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Abstract: 
 
District energy systems provide many options for integrating renewable energy sources and energy storage 
systems into residential and commercial buildings. Solar district heating systems (SDHSs) contribute to the 
deployment of large-scale solar energy-based technologies. SDHS technical challenges during operation 
may occur due to not optimal control. Nevertheless, they can be overcome with smart control of an 
integrated heat pump. To address this problem TRNSYS (transient system simulation) software was used to 
develop the SDHS model; the system operates by employing a smart control approach for the heat pump, 
which is coupled to thermal storage tanks for domestic hot water and space heating to meet community 
demand. The methodological approach has been applied to an SDHS in Madrid (Spain) to provide for the 
heating demands of a neighbourhood that consists of 280 apartments in order to more effectively illustrate 
the abilities of the proposed control strategy. The present work focuses on the development of a co-
simulation framework based on TRNSYS and Python for offline training of a control strategy based on deep 
reinforcement learning algorithms for a smart agent that will control the integrated heat pump into SDHS with 
seasonal storage system. The work will consider the life cycle cost analysis for the technical economic 
evaluation for the proposed control strategy. Results will show if the heat pump DRL-based control offers 
significant techno-economic benefits, compared to traditional control strategies. 
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1. Introduction 
District energy systems offer various options for integrating energy storage and renewable energy sources 
into residential and commercial buildings [1]. Solar communities with seasonal thermal energy storage [2] 
and solar thermal systems [3] are examples of such systems that can facilitate the advancement of fourth 
and fifth-generation district heating systems [4], [5]. Systems for district heating powered by solar energy 
help in the deployment of large-scale solar energy-based solutions. In fact, several prosperous large-scale 
solar district heating systems (SDHSs) are currently in use in nations including Austria, Canada, China, 
Germany, and Denmark [6]. Tian et al. [7] highlighted two successful large SDHSs. Even though the 
modeling and design of these systems have been thoroughly studied recently [8], [9], more research is 
needed to develop advanced control techniques for solar district heating systems. 
Techniques for controlling HVAC (heating, ventilation, and air conditioning) are complex due to the way the 
system's components interact with one another and with the thermal dynamics of buildings. The continuous 
adjustment of the heating or cooling system while maintaining the comfort levels set by the occupants is one 
technique to reduce the amount of energy used for space conditioning.  The conventional method for control, 
which is rule-based control (RBC), typically involves simple hysteresis loops that reheat or cool the building 
every time the temperature reaches a threshold. 
Model predictive control (MPC) improves the control technique by allowing the use of predictions from 
outside variables like the weather, the electricity price, etc. This leads to a wider range and more efficient 
control compared to RBC. The primary aim is to control building temperature, with cost optimization being a 
secondary goal. While MPC outperforms RBC regarding its operation capability, it complicates the system 
and requires the availability of a model that accounts for the system dynamics. Due to the complexity of 
building thermal dynamics and heterogeneous environment disturbances, the classical rule-based and 
model-based approaches are frequently ineffective in practice [10]. 

Another control method is reinforcement learning (RL) which is a model-free approach where the agent 
learns the optimal action to take by "trial and error" without the need for previous knowledge of the system or 
process. Model-free methods can operate without a model of the environment [11]. RL techniques can learn 
by interacting with its environment and do not require any supervision. In recent years and within many 
fields, RL has become a strong alternative to MPC. The fundamental idea behind RL is that the optimal 
behavior or action is encouraged by way of a positive reward, while the least desirable action is punished by 
a negative reward [12], [13].  
The drawbacks of conventional RL can be overcome by deep reinforcement learning (DRL), which enhances 
RL with deep neural networks to approximate the value function and policy function when those are hard to 
model due to the dimensionality of the problem. Therefore, the DRL approach is more suitable and flexible in 
terms of control strategies than traditional control approaches. DRL has been utilized extensively in both the 
business and academic fields, such as, in robotics [14], gaming [15], industrial systems [16], and 
autonomous vehicles [17].  
The present work focuses on the development of a co-simulation framework based on TRNSYS (transient 
system simulation) and Python for offline training of a control strategy based on deep reinforcement learning 
algorithms for a smart agent that will control the integrated heat pump and seasonal storage system of a 
SDHS. The work will consider the life cycle cost analysis for the technical economic evaluation of the 
proposed control strategy. 

2. Materials and method 
This section describes the system’s details and the methodology used for system modeling and control. 
 
2.1. Energy system description 
An overview of the analyzed systems is presented in Figure 1. The main components of the system are the 
solar thermal collector (COL), the DHW storage tank (DHWT), a half-buried sensible seasonal storage tank 
(SST), an auxiliary natural gas heater (AUX), and a water-to-water heat pump unit (HP). This SDHS model 
was designed and based on the system proposed by Abokersh et al. [18] and Tulus et al. [19]. 
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Figure. 1. An overview of the HP with SDHS integration's design.

As seen in Figure 1, the heat pump (HP) functions as a heat source for the SST when connected with the 
solar field circuit. In this arrangement, the district's space heating (SH) or domestic hot water (DHW) demand 
can be accomplished efficiently by the thermal energy collected from the COL or it can be stored in the SST. 
An adequate design of the heat pump that is incorporated in SDHS is required to meet the SH and DHW 
needs of a hypothetical residential neighbourhood throughout the year. The heat from solar collectors is 
transferred to the DHWT in the DHW operation mode, with the intervention of P1, P2, and P5 pumps through 
and switching on the following valves V1, V2, V3, V4, V5, V6, V7, V8, and V9. The AUX2 is activated with 
the help of V5 and V6, when solar thermal energy is insufficient to meet the demand in the DHW network. 
The HP unit is inactive while in DHW mode. In SH operation mode, heat is transferred from ST to SST 
through HE1 using pumps P1, P2, and P3 and valves V1, V2, V3, V8, V9, and V10. Under particular 
circumstances, the heat generated by the HP is either provided to the SST for charging up the heat stored or 
delivered directly to the SH. While the daily DHW demand is supplied by the short-term storage DHWT, the 
SH demand is supplied throughout the winter by the SST. Here, it is crucial to remember that the heat 
provided for the SH is at a low-temperature level (50 °C), whilst the heat supplied for the DHW is at a high-
temperature level (60 °C). Finally, the auxiliary heater acts as a supplement if the solar field, SST, and HP 
are incapable of providing the required amount of heat.

2.2. Co-simulation TRNSYS-Python framework
TRNSYS (transient system simulation) program is a tool, for simulating an energy system's dynamic 
behavior. In the simulation studio, TRNSYS's components are linked graphically to solve algebraic and 
differential equations. The TRNSYS simulation environment's dynamic nature helps to introduce the SHDS 
model in a more realistic manner. This software does, however, have significant limitations when it comes to 
the development and optimization of HVAC system control. Some intelligent control algorithms, such as 
DRL-based control approaches, are inconvenient and difficult to use directly in the built-in software [20]. 
In order to address this issue, a co-simulation testbed with a SDHS TRNSYS model and DRL-based control 
approach has been built in order to enable dynamic data transfer and interaction between these two systems 
as depicted in Figure 2. As DRL-based training requires a large amount of training data, (i.e., of simulations), 
those simulations would have to be done in parallel to maximize computational resources usage and to 
reduce the required time for the experimentation. In order to control such simulations and to be able to train 
the DRL control software, they have been developed, following the de facto standard for DRL training, as a 
Gym environment [21].
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Figure. 2. TRNSYS-Python co-simulation framework.

2.3. Life cycle cost analysis

In the present study, the life cycle costing (LCC) methodology is employed to conduct the economic 
evaluation of the proposed control strategy of the integrated heat pump integration into a community sized
SDHS, which is based on the work of Tulus et al. [19] and Abokersh et al. [18].
The fundamental concept of the LCC technique involves using a future cost approach. This involves 
calculating the present value of all the expenses incurred over the lifespan of the system, using a discounting 
method. By adding the initial capital cost (IC), operational cost (OC), maintenance cost (MC), and total 
equipment replacement cost (RC), we can estimate the net present cost (NPC).

          (1)

The initial capital cost refers to the cost of investment at the beginning of a project. This cost includes the 
cost of purchasing the equipment, its installation and transportation, as well as any contingencies expenses:

                               (2)

In the given equation, PECk refers to the initial cost of purchasing equipment unit k, FBMk represents the 
bare module factor that takes into account the costs associated with installation and transportation, while αCF
is the contingency fees factor. The PECk value is adjusted to its present value from the base year (year A) to 
the year of installation (year B) using the Chemical Engineering Plant Cost Index (CEPCI) [19], with the help 
of the following equation:

          (3)

The operational cost (OC) refers to the total amount of yearly operating expenses that includes the 
maintenance costs for various equipment units and facilities, the consumption of electricity by hydraulic 
equipment, and the usage of natural gas by auxiliary heaters. This cost can be stated using the following 
equation:

           (4)
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In the given equation, CM, CP, and CAUX represent the yearly expenses associated with maintenance, 
hydraulic equipment (such as pumps), and auxiliary consumption costs, respectively. To account for inflation 
and the time value of money, the present worth factor (PWF) is calculated, taking into consideration the 
proposed system’s lifetime (Ne), inflation rate (i), and discount rate (d), which can be expressed as follows: 
 

               (5) 

 
During the operation of the proposed SDHS, certain pieces of equipment have a high rate of depreciation 
and will require replacement. The cost of replacing them can be calculated using the following equation, 
which takes into account the present value of the equipment: 
 

               (6) 

The present value factor of future cash flows in year n is denoted as PVFn. In this present work, the solar 
collectors, DHW storage tank, heat pump, heat exchangers, and auxiliary heaters are among the equipment 
that will require replacement due to their fast depreciation rate over the system’s lifetime. PVFn can be 
expressed as follows: 
 

                           (7) 

 
2.4. Case study 
The methodological approach has been applied to an SDHS in Madrid (Spain) to provide for the heating 
demands of a neighborhood that consists of 10 buildings in order to more effectively illustrate the abilities of 
the proposed framework. This case study has already been described in a former article where more details 
can be found [18]. Each building has 28 apartments, each of which has 90 m2 of usable space [22] and is 
equipped with a DHW system and radiant underfloor heating system to meet the requirement for space 
heating (SH) and domestic hot water (DHW) at 50 °C and 60 °C, respectively. Each building requires yearly 
191.34 MWh of heating. Based on Tulus et al. [19] and Abokersh et al. [18], the proposed SDHS was 
previously validated. 
 

2.4.1. Heating demand profiles 
In order to compare the proposed DRL-based control strategy to the rule-based control strategy in 
Abokersh’s study [18] the SH and DHW inputs will remain the same. Figure 3 shows the monthly DHW and 
SH demand for a neighborhood in Madrid that consists of 280 residential apartments. 
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Figure. 3. Demand profiles for domestic hot water and space heating per month for a neighbourhood of 280 
apartments in Madrid.

The Energy Plus database is used to gather the weather data for Madrid. This includes the incident solar 
radiation, ambient temperature, relative humidity, and other pertinent information.

3. Results

In this phase, using the Madrid case study in a residential community of 280 apartments the design variables 
of various equipment components are taken into account. While formulating the optimization problem, we are 
testing whether the HP smart control strategies can improve the techno-economic viability of SDHS.
Figure 4 illustrates the optimum system costs for various Net Present Cost terms and payback periods. A 
clear tradeoff between the proposed objective functions is indicated since the movement from scenario 1 to 5 
at both traditional controls (A) and (B) increases the total cost. Thus, Abokersh et al.[18] Pareto's optimal 
solutions appear to provide a modest economic benefit that provides an opportunity to make improvements 
on system controlling, which is the objective of our proposed smart control strategy using the deep 
reinforcement learning algorithm.

Figure. 4. The economic benefits and the payback period for the optimal Pareto solutions of the HP 
integrated with SDHS under control strategy (A) and (B) [18].
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In addition to calculating the financial gains, the proposed methodology also determines how each 
technology can operate at its optimal level. Hence, a figure will be illustrated to depict the percentage of grid 
electricity, fossil fuels (natural gas), and solar energy, following the example in Figure 5. 
 

 
Figure. 5.  The share of technologies for the optimal Pareto solutions of the HP integrated with SDHS under 
control strategy (A) and (B) [18]. 

We are currently starting the model training and hope to have the results ready when the 
conference takes place. 
 

4. Conclusions 
 
The current study aims to develop a dynamic model for a solar district heating system (SDHS) integrated 
with a heat pump in Madrid (Spain), to provide the heating demands of a small community of 280 
apartments. A co-simulation framework using TRNSYS, and Python was developed to evaluate the benefits 
of a smart control strategy based on a deep reinforcement learning algorithm, which will control the heat 
pump. The current situation can be characterised by concluding the methodology development and initiating 
the model training. The following step will be to evaluate the control strategy from an economic point of view 
by way of the life cycle cost analysis. 
The aim of this study is to assess the advantages of the proposed smart control strategy using artificial 
intelligence in terms of technical performance and cost-effectiveness, as well as to determine if the control 
strategy offers significant benefits over traditional methods. The results of the study could make the solar 
district heating system a more feasible solution in the market, particularly in light of current policy changes on 
natural gas prices. 
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