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Abstract:

This paper investigates the potential of building attached / integrated Photovoltaic (PV) and vehicle-to-grid
(V2G) coupling for the city of Singapore. Using the city’s 55 planning areas as spatial units, a linear program-
ming (LP) optimization model is developed to determine economically optimal PV scaling and charge/discharge
strategies within and across planning areas. Mobility flows between planning areas are assessed using a large
set of GPS mobile phone records, from which electric vehicle (EV) schedules are derived. Local electricity
demand and solar potentials are modelled using a bottom-up approach based on building geometries and
land use information, and loads are calibrated to match measured aggregate city loads. Parametrized as-
sumptions in our model are systematically tested through scenario analysis, including varying carbon taxes,
PV system cost, EV penetration, wholesale electricity prices, and local building self-consumption levels. Our
study finds significant economic and environmental potential for PV systems, while economic benefits of V2G
are strongly scenario dependent but generally limited. This may be explained by the high on-site PV electricity
self-consumption potential due to the electricity loads generally exceeding PV generation. However, through
the aggregation to the planning area level in our model, local building-resolved mismatches in production and
demand were partially flattened, and thus the potential for V2G to act as intermediate storage can be expected
to be higher when modelled at a finer spatial resolution. In order to gain further insight, future research could
focus on combining large-scale city dynamics with more fine-grained local analysis, e.g., by limiting the analysis
to one district only, as well as incorporate explicit grid balancing constraints in the model.
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1. Introduction

Substituting fossil fuel-based energy generation with renewable sources, such as Photovoltaics (PV), and the
promotion of electric vehicles (EV), are two of the key measures to decarbonisation [13]. The aim of this
paper is therefore to investigate possible synergies between the two technologies, PV and EV, and study the
impact on energy-related cost and emissions if vehicle to grid (V2G) technologies were widely adapted at a city
scale. V2G relies on bidirectional chargers allowing EVs not only to charge their batteries but also discharge
stored electricity back into the grid. In this capacity they can be used as temporary storage devices for excess
electricity from renewable sources, participate in electricity arbitrage or even increase grid stability by providing
ancillary services.

1.1. V2G at a city scale

With the development of EVs as a potentially low carbon alternative to vehicles with internal combustion en-
gines (ICE), research has investigated their integration into the existing infrastructure. One area of concern
is the impact of large-scale EV adoption on grid stability, with studies highlighting the importance of charging
speed [25] and grid-related benefits of nighttime off-peak charging [18]. Control schemes can be specifically
designed to avoid grid overloads [7], or to optimize for either user preferences or grid cost [23]: When optimiz-
ing for user preference (i.e., optimal state-of-charge, SOC, for mobility demand), electricity may be drawn from
the grid during peak demand, leading to potential shortage concerns, whereas a grid-cost minimization can
relax the load on the power system. Smart charging strategies are therefore central to successfully combine
EVs with the intermittent production of renewable energies such as PV. The objective of coordination is often
to increase the self-consumption of locally produced PV-electricity by storing excess production in EV-batteries
[10].

Further increasing synergies between local production and EVs is attempted through bidirectional charging.
Energy stored in the EV battery can be discharged and consumed on site or fed back into the electricity grid
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(V2G). In this capacity vehicles can deliver stored PV energy at times of high demand or high electricity prices
or even provide ancillary grid services. Such concepts have been explored at the level of individual homes [8]
or in more aggregated forms such as parking lots [21]. At larger scale and with a focus on generating realistic
EV mobility patterns, Lin et al. (2018) [16] developed a multi-agent system to test the impact of different
charging schemes on a generated energy hub. By defining the behavior patterns of different agents (EVs,
coordinators etc.), an attempt was made to model realistic behavior patterns including parking duration and
charge probability. The study found that peak demand increased under uncontrolled charging scenarios, but
through coordinating behaviors the demand could be pushed into the valley period. When V2G was employed
the overall electricity demand increased significantly, but the operation of a supplementary gas turbine could
be reduced and heating and cooling costs fell significantly suggesting synergies between technologies.

V2G analyses at the city scale are scarce in the existing literature. One example is Kobashi et al. (2020) [15],
where the authors looked at PV and V2G interactions for the entire city of Kyoto with real world data. A techno-
economic analysis was conducted using hourly electricity demand and PV production at a city aggregate
resolution. Significant environmental and economic benefits were found when both technologies, PV and V2G,
were deployed in conjunction with each other. The study estimates average mobility patterns from survey
information and derives gasoline use and park times. However, due to the aggregation to the city level, local
mobility patterns or energy demands are not differentiated in the analysis.

1.2. Mobility flows from mobile phone data

Several studies employ mobile phone data to generate mobility patterns. This data can be obtained for a large
fraction of the population and is available in locations where other forms of statistics may be limited. Igbal
et al. (2014) [14] demonstrate that mobility flows can be captured in the form of origin-destination matrices
using mobile phone Call Detail Records (CDR) and minimal traffic information without the need for detailed
demographic and mobility statistics. As such CDR data can also be used for traffic or infrastructure planning
in developing countries where data availability is low [9].

Mobile phone data has also been employed in relation to EV technology. Vazifeh et al. (2019) [26] used
CDR data of one million users to determine the optimal positioning of charging stations in Boston. To the
authors’ knowledge Schlapfer et al. (2021) [24] have been the only ones to use mobile phone data to assess
local V2G charging and discharging patterns and relate it to V2G infrastructure planning. The data used is
not CDR data but collected from a variety of apps. This allows for the implementation of different tracking
modes and offers the potential for more complete movement patterns. Using Singapore as case study, the
city-state was separated into a grid of 250m-by-250m cells and a trajectory for each user was derived as
their recorded locations moved to different cells. From these trajectories aggregate movement patterns were
determined which were then translated to EV vehicle movements. Simple, uncoordinated charging schemes
were deployed, where users preferably charged their vehicles during the sunny hours and discharge at night,
maximizing PV consumption. It was assumed that charging and discharging was possible in any location where
a user stayed for more than one hour.

The study found that a large part of the electricity was discharged outside of residential neighborhoods in
primarily commercial zones such as the Singapore Downtown Core. This contradicts the assumption that V2G
can mainly provide electricity to residential areas and encourages the inclusion of complex mobility patterns in
research. Household electricity was estimated and compared to V2G output assuming that 3% of the mobility
flows were covered by EVs. It was found that districts could cover up to 40% of the nighttime household
demand using V2G, although most districts fell between 10% and 20%. Comparing charging demands to
a simple estimate of PV potential found that local PV alone could likely not cover peak charging demands,
requiring other solutions such as smart charging or grid imports.

1.3. Contributions

PV and V2G are both essential elements of the Singapore Green Plan 2030 published by five government
Ministries as an outline towards the ecological transformation of the city-state [20]. The plan sets several
concrete targets to be reached by 2030. Included is the target to increase electric mobility by providing 60’000
EV charging stations throughout the island and the target to install 2 GWp of PV capacity (system peak demand
in Singapore by 2030 is projected to be 9 GW [1]). In this context, Singapore provides a good case for studying
the integration of PV and V2G. Therefore, the following research questions are investigated in this paper:

» How does the penetration of EVs and V2G technologies affect optimal scaling of building attached /
integrated PV systems, as well as cost and emissions of electricity?

» What levels of self-consumption and self-sufficiency can be achieved at a district scale?

» What is the impact of different boundary conditions, including local (i.e. building) self-consumption rates,
carbon taxes, PV system cost, EV penetration, and wholesale electricity prices on cost, emissions and
PV capacities?
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The specific contributions are:

» As compared to Kobashi et al. (2020) [15], we increase the spatial resolution to the district scale in order
to capture local effects of a heterogeneous system.

* Building on Schlépfer et al. (2021) [24] as a first assessment of PV and V2G potential, we now investigate
economic feasibility in our study.

» Using a similar method for V2G mobility flow assessment, our study includes economic factors to assess
feasible PV scaling and optimal charge/discharge patterns in various scenarios.

» We also estimate and implement the full electricity load of Singapore at planning area scale and not just
total household demand.

« Finally, building energy demand and PV potentials for rooftops and facades are estimated using bottom
up simulations at a high 3D spatio-temporal resolution.

2. Methods

We develop a linear programming (LP) optimization model for the techno-economic investigation of optimal PV
scaling and EV charge / discharge schedules at the level of the 55 planning areas of Singapore. The LP is
described in section 2.1. and illustrated in Fig. 1. Other methods employed center around the LP to generate
following relevant spatio-temporal input data: electricity demand (section 2.2.), solar potentials (section 2.3.),
and mobility patterns (section 2.4.).

2.1. Optimization model

The LP model captures electricity, cost, and emission flows for each of the 55 planning areas in Singapore.
The temporal resolution is one hour. Calculations are made for one year. However, due to computational
constraints only four representative weeks were modeled. These were derived by clustering similar weeks
together. Results for each modeled week were then multiplied by the number of weeks in that cluster in
order to scale up to a full year. For each district a set of electricity consumers and producers with associated
electricity flows was defined. Three main components are included: Buildings, PV Systems, and EVs. Fig. 1
shows the basic structure of the model.

Cost/CO2

Solar Irradiance

District
1

Export to Grid

Battery Capacity + Residual Energy V2G
Battery capacity + Residual Energy G2v

Electricity Demand

Grid Import

— . Pv I

Mobility Dem.

Figure 1: Overview of the LP optimization model. Blue arrows represent electricity flows, black arrows mon-
etary flows and emissions. Yellow boxes represent the main actors contained in the model, orange defines
planning area borders.

The majority of consumption in each planning area can be associated to buildings, with modeled demand
described in section 2.2.. The main way of meeting the building demand is through grid imports with associated
costs and emissions. Alternatively, demand can be met through installed PV systems. Unlike grid imports, PV
systems do not incur costs per kWh but rather one time installation and yearly operational costs irrespective of
electricity produced. The LP model can optimally scale PV over potential areas, deciding where it is financially
viable to install systems. Produced power that exceeds the local demand of a planning area can be exported
through the national grid. Exported PV generates revenue. Singapore offers contestable consumers the option
to buy and sell electricity at the wholesale electricity price (WEP). For modeling, this WEP was taken as the
basis for trading.

The final component represents EVs. When stationary, they can be charged or discharged using V2G. Dis-
charged electricity is fed back into the local energy balance and can be consumed within the planning area
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or be exported through the national grid. When EVs drive from one district to another they carry their bat-
tery capacity as well as the electricity stored in their battery with them. Since the spatial resolution is the
planning area, all EVs in a location at a given time are represented by a single battery and are assumed to
have the same state-of-charge (SOC). If an EV enters a district with lower charge, the energy difference is
subtracted from the representative battery, and EVs with higher charge add their excess energy to the local
battery. Electricity consumed by driving is subtracted from the EVs battery.

The objective function of the LP represents total costs associated with Singapore’s electricity flows to meet the
total electricity demand and aims to maximize revenue:

Teafl%( (fExport - flmport — faridFee — fPv), St x € Q, (1)

where x include operational variables for power flow within and between planning areas and design variables
for installed PV per planning area and different orientations (North, East, South, West, roof), and Q are the
system constraints describing the energy balance and technology behavior. f are linear expressions describing
revenue generated from generated PV electricity or discharged electricity exported to the grid, as well as cost
occurring from imported grid electricity, market support charges on grid transmissions applied to imports and
to a fraction of local production to account for local transmission within planning areas, and annualized PV
installation cost. Grid carbon emissions are additionally priced with a carbon tax. Prices are obtained from
EMC (2022) [6]. A complete formulation and list pf parameters and model constraints can be found in Caviezel
(2022) [4]. The model was generated using the Python package Pyomo and solved using Gurobi.

2.2. Building energy demand modeling

The electricity demand for each planning area was modeled with a bottom-up approach using the energy
modeling software City Energy Analyst (CEA) [11]. The open-source tool can determine different energy
related time series for individual buildings based on building attributes, weather input, and site surroundings.
A pre-populated database with building archetypes and demand schedules exists for Singapore. For accurate
modeling, several attributes were derived for each building in Singapore. For the rest of the variables, CEA-
defaults were used.
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Figure 2: Modeled electricity demand by sector after scaling and amplitude adjustment vs the total systems
demand. Period shown is January 1st to January 7th 2019.

2.2.1. Missing building heights

Individual building polygons with height and use type information were obtained from Open Street Maps and
data from the Urban Redevelopment Authority (URA), resulting in a total of 111°485 buildings. Only 21°755 of
the buildings had associated height information. We estimated the height of the remaining buildings using a
feed-forward artificial neural network (ANN), using the Keras library. After testing different ANN architectures
and manually tuning hyper-parameters, the final model resulted in a mean absolute error of 4.64 m and an
R-squared value of 0.75, indicating significant correlation. Considering Singapore’s large share of high-rise
buildings, we consider the error to be acceptable.

2.2.2. Clustering

Due to computational constraints, instead of simulating the 111’485 buildings of Singapore explicitly, we clus-
tered them into groups, similar to the approach taken by Murray et al. (2020) [19]. We used the following 5
attributes for clustering: (i) building use type, (ii) number of attached neighbouring buildings (0, 1, 2 and more),
(iii) total floor area, (iv) envelope to volume ratio, and (v) height/distance ratio to neighbouring buildings (sum of
the height of each neighbor divided by the distance to that neighbor). The clustering resulted in a total of 445
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differentiated groups, representing combinations of the categorical attributes (i) and (ii). For each cluster, the
energy demand of the central sample was modeled in CEA and using a typical meteorological year weather file
for 2020 as generated from Meteonorm. To represent shading effects, for each modeled building (i.e., cluster
centroid), neighboring structures within a 50m radius were included as surroundings.

2.2.3. Calibration

To correct for the mismatch between simulated and actual electricity loads, the load curves were calibrated to
measured load curves. We could only find specific hourly loads for the residential sector in Raman & Peng
(2021) [22], representing aggregated loads of over 10’000 residential buildings. The demand curves of these
measured and aggregated profiles were found to have a smaller amplitude and the evening peak occurred later
than in the CEA profiles. Additionally, some days had a morning peak, others did not. The latter were assumed
to be weekends when inhabitants did not need to go to work. By adjusting the appliance, lighting and hot water
loads in CEA, a custom demand profile was generated which better matches these measured profiles.

The Energy Market Authority (EMA) publishes the annual electricity consumption by sector [3]. The previously
generated building demands were summed by sector and compared to these published values. The energy
use intensities (EUIs) of service, residential, and industry sectors were scaled to match annual values for 2019,
which was chosen as the year before the COVID-19 pandemic, where demand was not yet skewed.

High resolution demand information summed over the entire island is published by EMA in form of half hourly
systems demand. After scaling the modeled profiles to match the yearly demand, the systems demand was
used to assess hourly load distribution. It was found that the timing of minimum and maximum loads matched
well, however the amplitude of the modeled demand curve was much higher than that of the measured systems
demand. These differences were corrected by scaling the energy demands around their individual means. Fig.
2 shows the final, adjusted demand for the same period in January 2019. To get local hourly demand curves,
the adjusted demands for all buildings in a planning area were summed.

2.3. Solar modeling

Hourly solar irradiation for all building surfaces (roof and fagcade) was simulated on a 0.7m x 0.7m grid, resulting
in several million hourly solar profiles for the whole city of Singapore. The same weather file as for the building
demand simulation is used. Building geometry information was taken from Open Street Maps, and data was
kindly provided by researchers from Singapore [2]. The sum of geometrically available surface area per cate-
gory and planning area was adjusted according to scaling factors found in the SERIS PV Roadmap (2020) [1]
in order to get area suited for PV installations. Scaling factors are dependent on building and surface type and
were correlated to the sectors assigned in section 2.2.. Since using several million solar profiles would lead
to excessive computing cost in the optimization model, solar profiles were clustered into 5 categories (North,
South, East, West, roof) for each of the 55 planning areas respectively using k-Medoids. Thus, per district, 5
annual hourly solar profiles were utilized in the PV sizing optimization to represent the bulk aggregate surface
areas for each orientation. The software ClimateStudio, which is a plug-in for the CAD program Rhinoceros
3D, was used for simulating solar irradiation. An excerpt of the simulation results is shown in Fig. 5a.

2.4. Mobility patterns generation

To estimate local battery capacity, mobility demand, and the movement of residual energy in EV batteries,
mobility patterns were derived. Continuous patterns for one week were generated from a dataset of individual
mobile phone logs.

2.4.1. Dataset

A dataset containing mobile phone records collected from September 1st to September 30th, 2020 was ob-
tained from Citydata [5]. During the 30-day period a total of 108'971°459 logs were captured. Each log contains
a user ID, GPS coordinates and a timestamp. A total of 1'291°343 unique users are registered. The set covers
the whole island of Singapore. The number of logs captured varies throughout the month and throughout each
day (Fig. 3 (A)). 4:00 to 5:00 is the hour with least activity. This hour was therefore chosen as starting and
ending time for all modeling periods in order to minimize period overlapping activity. The data was collected
from users of a wide variety of mobile applications with a geospatial component. Citydata provides application
developers with an add-on software component which records anonymized location data. Different tracking
modes and log frequencies can be set by developers ranging from "manual” where records must be manually
triggered to “HawkEye” with continuous tracking. According to Citydata, around 80% of developers chose “stay
detection” which is triggered by the crossing of geofences and thus mainly captures movement (Yeow Leong
Lee, personal communication 22.6.2022). The frequency of registrations for individual users varies strongly.
Often, bursts of logs are followed by long periods without records. Other users are captured once and then
disappear from the dataset (Fig. 3 (B)). Due to the prevalence of “stay detection” tracking, an assumption can
be made that in many cases movements are recorded and periods without logs indicate that users remain
stationary. The recording mode of individual logs is not indicated in the dataset.
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Figure 3: Mobility dataset overview. (A) Cumulative logs contained in the dataset by hour of the day. (B)
Cumulative logs by day of the month. (C) Registration times for a random set of users.

District 1 District 2

Figure 4: (A) Schematic of the routing algorithm. Movement takes place from left to right. Points are classified
into route points (orange) or intermediate points (black). (B) An example route generated using OSRM starting
at the green waypoint and ending at red. Blue waypoints are routing points, grey ones are intermediate points.

2.4.2. Generating trajectories

In order to generate mobility patterns for a full week, the data was separated into four one-week periods starting
on September 2nd, 9th, 16th, and 23rd. Weeks were analyzed separately and later merged. One day before
and one after each period were considered for establishing the start and end location of the users. For each
time period, only users who had at least one log per day were considered to be reliably tracked and processed
further. A total of 56’794 unique IDs remained.

For each user an hourly trajectory was generated. Individual user logs were categorized into route points and
intermediate points. The route points were used to determine user trajectories while intermediate points were
dropped from further analysis. The first registration of a user in a period was taken as the first route point.
Subsequent points were classified as route points if the direct distance to the last route point exceeded 500m
or planning area boundaries were crossed. Fig. 4 (A) shows this in a schematic form. Starting with the first
orange route point on the left and moving right, points are classified into route points (orange) or intermediate
points (black).

Real world driving paths between route points were generated using the open-source routing machine 0SRM
[12]. 0SRM also provides an estimated driving duration. The registration time of a route point was taken as the
arrival time at its location. From this the estimated driving duration was subtracted to get the departure time
from the location of the last route point. To match with the time resolution of the LP, users were classified as
moving during hourly time steps where they either departed, continued a trip, or arrived at a new destination.
During full hours with no movement, users were considered to be stationary and associated with EVs available
for charging or discharging. Finally, the routes from all four weeks were combined into one aggregated week.
As it is assumed that users follow similar mobility patterns throughout the different weeks, users tracked in
multiple weeks were weighted accordingly. Movements by a user included in three of the four weeks were
therefore only counted as one third in each of these three weeks.

2.4.3. Anomalies

In occasional cases, logs from individual IDs were observed to jump between far apart locations in very short
intervals. In Singapore, car traffic is limited to 90 km/h and the public transport lines do not exceed 100 km/h.
A maximum speed of 120 km/h with respect to the direct distance of two log points is therefore set as an upper
limit. Logs implying speeds above this threshold are assumed to be GPS anomalies and are not counted as
route points. A second anomaly was detected in relation to routing. Occasionally, routes generated by 0SRM
follow long and unintuitive paths between two route points. This is generally the case when points do not follow
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the road layout either because the user is taking another mode of transport (e.g. walking or train) or due to GPS
inaccuracies. To reduce exaggerated distances and travel times, routes with route distance of more than 2.5
times the direct distance were corrected to have the average ratio between direct distance and route distance.
Travel times were adjusted accordingly.

3. Results
3.1. Inputs to Optimization

Fig. 5 and Fig. 6 shows some of the inputs used throughout the studied optimization scenarios. In Fig. 5a,
an excerpt of the 3D solar simulation is shown. According to our simulations, PV on buildings can generate
up to 15.2 TWh of electricity with 14.2 GWp capacity installed, assuming a conversion efficiency of 20% and
an installation threshold of 500 kWh/m?a solar irradiation on surfaces (see Fig. 3 in Waibel et al. 2021 [27]
for feasible thresholds in Singapore based on optimization). Alternatively, with a threshold of 750 kWh/m?a,
we can achieve a generation potential of 11 TWh and a capacity of 7.5 GWp. This compares well to the
SERIS PV roadmap [1], which reports a capacity of 8.6 GWp at 750kWh/m?a threshold, but also including
PV on infrastructure and floating PV. The total electricity demand of Singapore for 2019 was reported to be
51.7 TWh, where the industry sectors accounts for 21.5 TWh (41.5%), the commercial and service sectors
for 19.3 TWh (37.3%), households for 7.7 TWh (14.8%), and the transport sector for 3.0 TWh (5.8%) [3] (Fig.
6a). Therefore, PV on buildings could potentially cover 21% (750 kWh/m?a threshold) or 29% (500 kWh/m?a
threshold) of total annual electricity demand. In this paper, however, the optimization model will decide on the
actual PV capacities installed per district.

The annual electricity demand per floor area and planning area is shown in Fig. 6c; the annual solar irradiation
is shown in Fig. 6b. Districts dominated by transport have the highest average irradiation of 808 kWh/m2a,
followed by Industry with 796 kWh/m2a and Service with 756 kWh/m2a Planning areas with mainly residential
buildings have the lowest average solar irradiation per area with 663 kWh/m2a. As for electricity demand,
values vary significantly across planning areas, with residential electricity demand intensity being the lowest
and industrial the highest.

Stationary Users per Sector
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(a) Annual solar irradiation on roof and facades (b) Non-stationary users on the negative axis, and stationary users
around Downtown Singapore. by predominant sector of the planning area they are located in.

Figure 5: Inputs to the optimization: solar potentials and mobility patterns.

Fig. 5b portrays users tracked in the mobility dataset classified as stationary or parked. Planning areas are
grouped by predominant sector. Users in motion are plotted on the negative axis. A distinct driving pattern
can be observed with lowest activity during the night hours and peaks in the morning and evening. However,
shifts of occupancy between sector types throughout the day are minimal. Planning areas of all sector types
have their highest occupancy levels at night. These drop during the day. The sum of users is constant, drops
in overall stationary users represent users on the move.

3.2. Scenario Analysis

Multiple scenarios were generated by deviating individual parameters from a base scenario. The base sce-
nario reflects targets of the Singapore Green Plan 2030 [20]. Where possible, parameters were modified to
represent either current values (low environmental considerations) or targets and predictions for 2040 (high
environmental considerations). Amongst others, local self-consumption (LSC) [17] is used as a parameter in
our study. It is defined as PV electricity consumed directly by an individual building. Excess electricity needs
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to be sent through the local grid, even if it is reconsumed within the same planning area in which case grid
charges apply. The LSC factor attempts to correct for this effect by applying scaled grid transmission charges to
electricity transferred within a planning area. The charge is applied to all local production (PV and V2G) but is
reimbursed when electricity is exported outside of the district, as in this case the full transmission fees are paid
in the planning area where the electricity is imported to. In contrast, district level self-consumption (SC) is a
dependant variable in our study and calculated with d®) = dj"}" + x¢719° — x§577%9° where x are operational
decision variables for charging and discharging batteries (including EVs), d is demand, and w, t, / are indices
for week, timestep (hours), and location (district). Detailed and complete parameter values are reported in
[4]. Fig. 6d to 6i show the fraction of PV production exceeding local demand at a time of production, district

Main Sector by Fioor Area Average i Annual Electricity Demand per Floor Area [kWh/m2/a]

(b) Solar irradiation. (c) Annual electricity demand.

Self-Consumption of Planning Areas i SelfSufficiency of Planning Areas

080

Mean: 0.98

(d) Excess PV (base). (e) Self-consumption (base). (f) Self-sufficiency (base).

selfSufficiency of Planning Areas

(g) Excess PV (best). (h) Self-consumption (best). (i) Self-sufficiency (best).

Figure 6: Singapore with results shown by planning area. Diagonal lines mark districts where no data was
registered.

level self-consumption, SC, and district level self-sufficiency” for the base scenario and an (environmentally)
best case scenario. In the base scenario a LSC value of 40% is chosen (between typical self-consumption
values without storage and values with dedicated storage found in [17]) and in the best case scenario 80% an
optimistic value still found in the literature, since Singapore has high demand compared to its PV production
capacity. In the base scenario, the prepandemic WEP from 2019 was chosen as a stable baseline. By 2022
the WEP had risen by a factor of 2.8. This was used as a multiplication factor to generate the best case WEP
from that in the base scenario. Additionally, full EV-penetration (600’000 EVS) was implemented compared to
10% penetration in the base scenario. In the best case scenario the fraction of excess PV increases to an
average of 6% under the best-case scenario with complete utilization of surface potential. All of this is found in
predominantly residential planning areas where the average is 10% with values reaching up to 49%. Excess
in other sectors is negligible. Self-consumption remains high with 95% and a range from 100% to 56%. Self-
sufficiency averages at 18% but can reach levels of 40% in districts where PV production is high compared to
local demand. It should be noted that, when running a scenario without V2G, the effect on average planning
area self-consumption and self-sufficiency was minimal with V2G increasing self-consumption by about 0.5%
and self-sufficiency by 0.03%. This can be explained by the generally already high levels of SC where EV

*Self-consumption represents the fraction of PV consumed locally while self-sufficiency describes the fraction of local demand covered
by PV.
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electricity demand is negligible in comparison to total electricity demand.
3.2.1. Scenario Comparison

Fig. 7 shows a comparison of all studied scenarios and the difference in system cost, optimal PV capacities,
and CO, emissions. Following parameters are used in the various scenarios: CO, tax in S$/tCO.eq. = 0
(low), 60 (base), 95 (high); EV penetration in number of EVs = 3000 (low), 60’000 (base), 600’000 (high); PV
CAPEX = estimates from 2022 (low), 2026 (base), 2031 (high) as from [1]; wholesale electricity price (WEP)
= prices from 2019 (base), base x 2.76 (high), base x 0.5 (low); LSC in % = 20 (low), 40 (base), 80 (high).
Furthermore, some scenarios are calculated with or without PV, and with or without V2G. The colorbar range
is set to -30 to +30 %, but numeric values are indicated in the cells.

Results show that increasing LSC made PV systems significantly more viable with investment increasing by
257 Mio S$ or 59%, decreasing self-consumption reduced investment by 42 Mio S$ or 10%. Installed PV
capacity reached 8.6 GWp (57% higher than in the base scenario), import related costs decreased significantly
and export revenue increased with higher levels of self-consumption. Electricity related CO, emissions are
reduced by 0.6 Mt/a in a high LSC scenario, while they marginally increase by 0.1 Mt/a in a low LSC scenario.
In summary, achieving high degrees of high LSC shows both significant economic and environmental benefits.

In all scenarios PV installations are able to significantly reduce costs and emissions of the Singapore electricity
market. The optimal installed capacity determined by the model ranges from 4 to 14 GWp depending on
the scenario. Under the base assumptions for 2030, the optimally installed capacity is 5.5 GWp. As such,
economically viable PV potential is significantly larger than the 2 GWp capacity targeted set in the Singapore
Green Plan 2030 [20]. Under base scenario assumptions PV systems can reduce carbon emissions from
electricity generation by around 3 Mt or 15% compared to the same scenario without PV.

The impacts of V2G are strongly scenario dependent. In the base scenario cost reductions due to V2G
technology come to only 7 S$ per EV and year. Savings can be increased up to 127.65 S$/EV/a under the
best-case scenario. The economic potential of V2G for self-consumption increase and electricity arbitrage is
therefore severely limited in all scenarios. Additionally, V2G increases CO, Emissions in the base and best-
case scenario by increasing the overall electricity imported. Synergies between PV and V2G are minimal
although V2G does increase the economically viable PV area in one scenario (High LSC w/o V2G to High LSC
scenario).

3.2.2. Demand vs PV production

Fig. 8 shows average hourly building energy demand and PV production with optimal capacities from the base
scenario for a predominantly residential, industrial, and service dominated planning area, respectively. It is
striking that only in the first district, PV production exceeds demand, while in most other districts PV electricity
can only provide a fraction of total demand. Considering that the majority of total electricity demand stems
from industry and service/commercial use, most districts will not be able to export PV (also see Fig. 6d and
69). For the commercial- and service sector, this is due to the constantly high cooling loads throughout the
year.
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Figure 7: Comparison of all studied scenarios with values shown as % deviation from the base scenario. Net

cost = PV Cost + MSC + CO2 tax + Grid import - Export revenue; MSC = market support charge; HLSC = High

LSC; WEP = wholesale electricity price.

3.2.3. Charging Schedules

Two modes of EV charging can be differentiated: Charging from the grid and charging using excess PV elec-
tricity. The second is defined as charging at times when local PV production exceeds local demand. Average
daily charge and discharge patterns for the entire EV fleet of Singapore are shown in Fig. 9, with optimization
results for the base scenario in Fig. 9a and for a high LSC scenario in Fig. 9b. In the base scenario, the two
charging modes are clearly separated. Grid charging takes place almost exclusively during the night when

3335 https://doi.org/10.52202/069564-0299



electricity prices are low. Excess PV is available during the day but in much smaller quantities. Only 2.21% of
charging takes place using excess PV-power. V2G discharging takes place almost exclusively in the hour from
10:00 to 11:00 when electricity prices hit their highest point. The vast majority of annual charging electricity
is consumed through driving, a fraction is lost during the charging process. Only 7.2% are discharged back
into the grid. In the high LSC scenario, charging still took place primarily during the night and from the grid,
however the fraction of charging from excess PV is increased to 18.7%. Discharging was spread more evenly
with peaks during the morning and afternoon.

Daily PV Production vs Demand: Tanglin Daily PV Production vs Demand: Tuas Daily PV Production vs Demand: Downtown Core
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Figure 8: Average hourly building demand and PV production (capacities from base optimization) for three
planning areas with three predominant sectors: Tanglin is residential (A), Tuas is industrial (B), Downtown
Core is service dominated (C).
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Figure 9: Average daily charging and discharging modes and patterns for EVs.

4. Discussion

Kobashi et al. (2020) [15] found that V2G in combination with PV systems could significantly reduce energy
related costs and emissions in Kyoto. The difference in conclusions likely owes to both different model as-
sumptions as well as real differences between the two locations. The most significant difference appears to
be the result that local rooftop PV in Kyoto can cover approximately the entire annual electricity demand of the
city. This means, times of overproduction are much more frequent and the possibility of storing electricity for
later use becomes more valuable compared to this study, where PV generation rarely exceeded local demand.
Kyoto is stated to have a rooftop area of 51.1 km? and an annual load of 8.1 TWh. In comparison, the area
sum of the buildings in Singapore is 90.0 km? but the annual demand in 2019 was 51.7 TWh. This means that
the demand per roof area is significantly higher in Singapore. Additionally, Kobashi et al. assume that 70% of
roof area can be covered by PV whereas scaling factors used in this paper are significantly lower. Additionally,
the study aggregates the city to a single unit. No transmission fees within the city are applied.

Schlapfer et al. (2021) [24] used the same mobility dataset and a similar method for extracting mobility pat-
terns for Singapore. They also aggregated to the planning area level and found that for specific planning
areas, up to 40% of nighttime household electricity demands could be covered by V2G, but for most districts
this value was between 10% and 20%. These results were found using a first method assessment relying
on a simple charging/discharging scheme where economic effects were excluded. Our study now investigated
charging/discharging and PV capacity sizing based on a cost minimization. We found that under base assump-
tions for 2030 V2G under best case assumptions vehicle discharge made up 4% of the islands total demand
(or 26% of household demand). However, cost optimal charging took place predominantly from the grid during
night hours and discharging happened during the day. As such the transfer from PV electricity produced during
the day to the night hours was not observed. Our results show that future work should also increase spatial
resolution to better capture local mismatch of demand. This model assumes perfect foresight and focuses
on overall economic optimization and not e.g. load balancing or individual benefits to stakeholders. Control
schemes operating under bounded information and alternate optimization strategies could be explored.
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5. Conclusion

This paper investigated the effects of electric storage from V2G technologies on optimal PV sizing on buildings
and associated system costs and operational emissions at the district scale for the city of Singapore. Scenarios
were based around the country’s climate targets (Singapore Green Plan 2030). Energy and mobility flows were
captured in an LP optimization model which defined PV scaling and charge/discharge patterns minimizing total
systems cost. Carbon emissions were included in the form of a CO, tax. Three main inputs were generated:
(i) City scale mobility patterns derived from a large set of mobile phone GPS records, (ii) energy demand
at district level modeled using a bottom-up approach, and (iii) PV potentials using building geometries and
3D solar irradiation data. Different levels of local self-consumption were studied in a scenario analysis and
compared to a base case.

Average self-consumption at the district level was very high in all scenarios; under base scenario assumptions
it was 98% with a self sufficiency rate of 13%. These values were barely affected by V2G. In the best-case
scenario with maximum PV installations average sufficiency increased to 18% and self-consumption at plan-
ning area scale dropped to 95% but with a significant range. In this scenario V2G was able to increase
self-consumption by around 0.5%. Although impacts of V2G were low, the general expected effects were
found. V2G was able to increase self-consumption and reduce exports to the grid. Reasons for low impact
as compared to other studies are likely twofold. On the one hand Singapore’s economically viable building
PV potential is low compared to a relatively high demand. This means that PV only exceeds local demand in
specific locations and times. Especially residential areas with a demand curve that is low and runs counter to
PV production can generate significant overproduction and could be candidates for V2G. On the other hand,
through the aggregation to the planning area level, local mismatches in production and demand were partially
flattened and thus the potential for V2G to act as intermediate storage was reduced.

In order to gain further insight into the potential of V2G in cities like Singapore, future research could focus on
improving mobility demand predictions, and combining large scale city dynamics with more fine-grained local
analysis. Investigating additional cities could reveal location based effects. Finally, specific grid dynamics could
be modelled explicitly to account for further benefits of V2G such as grid balancing and frequency regulation.
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