PROCEEDINGS OF ECOS 2023 - THE 36™ INTERNATIONAL CONFERENCE ON
EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS
25-30 JUNE 2023, LAS PALMAS DE GRAN CANARIA, SPAIN

BIM2SIM for hydraulic-focussed Energy Simulations —
Automatic Generation of pre parametrized Simulation
Models

David Jansen?, Dominik Hering® and Dirk Miiller?

4 RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor
Climate, Aachen, Germany, david.jansen@eonerc.rwth-aachen.de

Abstract:

The construction of energy-efficient buildings is one of the most important measures to reduce the impact of
buildings on our environment. The dynamic simulation of the energy systems of these buildings can improve the
design and performance and thus reduce the emissions that impact the environment. However, the process of
creating models for dynamic simulations is time-consuming and error-prone. By using already existing digital
models from the planning process the process of model generation can partially be automated. This paper
presents the tool bim2sim and its underlying methodology for the application of automatic model generation
for dynamic hydraulic energy system simulation with Modelica based in Building Information Modeling models
with the open exchange format IFC. The tool is applied to the use case of an example energy system and a
manual comparison modeling is performed for the energy system in Modelica. The comparison shows that
automatic model generation saves a significant amount of time even for comparatively simple systems.

Keywords:
Building Information Modeling, Hydraulic energy simulation, Modelica, Model generation

1. Introduction

Operation of buildings is responsible for 34 % of energy use and 37 % of carbon emissions worldwide [1].
Improving the energy efficiency of building energy systems can help to reduce the environmental impact of
buildings. To increase the efficiency of buildings, dynamic simulation models of building energy systems are
becoming increasingly important for both design and operation of buildings. However, the generation of these
simulation models is a time-consuming process that requires a high level of expertise. Especially because
buildings and their energy systems are unique for every building [2]. In order to increase the dissemination
of dynamic simulation models in practice, the effort required to create these models must be reduced. The
partially automated creation of models on the basis of already existing digital planning data, such as Build-
ing Information Modeling (BIM), is a promising approach. In the field of dynamic energy system simulation,
however, there are very few approaches that attempt to convert existing BIM models directly into simulation
models. By using the open exchange format IFC and the programing language Python, this paper presents a
tool and the underlying methodologies to achieve a semi automatic model generation of simulation tools based
on BIM models.

2. Related Work

The idea of using data models from digital design and, in particular, BIM data is not new. Especially in the
field of thermal building simulation, there are already various approaches to avoid redundancy in the double
modeling of planning and simulation models [3-7]. In the area of hydraulic-focussed energy simulations or
Heating, Ventilation and Air Conditioning (HVAC) simulation in general, the number of existing approaches is
smaller. Bazjanac et al. dealt with the issue of transferring HVAC information from IFC in 2002 and 2004 [8]
[9]. The presented IFCtoIDF tool used EnergyPlus and the IFC2x2 standard, but the tool is not published.
Hauer et al. analyze the presentability of HVAC components in the IFC schema [10]. The most important
findings are that the IFC schema even in version IFC 4 does not yet provide sufficient options to represent all
relevant components of a HVAC system. Accordingly, linked data must be used for a complete description.
Furthermore, they give recommendations for possible extensions of the IFC schema with focus on the energy
generators. Andriamamonjy et al. present a methodology for deriving thermal building and plant simulations
based on the IFC [11]. The IFC is imported to Python with IfcOpenShell and the output is a Modelica simulation
model. The focus is on the analysis of different life cycles and planning stages of the building. The approach
uses a direct mapping of the BIM data into the Modelica library IDEAS. The presented IFC2Modelica approach

3229 https://doi.org/10.52202/069564-0290

and its code is not published as an open source project. In his PhD thesis, Pauen invented the TUBES System
Ontology (TSO) and the tool IFC2TSO to provide better understanding of the HVAC systems [12].

A necessary aspect to create executable simulation models is the creation of a control for the energy system.
In order to represent this control in the simulation model, the control logic itself, as well as the linking of this
logic with the signals of the associated sensors and actuators, are necessary.

Benndorf et al. present the implementation of a control in the IFC scheme using the example of a heating
curve, a time-controlled volume flow controller and a temperature control. For this purpose, the IFC schema
had to be supplemented by own new components. Furthermore, the concept of linked data sources was also
used by using the IfcOwl schema to establish connectivity with the building automation control. However, it is
noted that the use of BIM in the context of building control and automation is just being developed and existing
BIM models and modeling tools cannot yet represent control, which is why they had to be subsequently added
to the Revit export of the BIM model using IfcOpenShell. [13]

Sporr et al. use the IFC data format in their work to develop a methodology for mapping the control of an
energy system for building heating. The methodology uses a combination of TRNSYS and Simulink and relies
on additionally created data in addition to the IFC, since the IFC does not provide the necessary information
on the producer side. [14]

Existing research already covers investigation and usage of BIM-data for simulation model generation in the
HVAC domain, but non of the existing approaches was released in form of a public available tool. Furthermore,
most approaches are based on the assumption of a perfect IFC model that contains no errors or lacks infor-
mation. In reality, BIM models are currently often not yet perfect, for three main reasons. Authoring software
has shortcomings regarding the export to IFC (1), the IFC format itself has shortcomings as not all relevant
components and their semantic data is covered by the current IFC4 standard (2) and last but not least, model
creators often do not add the relevant data to the BIM model, especially semantic data is often missing. Based
on the existing shortcomings, a new approach is developed that provides an easy extendible and open source
approach that works with non-perfect IFC data to create Modelica simulation models based on IFC4 data.

3. Methodology

Even though this article focuses on creating hydraulic energy simulations of HVAC systems, we want to give
a brief overview on what bim2sim can do in general. In short, bim2sim is a tool that includes methods and
concepts to read data from an IFC file, convert it to a simulation-oriented meta-class structure by collecting
as much information as possible from the IFC, perform various types of processes and simplifications on the
meta-classes, and export the results to a simulation model. This process can be used for HVAC simulations as
presented here, but we also implemented methods and concepts to perform Building Performance Simulation
(BPS) .The basic idea was already published [15] as well as the application on BPS [5, 16].

The workflow that is used specific for HVAC simulation is shown in figure 1. The Computer Aided Design (CAD)
model that is created with a BIM authoring software is exported to an IFC model. This IFC model is loaded
into bim2sim using /fcOpenShell and the relevant IFC elements are converted into a meta-class structure in
Python. This meta-class structure is designed regarding the needs of the simulation domain. The meta-class
instances are then transferred into a graph network that allows to run various simplification processes on the
HVAC system to make it exportable to a simulation model. In the following sections the different steps are
explained in more detail.

3.1. Importing data from IFC

Since two different object types are used in the conversion process, they are formatted differently for better
distinction. IlfcElements are displayed in italics, and Python meta-class elements are displayed in code style.

To get the relevant information from the IFC file to perform a semi-automatic simulation model generation, we
use the Python implementation of /fcOpenShell to import the IFC data into Python. As Amor has shown, the
number of entities, and thus the ability to represent systems in IFC, has increased significantly with the release
of IFC 4 [17]. For this reason, bim2sim supports only IFC 4.

IfcOpenShell allows us not only to get the relevant data for every component but also to get metadata about
the authoring software which is needed later in the process to enrich missing data.

3.2. Preliminary Model Check

In the next step we perform a model check against the loaded IFC. First basic validations are performed,
e.g. to check that all IfcElements have a unique GUID. Subsequently, element specific checks are performed
regarding the existence and correctness of attributes (e.g. the capacity of a boiler). In the last step HVAC
specific checks are performed. E.qg. all IfeDistributionElements are checked if they have ports assigned via the
IfcRelConnectsPortToElement relationship

The results are displayed in form of an interactive HTML report. The goal is that the engineer who is in charge

https://doi.org/10.52202/069564-0290 3230

bim2sim

Meta-Classes

Graph Network
Simplification
Prepare Export

Decisions

Modelica Model

H
3

Figure 1: Process of bim2sim for HVAC domain.

for the simulations has a document which can be given to the BIM model creator. This document should provide
the necessary information about all missing or wrong information inside the IFC model. The BIM model creator
can update the IFC export afterwards based on the report.

3.3. Conversion to meta-structure

If the check succeeds the IfcElements are converted into the simulation orientated meta structure. This step
makes sense, since BIM models for HVAC simulations are still partially insufficiently parameterized. The usage
of the meta-structure allows obtaining the relevant information for the simulation from different sources in the
IFC. For example, the surface roughness of a pipe can only be taken from the semantic information, but the
length and diameter can also be determined via the calculation of the geometry if semantic information is
missing. The conversion process consists of two parts. First, the physical instance of the IfcElement to be
mapped must be identified and second, all relevant information about this class that can be obtained from the
BIM data must be collected. The whole process of a meta-class element creation for the example of a boiler
is shown in figure 2 and is explained in more detail below.

3.3.1. Class mapping

To keep the system modular and easy extendible, we use the class based structure in Python to represent
each needed element with its own Python class. First, we have the base class IFCBased, which takes care of
general processes such as calculating absolute position and orientation, which is required for all IfcElements
regardless of their domain. Then we have the HVACProduct that inherits from IfcBased and adds additional
functionality like the connections between ports and elements. This domain specific class is inherited to every
element specific class, like the Boiler meta-class. In this element specific class we define the mapping rules,
how to obtain the attributes and additional functions that are required for this process.

The IFC standard uses two information to define an instance of an IfcElement: the IfcElement itself and the
IfcTypeEnumeration which allows further specification of the element. In current IFC data, especially in the
HVAC domain, we often encounter missing correct declaration of the IfcElement and instead dummy classes
like IfcElementProxy are used. But even if the IfcElement is correctly defined, the IfcTypeEnumeration is often
set to USERDEFINED or completely missing. To overcome these problems and allow bim2sim to be used
with non-perfect IFC-files, we implemented the possibility to add patterns in the form of regular expressions
to look for in the semantic data of the element. This is useful, because even if the IfcElement is not correctly
defined, the model creator might have entered the relevant information to identify the element as a string in the
description of the element.

To make the structure extendible for new elements, these can easily defined as shown in the following example.

class Boiler(HVACProduct):
ifc_types = {'IfcBoiler’: ['+', '-EXCLUDING_TYPE']}
pattern_ifc_type = [
re.compile(’'Kessel’, flags=re.IGNORECASE),
re.compile(’'Boiler’, flags=re.IGNORECASE),

3231 https://doi.org/10.52202/069564-0290

IfcBoiler instance

= Pset_BoilerTypeCommon

= calculate absolute position
= calculate orientation

HVACProduct

= connect ports and elements

Boiler class definition

= hoiler specific mapping rules

= NominalEnergyConsumption
= PartialLoadEfficiencyCurves

= Pset_AuthoringTool
= FlowTemp

= Pset Editor
= FuelType

N
5

Boiler meta-class instance

rated_power

= boiler specific attributes

= hoiler specific functions

Attribute System \

IFC based property sets
custom property sets

regular expressions

nominal_efficiency
efficiency_table
min_power
nominal_T_flow
energy_source

calculation
(defaults)
user decision

Figure 2: Process of meta class element creation for a boiler.

Based on this definition, the mapping process will first look for elements that are classified as IfcBoiler by taking
all enumeration types (due to the *) but the -EXCLUDING_TYPE' into account. Additionally the process will
look for every element that has the strings 'Boiler’ or 'Kessel’ (german for boiler) in their description. If multiple
possible mapping classes are found, a user decision will be triggered.

Based on the defined classes all elements in the IFC will be converted into meta-class elements. An overview
about all currently implemented classes for HVAC domain and their mapping is listed in Table 1.

Table 1: Mapping between IFC and Meta-structure. *:= all TypeEnumerations are included.

Groups IFC Element IfcTypeEnumeration Meta-Classes
Connections IfeDistributionPort DUCT, PIPE HVACPort
IfcDistributionSystem * Medium
Energy Conversion IfcBoiler * Boiler
IfcElectricGenerator CHP CHP
- - HeatPump
IfcChiller * Chiller
Hydraulic Distribution /fcTank STORAGE Storage
IfcPump * Pump
IfcValve * Valve
IfcValve MIXING ThreeWayvalve
IfcPipeSegment * Pipe
IfcPipeFitting * PipeFitting
IfcPipeFitting JUNCTION Junction
IfcDistributionChamberElement * Distributor
IfeDistributionSystem * Medium
Heattransfer - - -
IfcSpaceHeater * SpaceHeater
IfcHeatExchanger * HeatExchanger
IfcCooling Tower * CoolingTower

https://doi.org/10.52202/069564-0290

3232

The IfcDistributionPort and IfcDistributionSystem have a special role, as they are used to connect the different
elements to each other and define the flow direction between the elements. The concept used in IFC to
represent connections is shown in figure 3. The meta-classes use this concept as well by assigning the
respective HVACPorts to every meta-class element and get additional information about the medium in a

circuit from IfcDistributionSystem.
IfcRelAggregates
IfcDistributionSystem IfcDistributionSystem

[IfcRelAssignsToGroup [IfcRelAssignsToGroup]
T

IfcBoiler IfcPipeSegment

IfcPipeSegment

IfcRelNests IfcRelNests IfcRelNests
IfcDistributionPort IfcDistributionPort IfcDistributionPort IfcDistributionPort
[IfcRelConnectsPort IfcRelConnectsPort

Figure 3: Concept of IFC to represent connections.

It's to mention that due to the fact that the IFC standard does not offer the possibility of directly mapping
thermally active components, such as underfloor heating or concrete core activation, are taken care of via the
concept of aggregations. Aggregations are explained in more detail in the section 3.4..

3.3.2. Attribute system

The created meta-class elements now needs to be filled with the relevant semantic information. On the left
side in figure 2, we can see that the IfcBoiler provides semantic information included in three IfcPropertySets
that represent the three different types of property sets that the bim2sim tool takes into account.

1. The Pset_BoilerTypeCommon as well as the belonging properties are IFC-schema compliant.

2. The Pset_AuthoringTool represents a property set that is not IFC schema compliant, but which is never-
theless typical for a specific authoring tool.

3. The Pset_Editor, which is a fully custom property set added by an editor. This one is not following any
rules.

All three IfcPropertySets hold information that are relevant for the simulation model. The first one can be
taken directly by implementing the IFC schema into the code. For the second one, additional information for
every known export tool needs to be stored. For the last one, regular expressions can be used to find relevant
information. Another challenge is that information might be stored implicit, but an additional calculation process
is needed to obtain the final data that the simulation model requires.

To obtain all relevant information from the IFC-data we implemented the Attribute-system. The Attribte-system
is a hierarchical approach that searches for a defined information by multiple approaches. The structure in
figure 4 shows the usage of the Attribute-system to obtain the nominal_efficiency and the rated_power of
the boiler as the IFC standard does not offer pre-defined options to input this data.

In this example, all implemented possibilities to retrieve information from the IFC are covered:

+ default_ps: get information from property set that is defined in IFC standard

» functions and dependant_attributes: calculate/convert information into the direct form based on other
attributes

* patterns: search for attributes based on regular expressions

» JSON: an additional file which is used to define typical places where specific authoring tools place infor-
mation

3233 https://doi.org/10.52202/069564-0290

Attribute System Definition of Boiler Attributes

Tool Specific Attribute Definition in additional JSON file

https://doi.org/10.52202/069564-0290

efficiency = Attribute(
description="Efficiency of boiler provided as list with pairs "Identification": {
of percentage of rated power and efficiency*, - "tool_names":[
default_ps=('Pset_BoilerTypeCommon','PartiallLoadEfficiencyCurves'), "LuArtX Ifc Exporter",
unit=ureg.dimensionless "LuArtX",
) ety
"languages": ["ENG", "DEU"]
nominal_efficiency = Attribute(1
description="Boiler efficiency at nominal load", "Boiler": {
functions=[_calc_nominal_efficiency], "default_ps": {
dependant_attributes=[efficiency], "rated_power": ["CarF", "eff.Leistung"],
patterns=["nominal_efficiency": ["CarF","Wirkungsgrad"]
re.compile('.*nominal_efficiency.*',flags=re.IGNORECASE), }
re.compile('.*effizienz.*', flags=re.IGNORECASE), }
re.compile('.*wirkungsgrad.*', flags=re.IGNORECASE) }
1,
unit=ureg.dimensionless
)
nominal_power_consumption = Attribute(
description="nominal energy consumption of boiler",
default_ps=('Pset_BoilerTypeCommon', 'NominalEnergyConsumption'), @=
unit=ureg.kilowatt
)
rated_power = Attribute(
description="Rated power of boiler",
functions=[_calc_rated_power],
dependant_attributes=[
*nominal_efficiency’,’nominal_power_consumption’],
patterns=[[Do
re.compile(’.*capacity.*’, flags=re.IGNORECASE),
re.compile(’.*power.*’, flags=re.IGNORECASE),
re.compile(’.*leistung.*’, flags=re.IGNORECASE)
1,
unit=ureg.kilowatt
)

Figure 4: Excerpt of the attribute definition for the boiler meta-class.

The IFC-standard only allows defining the efficiency curve as a list of pairs of part load power and part
load efficiency, but not nominal_efficiency itself. Still, the curve information can be used to calculate the
nominal_efficiency. The rated_power can’t be defined in the IFC as well. But based on the calculated
nominal_efficiency and the nominal_power_consumption which can be defined in the IFC, the rated_power
can be calculated as well.

To meet the goal of being able to generate simulation models even without perfect IFC models, all attributes can
also be found in the IFC through the regular expressions as shown. Furthermore, the attribute system searches
for dependent properties in the IFC based on the authoring tool defined in 3JSoN on the right of the figure. For
this purpose, the authoring tool is stored when the IFC file is loaded. As a last option, a user decision is
created to retrieve the needed values. However, this is only executed against when the corresponding attribute
is needed, either for a calculation of another attribute, or for the export to the simulation model to maximize
the level of automation. This is described in more detail in the section 3.5. In addition, the attribute system
ensures that all parameters are correctly converted to the specified units, based on the IlfcUnits specified in
the IFC. By using the Python package pint [18], it is ensured that later conversions are correct. All these
functionalities aren’t complex but adding the functionality for all relevant elements in the HVAC domain and in
the other domains that bim2sim supports without defining a clean, unify and easy to extendible structure would
result in non-maintainable code.

3.4. Processing and Simplification
3.4.1.

To analyze and simplify the hydraulic circuits the created meta-classes and the related HVAC-Ports are con-
verted into a network graph. Network graphs offer the potential to use existing graph algorithms to perform
efficient analysis against the hydraulic circuit. bim2sim uses two graphs, the PortGraph and the ElementsGraph.
The PortGraph uses every HVACPort as a node and the edges between the nodes mark the fluid flow be-
tween the ports. In the ElementsGraph no ports are used, but the elements like a Boiler are the nodes. The
ElementsGraph graph is an abstraction of the PortGraph and is mostly use for visualization. The PortGraph is
used for most analysis, because it offers information how ports of the same element are connected to each
other. This is important as for example a heatpump has four ports, but only two of them are connected with
each other in pairs (evaporator and condenser side). bim2sim uses the Python package NetworkX [19] to
create network graphs and analyze them.

Graph Network Generation

3234

3.4.2. Aggregations

The concept of Aggregations is used in the HVAC part of bim2sim to simplify the hydraulic circuit and reduce
the numbers of elements to export to the ones relevant for the simulation. This is needed as an export of
every meta-class instance created based on the IFC directly to a Modelica instance would result in an in-
feasible or at least very slow system of equations in Modelica. The simplest example of an Aggregation is
the PipeStrand, which aggregates chains of contiguous connected meta-class elements without junctions to
a single pPipeStrand with an equal total length /i = Z,’-’=1 I and equal diameter dp, = ZL li - di/lges. The
equivalent parameters are calculated to obtain a simulation model with an equal pressure drop and heat loss.
A special case of a PipeStrand are coils used for thermal activated building structures, like underfloor heating
or concrete core activation. These are specified through the density of pipes (length and number of elements)
in a certain area, the distance between the center lines of the pipes.

Using the network graph allows using existing analyze algorithms and classifications. For example, the chain
of connected elements can be determined using the degree of the nodes of the graph. The degree of a node
is defined as dg(v) and is calculated based on the number of connections a node has. To find the chain of
connected instances without junctions only nodes with a degree of dg(v) = [1;2] are taken into account which
are of the type Pipe or PipeFitting or Valve.

bim2sim also includes more advanced aggregations, two of them will be explained in more detail below, the
aggregation of parallel pumps and generator cycles. In practice, parallel circuits consisting of several identical
pumps are often used in large hydraulic networks for better scalability. In this way, only the required number of
pumps can be switched on, depending on the load. For simulation, these parallel circuits can be converted into
a single component to reduce the number of equations of the system of equations to be solved and thus the
complexity and simulation time of the corresponding model. In 5, the graph network of an example system is
shown, which consists of four pumps in the initial state (a), where one of the pumps has a lower power (purple)
and three pumps have an identical power (red). There is also a bypass connected in parallel with the four
pumps (green).

The algorithm developed allows both a grouping that groups only parallel pumps of the same power and the
option to group all parallel pumps. In addition, the an AggregatedPipeFitting is also needed, since other
connections at the nodes, such as the bypass shown here, should be kept. The result for the case where
only pumps of the same power are aggregated is shown in (b), and in addition to the successful aggregation,
it also shows that the bypass (green) is still present and the pump with a different power (purple) was not
included in the aggregation. The rest of the graph network remains untouched, since only the aggregation for
ParallelPumps was performed.

Besides just reducing the elements to be represented later in the simulation model, all relevant information is
converted into semantic data. In the case of the aggregation ParallelPump, these are in particular the total
power of the pumps, the combined nominal volume flow as well as the total length and the average diameter
of the adjacent pipelines, which are relevant for the pressure loss.

The aggregation Generators is relevant because generator circuits consist of many individual components,
most of which have no meaning for the simulation or at least do not need to be represented as individual
components.

Figure 6 shows the original state of an example in (a). The example consists of a generator circuit with boiler
(red), pump (blue), a bypass with valve (green), an expansion tank (purple), and some other pipe elements.
The generator circuit is connected to a distributor (gray), to which four other pipe strands are connected, which
represent a simplified consumer.

In (b) the result of the aggregation is shown. The simplified consumer circuit with the four pipe elements re-

mains unchanged. However, the generator circuit can be aggregated into a single component, the GeneratorOneFluid.
This component contains the information about the type and power of the generator, whether there is a sepa-

rate pump in the circuit, what the power of this pump is, and the information about an existing bypass. Since

the expansion tank is not relevant to the simulation, this information is not tracked further. The algorithm can be
applied to parallel generators beyond the example shown. In this case, the parallel generators are converted

into one generator that provides the total power.

There are limitations in terms of generator types. So far, only algorithms for generators with one external fluid
circuit, such as boilers and Combined Heat and Power (CHP), have been included. Generator aggregation for
generators with multiple circuits, such as a heat pump, has not yet been created, since mapping a heat pump
in the IFC schema is currently only possible with workarounds.

3235 https://doi.org/10.52202/069564-0290

Pi
Pipe j
o PipeFitting Qﬁ’gp)e\o
¥ ipe
Pump 3 ’/Dib/%e Pipe

Pipe Pipe Pipgitting p%\Q
Pipe
Pump Q\'
" L. Pipe
PipeFitting O/ Pipe x (S %}/ Pump

Pipe Pipe
Pipe P

Pipe Pump AggregatedPipeFitting (g
- > Pipe i
PipeFittin: o
= & Y SpaceHeater Pipe
. Pipe Pump arallelP
ipe

ump

Pi Pipe FIPs Pipe %
(5 AggregatédPipeFitting
Pipe. Plps Pipe H
Pipe < Pipe Pipe
Pipe Pipe

Pipe Pipe
SpaceHeater \ {5
Pipe -
g o
Pipe Plps
(a) Before Aggregation (b) After Aggregation

Figure 5: Graph of meta-class elements for ParallelPump Aggregation

3.5. Exporting to Modelica
3.5.1. Export Libraries

The simplified hydraulic network of the meta-class elements must now be translated into Modelica models
in the next step. As introduced before, we implemented a Plugin system to allow multiple tools and libraries
to take advantage and reuse the concepts that we built with bim2sim. Each Plugin that uses Modelica can
build its own export for the used library by creating Python classes that inherit from the base instance. In the
current version, bim2sim holds two Plugins for Modelica HVAC export: AixLib and HKESim. AixLib is an open
source Modelica library that holds simulation models for HVAC simulation as well as BPS and is based on the
IBPSA core library [20]. HKESim is a non-public library used by the ROM Technik company, who significantly
contributed to the creation of bim2sim. Its focus is on HVAC simulation. Additionally, some basic components
are implemented for the Modelica Standard Library (MSL).

Every bim2sim Modelica export class holds information about the path to the Modelica model it is exported to,
the bim2sim instance it represents and the parameters that should be requested before exporting the model.
The most basic definition of an export model is as follows:

class StaticPipe(StandardLibrary):
path = "Modelica.Fluid.Pipes.StaticPipe"
represents = [hvac.Pipe, hvac.PipeFitting, aggregation.PipeStrand]

def request_params(self):
self.request_param("length", self.check_length)
self.request_param("diameter", self.check_diameter)

The self.check_length and self.check_diamter are optional functions to define, to implement plausibility
checks against the parameters. Additional functions might but must not be implemented for a basic export.
Table 2 shows the current status of which models are used regarding the libraries.

Not all meta-classes have a Modelica export yet in all libraries, but more export models are currently under
development. Furthermore, based on the modular structure, other libraries can be easily added.

3.5.2. Base export instance
To continue the modularity of the built workflow, the export is based on a class structure that can be easily
extended. To ensure modularity, we implemented a base class for a Modelica export instance that contains the

all relevant functionality and can be extended by any Modelica instance, regardless of which library it is used
in.

Translate Python into Modelica parameters
Python and Modelica both hold the logic for different types of parameters, like boolean, arrays, lists, integers

https://doi.org/10.52202/069564-0290 3236

P|
Plpe Pump L

Pipe

Plpe Pipe
Boller GeneratorOneFluid
PnpeFlmng
Pipe
Pi Pipe
P Q\/.Aé Valve
Dlstrlbutor Pipe Distributor
Pipe Pipe Fipe P-pemeg Fige
Pipe
Pipe
Pire PipeFitting Pipe
Pipe
Pipe:
Storage Pipe
a) Before Aggregation (b) After Aggregation

Figure 6: Graph of meta-class elements for Generator Aggregation

and floats with unit. To keep extensibility simple, the conversion from Python to Modelica is defined in the base
class. The conversion thus subsequently runs in the background and no longer needs to be taken into account
when extending a library with new models.

Unit conversion As mentioned, we use the package Pint inside Python to obtain and maintain the correct
units from the IFC file. To ensure that no conversion errors occur, the output unit for the Modelica model can
be defined. By default, the values obtained from IFC are always converted to S| units during export.

Numerical validation checks These checks allow the definition of value ranges within which individual values
may lie. This way, it should be prevented that unphysical values get into the model.

Keep track of corresponding IFC element(s) For traceability between IFC model and Modelica simulation
model, each Modelica component is assigned the GUID of the corresponding IFC object as a parameter.

Parameter request system As written before, not all parameters relevant for the simulation can be extracted
from the BIM model for various reasons. Nevertheless, it should be ensured at the time of export that all
parameters relevant for the simulation model are available or at least have been requested. At the same time,
the number of user inputs should be minimized. To achieve this, only those decisions are queried during
the process whose result is needed immediately. An example of this would be the decision of what type an
IFC element has if the IFC class is not uniquely defined (e.g. when using IfcBuildingElementProxy). Such
a decision must be made directly, because it has an impact on the further process. Information that is only
required for the final simulation model export will only be executed during export.

This avoids in many cases that parameters, which are no longer relevant for the exported model, are queried.
For example, the parameter for the volume of a storage, which is identified during the process as a pressure
equalizing vessel that is not relevant for the simulation model. If a user decision is skipped, or a parameter fails
the final numerical validity check, that parameter is noted as unknown in the exported model. Thus, it can be
directly recognized in the model which parameters have to be reworked.

Translate port logic The AixLib and HKESim as well as the MSL use the FluidPorts of the MSL to connect
instances with each other. The definition inside Modelica is that Port_a is the incoming port of a Model and
Port_b is the outgoing port. The HVACPort of the meta-class system and the simplified graph network hold the
needed information to connect the respective Modelica instances with each other during export.

3.5.3. Usage of modules

Table 2 already included the GeneratorOneFluidModule and ConsumerHeatingDistributorModule. Equivalent
to the aggregations used in the simplification of the graph network, new module-based models for the AixLib
and HKESim libraries are currently implemented for export. These modules are pre-configured combinations
of already existing components of the library, which reduce the needed number of parameters to minimum.
These modules also contain basic control strategies, which allows the export of almost ready to run simulation
models. The basic control strategies however can easily be overwritten by user defined control strategies which
can be connected to the BUS connectors of the modules. For AixLib we already implemented a boiler module

3237 https://doi.org/10.52202/069564-0290

Table 2: Current state of bim2sim Modelica export to different libraries.

Meta-class AixLib HKESim MSL
Boiler X X
GeneratorOneFluidModule X X
HeatPump X

Chiller X

CHP X

Storage X

Pump X X

Valve X
ThreeWayValve X X

Pipe X
PipeFitting X
Junction X X X
Distributor X X

Radiator X X

Consumer X
ConsumerHeatingDistributorModule X X

and a consumer module which can be found on GitHub'. HKESim won't be discussed because it’s an in-house
library and not public available.

3.5.4. Export process

The conversion into Modelica models is performed based on a dynamic Mako template [21]. This template is
filled based on the instances and their parameters and connections that are gathered through the previously
discussed concepts. During the export, required, but missing parameter trigger decisions to the user. If these
decisions are skipped, the parameters will be left empty in the exported simulation model, but a red annotation
will be placed on the top level of the model, that gives feedback which parameters are missing. Additionally,
the export tries to arrange the Modelica instances in a useful pattern, based on the position information from
the IFC.

4. Proof of Concept

To prove the functionality of the developed tool, we have created an example use case in cooperation with the
software manufacturer LuArtX. This is shown in figure 7 as schematic drawing (a) and screenshot of the IFC
model (b).

Radiator F3 F Radiator
10kw 10kwW

Radiator 3 ¥ Radiator
10kW 10kW

7 Radiato
J 15kw

Radiator "% % Radiator
10kW 10kW

Boiler
75 kW
1

(a) Schematic drawing (b) IFC model

Figure 7: Use case example

The use case consists on the generation side of a boiler for heat generation, a pump, a three-way valve and
a bypass for return flow boosting. The consumer side has a distributor, two consumer strands with several

Thttps://github.com/RWTH-EBC/AixLib/tree/issue1147_ConsumerAndBoiler

https://doi.org/10.52202/069564-0290 3238

radiators as consumers, of which six radiators are connected in parallel. Each consumer strand has a pump
and a valve. One of the consumer strands is an open end and one has a bypass for flow temperature control.
The software manufacturer LuArtX improved their CAD software CARF throughout the creation to implement
correct export for IfcPorts.

Since the creation of Modelica models based on plans or 3D models is a common task at the industry partner,
both a manual model creation and a partially automated creation by bim2sim were performed to demonstrate
the potential of the developed tool. The two model exports, both using the in-house library of the industry
partner, are shown in figure 8

waerme.

1 8
15 kW 60 kw

@aﬁ

(a) Manual created model (b) Automatic created model with bim2sim

Figure 8: Exported Modelica HKESim models

It took a Modelica expert from the industry partner 2 hours and 33 minutes (153 minutes) to manually create
the model. This includes the understanding of the energy system based on the BIM model, the parameter
gathering and entering, modeling in Modelica including connections and sensors, creating usage profiles and
removing any errors. Creating the simulation model with bim2sim took 6 minutes, including adding the missing
parameters and demand profiles. This results in a time saving of 95 %.

5. Conclusion

In this paper, the authors presented a brief review of existing approaches in the field of simulation model
generation for the HVAC domain based on digital planing data in the form of BIM models. Based on the
discovered gap of public available tools which are able to create Modelica simulation models based on non-
perfect BIM data in form of IFC, the bim2sim tool, and it's application for the HVAC domain were introduced. The
core of bim2sim is the Python library with the same. This includes methods easy extendible methods based
on orientated programming to convert IFC data into Modelica simulation models. The underlying methodology
was explained, and the tool was applied to an example use case to prove the concept. The example showed
that even for comparatively simple systems, a significant amount of time can be saved.

Currently, the embedded methods are focussed on hydraulic systems. In the future, the authors plan to extend
the functionality to duct systems to simulate ventilation as well. Also, the presented use case covered only a
small example system. The next step will be bigger systems with multiple generation devices for heating and
cooling.

This paper only gives an overview about the functionality and methodology of bim2sim. For more information,
the authors refer to the GitHub? repository, where documentation and the presented example use case can be
found.

6. Acknowledgements

The authors gratefully acknowledge the financial support of the German Federal Ministry for Economic Af-
fairs and Energy in the project “BIM2SIM” (project number 03ET1562A) and "BIM2Praxis (project number
3EN1050A). The authors also want to thank the RD department of Rud. Otto Meyer Technik GmbH & Co. KG
and especially Christian Warnecke for the extensive contributions to the code.

2https://github.com/BIM2SIM/bim2sim

3239 https://doi.org/10.52202/069564-0290

References

[1] United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: To-
wards a Zero-emission, Efficient and Resilient Buildings and Construction Sector; 2022. Available from:
https://wedocs.unep.org/20.500.11822/41133.

[2] Drgona J, Arroyo J, Cupeiro Figueroa |, Blum D, Arendt K, Kim D, et al. All you need to know about model
predictive control for buildings. Annual Reviews in Control;50:190-232.

[3] Hirth S, Nicolai A. The novel dynamic building energy performance simulation tool SIM-VICUS. vol. 17
of Building Simulation. IBPSA;. p. 0-0. Available from: https://publications.ibpsa.org/conference/
paper/?id=bs2021_11116.

[4] Kamel E, Memari AM. Automated Building Energy Modeling and Assessment Tool (ABEMAT).
Energy;147:15-24.

[5] Jansen D, Niirenberg M, Mller D. BIM-Basierter Reduced Order Ansatz fiir Thermische Gebaudesimula-
tionen. In: BauSIM 2020 Proceedings. Verlag der Technischen Universitét Graz;. Medium: online Meeting
Name: 8. Conference of IBPSA Germany and Austria.

[6] Nytsch-Geusen C, Radler J, Thorade M, Ribas Tugores C. BIM2Modelica - An open source toolchain for
generating and simulating thermal multi-zone building models by using structured data from BIM models;.
p. 33-8. 00000. Available from: http://www.ep.liu.se/ecp/article.asp?issue=157%26article=3.

[7] Mediavilla A, Elguezabal P, Lasarte N. Graph-Based methodology for Multi-Scale generation of en-
ergy analysis models from IFC. Energy and Buildings;282:112795. Available from: https://www.
sciencedirect.com/science/article/pii/Se378778823000257.

[8] Bazjanac, Vladimir, Forester J, Haves, Philip, Sucic, Darko, Xu, Peng. HVAC Component Data Modeling
Using Industry Foundation Classes | Building Technology and Urban Systems Division. In: 5th Interna-
tional Conference on System Simulation in Buildings 2002; 2002. .

[9] Bazjanac V, Maile T. IFC HVAC interface to EnergyPlus-A case of expanded interoperability for energy
simulation. In: Simbuild;. 00000.

[10] Hauer S, Bres A, Partl R, Monsberger M. An Approach for the Extension of OpenBIM MEP Models with
Metadata Focusing on Different Use Cases. In: Proceedings of the 16th IBPSA Conference;. Pages: 189.

[11] Andriamamonjy A, Saelens D, Klein R. An automated IFC-based workflow for building energy performance
simulation with Modelica. Automation in Construction. 2018;91:166-81.

[12] Pauen N. Graphbasierte Algorithmen und gesamtheitliche Reprasentation von Systemen der TGA mit BIM
und Linked Data [phdthesis];. Available from: https://publications.rwth-aachen.de/record/851025.

[13] Benndorf G, Réhault N, Clairembault M, Rist T, editors. Describing HVAC controls in IFC — Method and
application. vol. 122; 2017.

[14] Sporr A, Zucker G, Hofmann R. Automatically Creating HVAC Control Strategies Based on Building
Information Modeling (BIM): Heat Provisioning and Distribution. energies. 2020;13:4403.

[15] Jansen D, Fichter E, Richter VE, Barz A, Brunkhorst J, Dahncke M, et al. BIM2SIM - Development of
semi-automated methods for the generation of simulation models using Building Information Modeling. In:
Proceedings of Building Simulation 2021: 17th Conference of IBPSA;. .

[16] Jansen D, Richter V, Lopez DC, Mehrfeld P, Frisch J, Miiller D, et al. Examination of Reduced Order
Building Models with Different Zoning Strategies to Simulate Larger Non-Residential Buildings Based on
BIM as Single Source of Truth. In: Modelica Conferences;. p. 665-72.

[17] Amor R. Analysis of the Evolving IFC Schema;. .
[18] Pint: makes units easy;. Available from: https://pint.readthedocs.io/en/stable/.

[19] Hagberg A, Schult D, Swart P. Exploring network structure, dynamics, and function using NetworkX. In:
Varoquaux G, Vaught T, Millman J, editors. Proceedings of the 7th python in science conference;. p. 11
15.

[20] Maier L, Jansen D, Willhorst F, Kremer M, Kiimpel A, Blacha T, et al. AixLib: An open-source Modelica
library for compound building energy systems from component to district level with automated quality
management. submitted to: Journal of Building Performance Simulation.

[21] Bayer M. Mako Templates for Python;. Available from: https://www.makotemplates.org/.

https://doi.org/10.52202/069564-0290 3240

