where the price for buying electricity 
is very low. This can happen, when the selling price is determined by a subsidy (e.g., PV) and the buying price 
by a spot market (e.g., EPEX intraday). In these cases, the LP relaxation will buy cheap electricity from the 
grid and feed it back for a higher price, leading to an unbound MILP. This issue can be resolved by setting the 
same price for buying and selling electricity in the LP relaxation in these rare cases.  
In cases in which the target function is not operating costs or annualized costs but rather CO2 emissions or 
primary energy, simultaneous supply from the grid and feeding into the grid is possible. In these cases, the 
MILP will not become unbound, but the cost results of the model will be wrong.    

2.3.4. Indicator constraints for if-then relations in control statements 
Sometimes in ESOMs a constraint is only active if another condition is met. This can be modeled using 
indicator constraints, which themselves are represented using a binary variable with a Big-M formulation. An 
example is a heat pump that can only produce a certain amount of heat, when the heat source has a 
temperature above a certain value. The temperature of the heat source may be determined by another 
component (e.g., geothermal) that determines whether the source temperature can be reached. In this case, 
the heat pump can produce only a certain amount of heat, when the geothermal system is running. The on/off 
variable of the geothermal indicates the maximum power of the heat pump in this case. Using an LP relaxation 
of the original model, these indicator constraints cannot be modeled anymore, and the relation between the 
binary and the indicator constraint is lost.  

3. Methodology 
The methodology of this paper is based on a multi-stage approach using an LP relaxation and a downsampling 
in the first couple of stages to calculate the complicating variables and a rolling horizon approach in the last 
stage to calculate the complicating constraints and all other results. Using 5 different energy system models, 
times for solving LP relaxations were determined [23]. The measure to compare solving times are gurobi [24] 
work units, because they are independent of other processes running on the same machine and thus 
reproducible. A gurobi work unit is almost the same as a second on a single core processor. The 
measurements show a significant reduction in the LP relaxation. LP relaxations of MILP Models that do not 
solve in hours can be calculated in less than an hour.  
The LP relaxations used in this paper are not only relaxations of the original model but in fact reformulations 
of characteristic curves and some energy prices in order to generate a formulation that is closer to the original 
model than the LP relaxation without using any binaries. These reformulations are described in Section 2.  
An additional downsampling of the LP leads to another significant reduction of the solving time typically to less 
than a minute. We experimented with other time series reduction algorithms as described in [17]. Especially 
feature-based segmentation methods [25] that do not produce typical days but keep the order of the time steps 
intact were tested without significant improvements in the solution quality. Nevertheless, further investigations 
of these methods should be done in the future.  
3.1. Substitute formulation of binary variables 
In order to get as close as possible to the original unrelaxed formulation with the new LP formulation, some 
constraints can be reformulated in a way that does not require any binary variables. This has been done for 
piecewise linear functions using a linear regression with an axial intercept at 0/0. The advantages of this 
formulation were tested in [23]. It could be shown that a regression is faster. It is also more accurate in most 
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cases, but depending on the convexity of the PWL, it might also be worse than a relaxation. Nevertheless, we 
favor the regression because we do not want to exploit the convexity of PWL functions. 
In the case of grid connections that have different purchase and feed-in prices, we use a different approach. 
In [23] we investigated different reformulations of the SOS1 constraint for feeding and purchasing electricity. 
Relaxing the SOS1 constraints led to high shifts in the target function value in time steps where the feed-in 
price is higher than the purchase price. Setting a medium price for buying and selling electricity would be a 
solution but also leads to high errors. So in this work, we propose for time steps in which electricity is bought 
and sold at the same time to add binary steps in later stages.  
3.2. Fixing complicating variables (first stages)
Results of the LP relaxation are used to determine and fix complicating variables in the first stage of the 
optimization process. Because the LP relaxation violates a lot of binary constraints, the results of the 
complicating variables can be improved by re-adding some binary constraints that are violated in stage one 
back into the model. A solution of this partially relaxed model is stage two.
Further studies on two different ESOMs (see Figure. 3 and Figure. 5) show the work units of models with 
different numbers of unrelaxed time steps (Figure. 4 and Figure. 6). The figures show a significant increase 
in work units above 100 unrelaxed time steps. Another significant increase happens above 1000 unrelaxed 
time steps. 

Figure. 3. Heat and steam supply with efficiency 
constraint (Model A).

Figure. 4. Work units and target function value over 
the number of unrelaxed steps (Model A).

Figure. 5. Steam supply with gas turbine and peak 
power price (Model B).

Figure. 6. Work units and target function value over 
the number of unrelaxed steps (Model B).

Model A consists of 259 continuous and 31 binary variables per time step of which presolve of gurobi removes 
about 90 %. Model B has 566 continuous and 70 binary variables per time step of which 96 % are removed 
during presolve.  
The idea of the algorithm is to add binary variables back into the relaxed model and solve it until the violation 
of binary constraints is acceptable or calculation time are getting unacceptable. When this algorithm 
terminates, the complicating variables are fixed. These are nominal powers of technical components and peak 
power of the electric grid. 
3.3. Calculating unrelaxed results using a rolling horizon
With the complicating variables fixed, the other results are calculated using a rolling horizon approach. The 
rolling horizon is designed in a way that results are calculated using unrelaxed time steps that are not 
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downsampled. The rest of the year is taken into account using a downsampled a relaxed time frame. This way, 
the development of complicating constraints by cumulating variables can be considered in the decision for the 
unrelaxed time frame. The advantage of this approach over a relaxed calculation is that the results do not 
violate any binary constraints and are not downsampled. The result is a solution of the original model, which 
is a requirement by most users. Analog to [26] the solution could be used to warm-start the original model. 
This has not been implemented in this work, but is subject to further investigation. 

Figure. 7. Illustration of binary rolling horizon, writing back, fixed past, and relaxed future.

4. Runtime experiments
Whereas preliminary studies used many different models (Section 3.1) final experiments used a model with 
an oversized photovoltaic system and a power-to-gas unit to produce hydrogen out of a surplus of electricity. 
The hydrogen can later be used to produce electricity in a fuel cell. Both fuel cell and power-to-gas produce 
low temperature heat as a by-product. This heat can either be dumped in an emergency cooler or upgraded 
in a heat pump to high temperature heat. The high temperature heat from the heat pump is used to supply the 
high temperature heat demand. Heat that cannot be produced by the heat pump has to be generated using a 
common boiler. The ESOM was modeled using the modeling framework TOP-Energy. Most of the runtime 
measurements have been done using a python reimplementation of the same model. The model was chosen, 
because the full unrelaxed solution to a of gap 0.1 percent with 8760 time steps can be obtained in a 
reasonable time (about 30 minutes). Other example models did not solve in hours, which made it hard to do 
lots of evaluations with them. The prove of optimality for this model would take more than 24 h and has 
therefore not been carried out. A scheme of the ESOM is shown in Figure. 8. 

Figure. 8. ESOM with photovoltaic and hydrogen storage for electricity and heat supply (Model C).

The model contains two complicating constraints. One is the size of the hydrogen storage, and the other one 
is the peak power taken from the electric grid. The fuel cell has a minimum part load of 20 % and a nominal 
power of 600 kW. The heat pump has a characteristic curve that describes the part load behavior. The 
hydrogen storage has a characteristic curve that describes the investment cost function with an economy of 
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scale effect. Both characteristic curves have three supporting points which result in three variables in the SOS2 
formulation. 

Figure. 9. Electricity prices based on EPEX spot prices from 2021.

The electricity price was taken from the EPEX day-ahead auction in Germany in 2021 [27] and moved 8 months 
back to cover the time frame of the model which is from April 2020 until the end of march 2021 (to get a better 
charging and discharging regime of the seasonal storage). 

Figure. 10. Heat and electricity demand.

The electricity demand was measured at an office building and scaled up by a factor of 10. The heat demand 
was generated from a temperature profile of Berlin. The electricity production of the photovoltaic system is 
calculated using solar irradiation data of Berlin for a typical year. These data are provided by the German 
Meteorological Service DWD. A study from 2020 [28] states a price of 0.6 €/kWh for a very big cavern storage 
of 26 GWh. To make the storage economical for the sake of the study, these prices were further reduced. The 
specific costs of the hydrogen storage were set to 0.3 €/kWh for small storages (up to 300 MWh) and 0.255 
€/kWh for bigger storages. 
4.1. Runtime for stage one
The best available result for the complicating variables in stage 1 of model C was achieved by running the 
whole time frame (8760 steps) with binary variables and a gap of 0.1 %. This calculation took 1661 work units. 
Lower gap values took too long to calculate. This calculation results in 288 kW peak power for the grid 
connection and 569 MWh capacity of the hydrogen storage. 

Table. 1. Work units and errors of downsampled solutions in stage 1.

Timesteps Work units Peak power Error Hydrogen storage Error
1095 0.608 318 kW 10.4 % 554.92 MWh 2.5 %
1460 0.844 261 kW 9.4 % 475.36 MWh 16.5 %
2190 1.932 267 kW 7.3 % 492.49 MWh 13.5 %
4380 7.664 272 kW 5.6 % 494.53 MWh 13.1 %
8760 30.942 273 kW 5.2 % 490.47 MWh 13.8 %
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The table above shows the work units of certain levels of downsampling and the respective results for hydrogen 
storage size and peak power. The downsampled models do not contain any binary variables. All binaries are 
replaced by substitute formulations or relaxed. While the peak power is getting better with a higher number of 
time steps, the storage size gets worse. This is not reproducible for different setups, so we assume it is a 
random behavior. The target function value of the overall problem is 211,126 Euro, so the error of the peak 
power as well as the error of the hydrogen storage size led to errors in the peak power price and the hydrogen 
storage price close to 0.1 % of the target function value in a solution with gap 0.1 %.  
In this study, a downsampling rate of 4 was chosen for this example. Because the results from Table. 1 are 
not known beforehand, we start the investigation with a downsampling to 4-hour intervals. This seems to be a 
reasonable resolution to account for fluctuating renewable energies, and it led to acceptable calculation times 
in the other models as well.  
4.2. Adding binary steps in stage 2-5 
In the next stages, the violation of binary constraints is fixed by adding binary steps to the relaxed model. The 
results of the stages are shown in the table below. Although the solution time other than the work units may 
depend on other tasks on the same processor, solution times are given next to work units for reference. 

Table. 2. Complicating variable results of the first 7 stages of optimization. 

Stage Binary Steps Work Time Peak Power Error Hydrogen Storage Error 
1 0 1.93 1.51 s 267 kW 7.3 % 492.49 MWh 13.5 % 
2 137 5.12 4.37 s 265 kW 8.0 % 497.97 MWh 12.5 % 
3 204 5.86 4.82 s 261 kW 9.4 % 511.89 MWh 10.0 % 
4 220 4.13 3.90 s 259 kW 10.1 % 513.32 MWh 9.8 % 
5 239 4.54 4.99 s 267 kW 7.3 % 518.92 MWh 8.8 % 
6 250 3.66 4.22 s 267 kW 7.3 % 521.42 MWh 8.4 % 
7 250  Stage 7 not carried out (no change) 

 Result 2-6: 25.26 23.80 s 267 kW 7.3 % 521.42 MWh 8.4 % 
A peak power of 267 kW and a hydrogen storage size of 521,427 kWh is used for the last stage.  
4.3. Rolling horizon stage 
In the last stage, a rolling horizon of 84 time steps is used. Each frame is calculated using 96 unrelaxed time 
steps that are not downsampled and the rest of the year with a relaxed downsampling of 4. The first 84 time 
steps of each calculation are stored as results and fixed for the next frames. 103 calculations are needed to 
calculate the whole year. These 103 calculations take another 70 work units and 105 seconds. The sum of all 
stages took 95 work units and 129 seconds compared to 1661 work units and 1956 seconds for the full model. 

 
Figure. 11. State of charge of the full model compared to the result acquired by the methodology. 

The patterns of charging and discharging the hydrogen storage are similar between the unrelaxed solution 
based on 8760 time steps and the relaxed and downsampled solution. The grid consumption of electricity 
(which is not shown here) is also very similar. For this example, the methodology delivers a reasonable result, 
which fulfils the requirements. 
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4.4 Sensitivity analysis
One requirement for the methodology was the traceability of results. Therefore, we carry out a sensitivity 
analysis for the original solution and the relaxed and downsampled solution to see whether the dependency 
on peak power pricing and hydrogen storage price are similar. 

Figure. 12. Dependency of prices and peak power (r) and storage size (l).

The figure above shows the dependency of the consumed peak power on the peak power price and the 
dependency of the hydrogen storage size on the specific price of the hydrogen storage. The figure shows that 
the general behavior of the correlation is the same, and the methodology represents the values quite good. 

5 Conclusions and future work
The examples above show that a relaxation of binary variables combined with a reformulation of some 
constraints together with a downsampling of time steps is capable of replacing the original more complex 
formulation and producing good results for design variables and peak power prices. In a multi-stage approach 
adding binary steps back into the problem in later stages and then calculating a feasible solution using a 
relaxed rolling horizon approach, reasonable results for problems with all kinds of time-coupling could be 
calculated. 
The statements made here are tested against a small set of energy system models and should be investigated 
further. The fact that for some of the tested ESOMs the original solution is not known makes this evaluation a 
hard task. 
In future work it should be tested whether the solution can be improved even further when the final solution of 
the rolling horizon approach (which is feasible for the original problem) is used to warm start the solution of the 
original problem. Having this lower bound of the original problem has proven to have big advantages [26]. 
Another way to improve the solution is to use a multivariate feature based segmentation [29] to reduce the 
number of time steps. This means removing steps from the input time series that change the time series as 
little as possible. An implementation based on the bottom-up approach from [25] was tried by the authors, but 
did not have a significant effect yet. 
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