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Abstract: 
Decarbonization and sustainability urge the deployment and utilization of distributed energy systems for 
high-efficiency gains. The dispatchable devices (gas turbines or diesel engines) are integrated with a waste-
to-energy system to harness the energy lost or waste heat and support heat and cold loads. This paper 
investigates the characteristics of a waste heat recovery system and its performance degradation 
mechanism to assess its maintenance necessity and optimize maintenance frequency and the associated 
maintenance and downtime costs. The effectiveness of the waste heat recovery system (WHRS) is regularly 
estimated using the measured inlet and outlet parameters (flow and temperature) to identify the need for 
maintenance. The effectiveness changes not only with degradation but also with inlet conditions that deviate 
from the design conditions. Therefore, the operators are instructed to operate this system at the rated inputs 
and gauge its actual effectiveness. However, this approach did not provide much information on the root-
cause parameters, i.e., the fouling formation and thickness in the shell and tube sides, which are quite 
important to decide the type of maintenance and the associated cost and duration. This paper studies the 
performance characteristics of the waste heat recovery system with reference to all critical and influential 
parameters (i.e., fouling thickness, heat transfer coefficients, and off-design inlet conditions) using a rigorous 
physics-based model. An AI model was developed using the derived performance characteristics to predict 
the fouling thickness estimation. The developed prediction model is able to accurately estimate the fouling 
thickness on the gas and water sides, and the error or deviation is within ±0.3 mm. By deploying this 
prediction model, the critical parameters can be monitored in real-time, and the performance degradation 
trajectory paves the way to understand degradation status and estimate the right maintenance time frame to 
schedule maintenance proactively, considering the maintenance cost and downtime effects. 
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1. Introduction 
Wide deployments of renewables and distributed energy systems show promising efficiency gains toward 
decarbonization and sustainability goals. The local power generation reduces transmission and distribution 
losses, paves the way to harness the waste heat from the dispatchable turbines (gas or diesel) to support 
thermal loads at a competitive price, and greatly increases the overall energy efficiency ([1], [2]). Unlike 
turbines and chillers, the waste-heat recovery system, i.e., an apparatus of heat exchangers, is not standard 
equipment; it is usually passive and primarily designed based on specific process requirements. Over time, 
the heat exchanger faces fouling issues due to the continuous deposition of impurities or particles on the 
heat transfer area, which affects efficiency [3]. Most heat exchangers undergo corrective maintenance on a 
need-based basis or preventive maintenance at periodic intervals. The corrective approach causes 
equipment downtime and high maintenance costs; preventive maintenance, which proactively entails regular 
maintenance, does not account for the actual condition of the system and the maintenance needs 
accurately. This paper focuses on developing a fouling prediction model for waste heat recovery systems 
(specifically exhaust gas-driven WHRS) to support predictive maintenance planning and reduce 
maintenance costs and downtime. 
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1.1 Background – Fouling & Maintenance of Heat Recovery System 

Numerous studies have discussed various maintenance methods and their evolution in diverse 
processes [4]. Corrective or reactive maintenance is a primitive method popularly called "run-to-failure," 
usually conducted after the system fails, whereas preventive maintenance performs routine periodic 
inspections to trigger necessary replacement well in advance to avoid any failure. Unlike reactive and 
preventive maintenance, the predictive approach is more tied to system performance, and it requires 
concrete measurement to quantify the root cause and key indicators and initiate a suitable maintenance 
plan. In energy systems, especially in a WHR system, fouling (carbon deposit on the gas side, salt deposit 
on the water side) occurs gradually over time and affects the heat recovery performance and degrades the 
system efficiency. The underlying root cause of fouling is the impurities in the inlet streams and their affinity 
for the heat exchanger surface. Unfortunately, the fouling cannot be measured directly in real-time; some of 
the available handheld devices support offline measurement that requires perforating the equipment ([5], [6]). 
Notable studies investigated different heat exchangers and their fouling characteristics. Most of the studies 
utilized data from experiments and exploited analytical and thermodynamic models. Riverol et al. [7] used a 
neural network to estimate fouling in a plate heat exchanger for the pasteurization application. The simple 
neural network (two inputs and one output) developed reads and processes data to detect critical operation 
conditions and advise on the necessity of cleaning (maintenance). The fouling in heat exchangers and the 
effect of various factors such as velocity, temperature, concentration, and pH influencing the fouling growth 
[8]. This study highlighted the variation in fouling thickness over the pipe length. Other possible root causes 
of fouling are particulates, biological reactions, chemical reactions, corrosion, and decomposition. The NN 
and RSM models were developed using one-year experimental data to predict the fouling resistance of the 
crossflow heat exchanger system in a phosphoric acid concentration plant [9]. Elwerfalli et al. [10] estimated 
the probability of failure in the heat exchangers using risk-based inspection, a ranking matrix, and the 
associated rectification cost. This approach helps to identify high fouling and plan the shutdown maintenance 
activity. A few studies investigated the suitability of various machine-learning algorithms for predicting fouling 
resistance in plate heat exchangers [11]. Interestingly, the focus was mainly on predicting the combined 
resistance but not the individual resistance and its root cause parameters. Deep learning techniques [12] 
were adapted to predict the resistance on the gas and water sides as well as the combined resistance with 
reasonable accuracy. This study considered all critical measurements in the NN model, including flow at 
fouled conditions, but did not provide much information on translating the derived resistance into 
maintenance decisions. 

 
Most of the above studies focused on improving the accuracy of the prediction model by using rigorous and 
sophisticated machine learning and artificial intelligence algorithms using limited real-time data or adequate 
data from analytical and thermodynamic models. In the majority of processes, upstream processes supply 
the inlet gas and water; in such cases, fouling mainly imposes an additional pressure drop when the inlet and 
outlet flow remain the same. This paper aims to study the influence of each measurement (feature) on the 
prediction results and discover the crucial measurements that can provide acceptable accuracy. Identifying 
the key inputs prevents needless sensor and instrumentation costs and mainly reduces the complexity of the 
prediction model to apply in real-world applications. By deploying the prediction model in the process 
monitoring system, it helps the operator identify the fouling thickness and growth phenomenon regularly. The 
continuous prediction and monitoring of fouling thickness helps identify the fouling growth rate and type 
(linear, falling, asymptotic, or saw tooth) [13] that depends on the inlet streams, such as velocity, impurities, 
and affinities towards the heat exchange surface [14]. By projecting the fouling trend at every time period 
(monthly or quarterly), the operator can estimate the fouling status for the next time period and decide the 
need for maintenance activity by comparing it with the tolerance level. Identifying the right time well in 
advance allows the operator to plan the maintenance activity efficiently, i.e., devise the right maintenance 
schedule or frequency (washing, purging, antifouling agents, etc.), conduct a cost analysis covering 
maintenance cost, performance gain cost, and downtime cost, and accordingly trigger the necessary 
redundancy and alternative operation choices to reduce the production loss. 
 

2. Methodology 
2.1 Predictive maintenance concept 
The concept of the proposed preventive maintenance methodology for the waste heat recovery system 
(WHRS) is illustrated in Figure 1. The actual operational data for the duration of a year is the prerequisite for 
this methodology to model the system's performance and study the effect of scaling parameters. The 
expected outcome is a maintenance schedule recommendation considering all critical factors such as 
maintenance cost, downtime effects, and energy efficiency gains. Generally, the actual operation data can 
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be extracted from the process energy management system (EMS). Data pre-processing is required to 
remove measurement noise and outliers and mainly extract the required steady-state values from the time-
series operation data [15]. In WHRS, the flow, pressure, and temperature of the exhaust gas and water are 
the critical variables that can be easily measured using appropriate sensors at the inlet and outlet streams. 
The challenge is measuring the fouling thickness on the interior and exterior of the tubes. Real-time 
measurement is not possible to measure fouling readily; some of the available hand-held devices require 
dismantling the system, which is expensive, and regular measurement is not possible [6]. In such cases, 
leveraging thermodynamic models is very relevant for the user to generate system performance at various 
inlet, surrounding, and fouling conditions. The minimal computational resources, fast computation, and 
freedom from measurement noise are additional benefits. Alternatively, in cases of limited operational data, it 
is good to supplement additional data from thermodynamic models, mainly to account for atypical operation 
conditions.

Figure. 1. Schematic of proposed preventive maintenance methodology

Numerous AI-based data-analytic algorithms are emerging to understand and capture system behavior from 
the data. Interestingly, in certain situations, AI-based data-analytic model development outperforms 
conventional physics-based models in terms of development time, resources, and prediction accuracy, 
especially for complex multi-variate systems. However, a data-analytic model requires substantial data for 
model training, validation, and testing, and the representative data should cover wide ranges to capture the 
system behavior comprehensively [16].

Deploy the developed data-analytic model in the process EMS and estimate the essential variables using the 
measurements available in real-time. Of course, the estimated variable may show some variations due to 
measurement noises, system dynamic behavior, and different inlet conditions. The key takeaway is the trend 
of the estimated variable on a long run (i.e., on a weekly, monthly, or even quarterly basis) to understand the 
scaling growth or build-up and performance deterioration trends. Incorporating or configuring a few 
processing techniques in EMS helps to remove the noise and outliers in the trend so that the system 
operator can identify the trend and extrapolate for future timeframes of interest. This projection will give an 
indication of the time when the system performance could fall below the acceptable tolerance and enable the 
operator to decide the maintenance schedule accordingly. Mainly, this insight or alert comes well in advance 
so that the operator has adequate time and operation flexibility to plan the maintenance schedule optimally 
by considering key factors such as system performance, expected downtime, downtime implications, 
maintenance cost, and benefits.
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2.2 WHRS Performance
Figure 2 illustrates a cross-section and elevation view of a tube surface and pinpoints the type of fouling 
formation on the inner and outer surfaces of the tubes. The exhaust gas flows inside the tube, and water 
flows outside the tube (i.e., in the shell). Various thermodynamic models, such as the e-NTU method and 
physics-based ODE and PDE approaches, can estimate heat exchanger performance in diverse inlet 
scenarios. The e-NTU method [17] is widely employed to estimate the outlet conditions (Tgo and Two) of the 
WHRS for the given inlet conditions (Mg, Tgi, Mw, Twi), system (Uref, A), and fouling parameters (tshell, ttubes). 
The e-NTU model, the pressure drops, and the performance of WHRS are described in Eq. 1 – 11, these 
equations can be either solved simultaneously using the EES or sequentially and iteratively using MATLAB 
or Python. The Cpg and Cpw represent the heat capacities of exhaust gas and water at their arithmetic mean 
temperatures. The Uref and Ucalc refer to the overall heat transfer coefficient of clean and fouled WHSR. The 
Uref and A are taken from the specification sheet of the pilot plant facility. To simplify and balance the 
complexity of the thermodynamic model, a few key assumptions were incorporated, such as (i) uniform 
scaling along the tube length, (ii) fouling causes additional heat resistance and the effect on the heat transfer 
area is insignificant, and (iii) negligible heat losses to the surrounding area due to perfect insulation on the 
shell side.

Figure. 2. Cross-section and elevation view of heat exchanger section
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                                                                                                                                   (2)

                                                                                                                                  (3)
                                                                                                                                     (4)

                                                                                                                        (5)

                                                                                                                       (6)

                                                                                 (7)

                                                                                                                    (8)

                                                                                 (9)

                                                                           (10)

                                            (11)

Equation 9 and 10 estimate the pressure drop of the gas and water streams (adapted from Kakac et al. [3]). 
The efficiency of the heat exchanger is the ratio of the actual and optimal heat transfer rates expected in the 
heat exchanger. The optimal (maximum) heat transfer rate is the product of the UA of the heat exchanger 
and the arithmetic mean temperature difference (AMTD) of the inlet and outlet streams [18]. Deploying the e-
NTU model in the process EMS to estimate the fouling thickness in real-time is challenging because the e-
NTU model requires accurate measurement of all critical measurements and computation resources. On the 
other hand, the AI model can be easily deployed in EMS and is capable of estimating the fouling thickness in 
real time with minimal computation effort without facing any convergence issues.
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2.3 Fouling Prediction Model
The AI-NN architecture (as shown in Figure 3) comprises seven inputs and two outputs used for fouling 
prediction on the inner (gas fouling) and outer (water fouling) surfaces of the tubes. The inputs (features) are 
gas flow, gas inlet and outlet temperature, water inlet and outlet temperature, and the pressure drop on the 
gas and water streams. The water flow remained at its designed condition. The operational data is the 
requirement for the prediction model development, and the data should cover the board operation range, i.e., 
all possible operation scenarios such as design and off-design conditions.

Figure. 3. Schematic of Neural Network architecture used for the fouling prediction.

The number of hidden layers and epochs are the tuneable parameters to balance the model complexity and 
achieve the desired prediction accuracy. In addition to the fouling prediction, this study aims to understand 
the importance of inputs (features) and their effects on prediction accuracy. By comprehending the 
importance of the inputs, they can be categorized as primary and secondary; eventually, the secondary 
inputs can be either eliminated or wisely chosen to simplify the prediction model and the associated data and 
instrument requirements without losing the accuracy of fouling prediction. The workability of the proposed 
methodology will be discussed in the following section using a case study problem.

3. Case Study – Combined Heat & Power (CHP) System
The proposed preventive maintenance methodology is applied in a pilot plant facility at NTU’s Experimental 
Power Grid Centre (EPCG), Singapore. EPGC has a unique test facility, rated above 1 MW of distributed 
energy resources that allows test-bedding and research, development, and demonstration (RD & D) of a 
variety of energy technologies. Figure 4 shows the schematic of the integrated electrical and thermal grid 
facility at EPGC [19]. The generators serve the electrical load, and the exhaust gas from the generators 
powers the thermal grid to harness waste heat and convert it into useful energy. The thermal grid comprises 
critical systems such as a WHRS, an adsorption chiller, and thermal storage responsible for recovering 
waste energy and generating useful forms of thermal energy. The WHRS recovers heat in the form of steam 
or hot water, depending on the heat potential of the exhaust gas and the type of thermal load. Figure 5 
shows a shell and tube heat exchanger as WHRS based on the generator size and the thermal and chemical 
properties of exhaust gas. The designed WHRS recovers 55%–80% of heat from the exhaust gas, whereas 
the rest is rejected to the atmosphere, considering the thermodynamic and design limits. The real benefits 
occur when the heating loads are located near the WHRS; otherwise, the pumping cost needs to be 
considered. When the generated steam or hot water is higher than the heating loads, either thermal storage 
is a preferable option to store excess energy for later use or convert it to other forms of useful energy, such 
as chilled water for air conditioning purposes. This integrated system improves overall energy efficiency by 
recovering the waste heat from the exhaust gas and converting it into various useful forms of thermal energy 
[20].

3175 https://doi.org/10.52202/069564-0285



PROCEEDINGS OF ECOS 2023 - THE 36TH INTERNATIONAL CONFERENCE ON
EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS

25-30 JUNE, 2023, LAS PALMAS DE GRAN CANARIA, SPAIN

Figure. 4. Schematic of integrated electrical and thermal grids at EPGC

Actual Testbed Design Condition
Figure. 5. Waste heat recovery system: a) Actual system; b) Design conditions

Figure 5 shows the actual WHRS supporting various experiments and testing smart technologies and its 
design conditions (Table 1). The performance of the WHRS deteriorates over time due to fouling at the inner 
and outer tubes due to exhaust gas and water, respectively. The carbon and salt deposit builds up gradually, 
increases the thermal resistance significantly, and reduces the heat transfer between gas and water. The 
fouling on the interior of the tubes reduces the gas flow area, increases the pressure drop, and influences 
the back pressure of the generator and its performance. The fouling on the exterior of the tubes reduces the 
flow area of water and increases the pressure drop and pumping power. Therefore, real-time estimating of 
fouling is important to understand the system condition and plan maintenance optimally.

Table 1. WHRS designed inlet and outlet properties.

Parameters Design Condition

Flue gas inlet Flow & Temperature 1548 kg/h and 441 C

Water inlet Flow & Temperature 5040 kg/h and 78 C
Flue gas inlet & outlet pressure 105 and 104.2 kPa

Water inlet & outlet pressure 1000 and 998.5 kPa

Flue-gas fouling factor 0.6 W/mK
Water scaling factor 2.941 W/mK

The actual operational data is the prerequisite for predictive maintenance methodologies. 
Representative operational data should capture wide operation conditions (i.e., all possible inlet and scaling 
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cases). Unfortunately, in the actual system, the possibility of collecting broad operational data is difficult 
because (i) fouling occurs in the long run, (ii) all variables cannot be measured online, especially fouling 
thickness [6], and (iii) the actual operating range is limited, not wide-ranging. Hence, this study exploits a 
thermodynamic model to generate complete data under diverse operational conditions.

3.1 WHRS Performance Characteristics and Effects of Fouling 
Figure 6 shows the derived outlet condition of WHRS under diverse fouling conditions derived using the e-
NTU model. Both carbon deposits and water fouling reduce the heat exchange between exhaust gas and 
water; therefore, the outlet temperature of exhaust gas increases and the outlet temperature of water 
decreases compared to the rated outlet condition. The carbon deposit greatly influences the outlet 
temperature more than water scaling because the heat flows from the gas to the water, and the carbon 
deposit has low thermal conductivity and imposes high resistance. For example, flue gas resistance is 
roughly five times higher than that of water. Figure 7 shows the expected performance of the heat exchanger 
under diverse fouling conditions.

Figure. 6. WHRS performance at diverse fouling (at rated inlet conditions)

Figure. 7. Normalized performance of WHRS at different fouling (at rated inlet conditions)

In real-world operation, the inlet exhaust gas flow and temperature to the WHRS change with upstream 
processes such as generator loading and return water conditions. Table 2 shows the operating range 
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extracted from the historical data of the WHRS. Regrettably, the fouling information is not readily available; 
therefore, the e-NTU method was exploited to estimate the fouling thickness. The next section will discuss 
the development of a prediction model to support the predictive maintenance of the WHRS. 
 

Table 2. WHRS Operation Range. 
Inlet and outlet streams Operating range  

Flue gas inlet flow   60-100% of designed gas flow 
Flue gas inlet temperature   441 – 492.1 C 
Water inlet flow  60-100% of designed water flow 
Water inlet temperature  78 – 84 C 

 

3.2. AI-NN Fouling Prediction Model 
The required performance data was generated for 1000 operational scenarios (uniformly distributed) 

covering design and off-design conditions, accounting for the actual operation range (as stated in Table 2), 
and the corresponding fouling estimated by solving the e-NTU model using the EES solver [21]. The AI-NN 
model with five hidden layers offers acceptable prediction accuracy (R2 = 99.87% and MSE = 0.005). Figure 
8 shows the actual and predicted fouling thickness on the inner and outer tubes (shell sides). The fouling on 
the inner tube is dominant due to high resistance (as mentioned in Table 1) compared to the fouling on the 
outer tube. Figure 8c and Figure 8d confirm the error is within an acceptable range and well below ±0.3 mm. 
To keep in mind, the performance data utilized is smooth; however, in the real application, the actual data 
may contain instrumentation errors and measurement noises that need to be pre-processed cautiously 
before applying to the prediction model. 

 
 

 
(a) Carbon deposits at inner tubes (b) Salt deposit on the outer tubes 

 

  
(c) Residuals (d) Error distribution - training, validation & testing 

 
Figure. 8. (a) and (b) show the actual and predicted fouling thickness on the tube and shell side. (c) and (d) 

shows the residuals and prediction error of training, validation, and testing set. 
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Figure. 9. Number of features and the expected prediction accuracy in regression coefficient. 
 

Even though the above model can predict the fouling thickness accurately, it is essential to understand the 
importance of each feature to reduce the complexity of the prediction model and operational data 
requirements. Various recursive feature elimination methods such as random forest, SVM, k-nearest, and 
neural networks can be useful to study the importance of the features. These methods conduct model 
training repeatedly and eliminate the weakest feature in each iteration until the specified number of features 
is reached. The feature selection is purely based on the coefficients; in the case of decision tree-based 
models (i.e., random forest), the feature selection is based on the importance attribute. This study employed 
Random Forest for feature selection, which identifies the best feature to split at the next node from a subset 
of features based on a criterion such as mean squared error, which explains variance reduction to minimize 
the loss [22]. Figure 9 shows the expected prediction performance when using a different number of 
features. For example, using three features, the expected prediction performance ranges from 0 to 99.79%. 
 

Table 3. Best features and the expected prediction accuracy 
 

Features Best Features R2  
% 

MSE 
x10-3 

 
mm 

 

1 Tgo 43.08 - -  
2 Tgo and ΔPw 99.59 19.1 6.6  
3 Tgo, ΔPw and ΔPg (or Mg) 99.79 9.3 4.1  
4 Tgo, ΔPw, ΔPg and Mg 99.87 5.5 2.9  
5 Tgo, ΔPw, ΔPg, Mg and Tgi 99.87 5.4 2.9  
6 Tgo, ΔPw, ΔPg, Mg, Tgi and Two 99.87 5.4 2.9  
7 Tgo, ΔPw, ΔPg, Mg, Tgi, Two and Twi 99.87 5.2 2.8  

 
The best combination of input features offering high prediction accuracy is studied using a feature search 
algorithm using recursive learning. Table 3 shows the best features and the expected prediction 
performance; it shows the accuracy improves with the number of features. Especially for this application, a 
minimum of three features are required to get reasonable accuracy. Using the right number of features would 
also reduce the data requirements and model complexity. The deployment of the developed prediction model 
estimates the fouling thickness (on the inner and exterior of the tubes) continuously and aids monitoring and 
analysis. In the CHP system, fouling occurs slowly over a long period of time; therefore, a minimum of six to 
twelve months of data is required for complete analysis. Generally, the efficiency of WHRS is a key factor in 
deciding maintenance. For example, maintenance is activated when the efficiency drops below 20% 
compared to the design condition. By knowing the actual root cause factors, such as fouling thickness, one 
can decide on appropriate maintenance methods. The proposed prediction model accurately estimates the 
root cause factors and their severity, which allows the operator to decide on the right maintenance options 
and cut down on unnecessary downtime and maintenance costs. Even by knowing the root cause, one can 
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cautiously redefine the tolerance level (i.e., efficiency losses) considering the dependent process system and 
costs. 

 

Conclusion 
This study proposed a predictive maintenance methodology for waste heat recovery systems to identify 

an optimal time frame accounting for efficiency loss, maintenance cost, and downtime. An AI-based fouling 
prediction model is a critical requirement for maintenance methodology and was developed using actual data 
and supplemented data obtained from the thermodynamic model. The developed model helps identify the 
root cause and predict the fouling thickness with acceptable accuracy. To simplify the prediction model and 
data requirements, the importance of each feature and its effects on prediction accuracy were examined. 
The exhaust gas outlet temperature, the pressure drop of the water and gas streams, and the mass flow of 
exhaust gas are critical inputs or features required for the AI-based prediction model. Interestingly, the 
pressure drop data greatly helps the fouling prediction as it inherently accounts for the flow and the effective 
diameter influenced by the gas and water side fouling. The rest of the features help to improve the prediction 
accuracy and show a marginal effect. Deploying the developed fouling prediction model in the energy 
management system provides a fouling trend that greatly supports a project in the future time frame to 
identify the key time or sweet spot for maintenance accounting, proper redundancy, and mitigation plans. 
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Nomenclature 
Acronyms Greek symbols 
AI artificial intelligence  heat exchanger efficiency 

EMS energy management system   
eNTU effectiveness number of transfer unit method Subscripts 
WHRS waste heat recovery system act actual heat exchange 

A heat transfer area, m2 calc fouling condition 

Cp specific heat, J/(kg K) g flue gas 

d diameter, m i inlet 

M mass flow, kg/s LMTD log mean temperature difference. 

P pressure, kPa o outlet 
ΔP pressure drop, kPa opt optimal or maximum heat transfer 

Q heat transfer, W ref reference condition 
T temperature, °C shell within shell (exterior of tube) 

 average temperature, °C tube interior of tube 

ΔT temperature difference w water 

U overall heat transfer coefficient, W/(m2 K)   
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