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Abstract:

Building integrated photovoltaic (BIPV) systems are a crucial component of the transition to a low-carbon
energy system. However, current simplified models of PV cells and modules used in building and urban energy
simulations may not accurately capture the performance of various PV technologies under partial shading
conditions. In this paper, we propose a novel framework for modeling parametric BIPV arrays using a high-
resolution irradiance grid and a power model that operates from the evaluation of IV-curves at the cell level to
the AC to DC conversion in the inverter. This allows us to combine PV modules of varying sizes and electrical
configurations based on the selected inverter type, and to capture the operative benefits of multiple types of
cell technologies, module designs, and electrical layouts in building-based PV applications. We evaluate the
proposed framework by comparing its performance to measurement data and to three other frameworks found
in the literature through the simulation of two BIPV fagades and a tilted rooftop array. The results show that
the proposed framework is necessary to account for partial shading (if present) as well as provide operative
details when the type of inverter to be used is in question. Overall, this paper presents a novel framework
for modeling the performance of PV cells and modules in building and urban energy simulations, which has
significant implications for the design and optimization of building-based PV systems.
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1. Introduction

Photovoltaics (PV) are becoming increasingly common elements of building and urban energy systems re-
search and optimisation [1, 2, 3]. However, we find that much of the research employs coarse level perfor-
mance modeling frameworks to parameterise expected PV output. Current standards within research rely on
low resolution irradiance estimations and simplistic conversion efficiency methods. These models were orig-
inally developed for PV systems that were largely unobstructed and used standard PV modules, such as the
arrays found in utility-scale ground mount systems and on rooftops. However, the low cost of PVs and the
need for rapid urban energy decarbonisation is leading to their use in environments where the boundary condi-
tions are less than ideal. Due to high degrees of partial shading, heat, and the need for custom module sizing
many systems may be installed and produce lower overall system efficiencies than envisioned during planning.
This has the potential to translate into less realistic assessments of lifecycle cost and carbon performance at
the system scale and grid stability and energy availability at the urban scale. Towards the goal of reducing
the performance gap for building and urban energy systems research we compare the results of different PV
performance modeling frameworks.

1.1. Objectives

In this paper we demonstrate that a highly detailed performance model can help modelers understand the
potential loss in an urban PV system. Additionally, we show that the high level of resolution may not always
be necessary and is dependent on the context of the geometry model (i.e. the spatial context of the surface
being evaluated). We describe a proposed modeling framework compiled from the literature, compare an initial
set of simulated performance indicators from the proposed framework to measured data sets. Then we apply
the proposed framework to several theoretical building integrated PV (BIPV) arrays; two fagade arrays and
one tilted rooftop array. The results of these simulations will be compared to three common frameworks to
modeling BIPV performance, briefly described in Table 1. We compare the results in terms of modeling effort
and calculated PV yield and outline in which context which modeling resolution is best suited.

1.2. Research Questions and Hypotheses
We ask the following questions with proposed hypotheses for help guide the reporting of the research:
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Framework Description

Surface Face The surface is divided by a single grid dimension and the center points of each
resulting face are used for irradiance simulations. Power is then extracted using a
simple power conversion model from the irradiance of the sensor point and the area
of the face.

Module Center The surface is divided by a BIPV array. The center point of the resulting modules
are used for irradiance simulations. Power is then extracted using a simple power
conversion model from the irradiance of the sensor point and the area of the module.

Cell Center The modules created by the Module Center framework are further divided into cells.
The center point of the resulting cells are used for irradiance simulations. Power is
then extracted using the power conversion model from the irradiance of the sensor
point and the area of the cell.

Cell IV The center point of the cells from the Cell Center framework are used for irradiance
simulations. Power is then extracted using a single-diode equivalent circuit model
from the irradiance of the sensor point and parameters of the selected module/cell.

Table 1: Descriptions of the four modeling frameworks used in the paper.

* Does the proposed framework produce accurate results?

o Evidence in the literature suggests that the proposed framework is a viable method of predicting
the yield of all module types. We aim to improve upon existing methods to bring more flexibility to
the framework and providing further clarification of when a more detailed method should be applied
over simpler methods.

+ In what situations is it recommended to use the proposed framework over simpler methods (e.g. NOCT
or performance ratio)?

o We suspect that surfaces that are subject to mostly diffuse light or mostly direct light are candi-
dates for the simpler methods, while those that see a mixture of direct and diffuse light will not be
accurately characterised by these methods and require the more detailed method described in this
paper. We expect to see results diverge the most between the Cell IV and the other frameworks for
the facades while the rooftop arrays will be more consistent between the frameworks.

2. PV Modeling Frameworks

We define a PV performance modeling framework as a set of models and protocols that assist modelers in
assessing the power output of a PV array from the definition of the surface to the calculation of performance
indicators such as self-consumption (PVSC, i.e. how much of generated electricity is consumed). A framework
has three components:

1. Definition of the array geometry through the discretization of a surface.
2. Simulation of the effective irradiance (Ge [%]) on the array surfaces.

3. Conversion of the G to power (P [W]), either in direct-current (Ppc) or alternating current (Pac), typically
expressed per timestep which is usually in hours, thus Watt-hours (Wh).

In the following sections we provide a review of the various PV performance modeling frameworks summarised
in Table 1. The first group, discussed in Section 2.1. are often found in the literature, vary in their degree of
spatial resolution, and utilise one of several power conversion methods. There are often functions of efficiency
and performance ratio, to convert G into Ppc. After reviewing these methods we introduce, in Section 2.2.
the proposed high-resolution framework that we have compiled from several sources in the literature. This
framework relies on detailed spatially accurate models of module and cell placement, as well as high accuracy
irradiance simulations. The power conversion model is a single-diode equivalent circuit model from Bishop
(1988) [4] to characterise the electrical attributes of each cell before merging them system wide. It is commonly
applied in a less spatially resolute context (i.e. module center points) in power systems modeling for large
unobstructed PV arrays.
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2.1. Existing module and surface based modeling approaches

The yield from a PV cell is, at its most basic level, a function of the solar irradiance of the cell and the cell’'s
ability to act as a semiconductor through the photovoltaic effect to convert this energy into an electrical charge.
In practical terms for a modeling framework this can equate to simply multiply G of a module by an efficiency
(n) factor associated with the module. This simple conversion can enable very rapid assessment frameworks.
Rapid rooftop assessment platforms such as Google’s Project Sunroof or Mapdwell have been in place for
nearly a decade and rely on a combination of photogrammetry and often proprietary algorithms to estimate
the shading on a roof due to nearby objects such as trees or buildings. While these tools do allow individuals
to assess their rooftop PV potential quickly and with little to no barriers beyond data availability in their own
region. While accessible these tools are not extensible to facades and results for the same location vary
greatly between models, suggesting a high degree of inaccuracy is present [5]. In Switzerland a public tool
called Sonnenfassade [6] exists for any building in the countries database of 3D models and quickly calculates
irradiance using a performance ratio (PR) approach It uses this 3D model of a building along with local climatic
data and a shade horizon profile built up of nearby mountains, hills, buildings, and vegetation to estimate the
average yearly irradiation value in the middle point of the building’s fagcades. This is then multiplied by the
fagade area and a PV PR of typically 80% to determine an annual potential yield value.

This was improved upon by Saretta et al. (2020) [7] due to a core inability in distinguishing potential win-
dows and balcony type projections on the fagade. The update equation uses three reductions factors to more
accurately account for facade area based on a statistical database connected the the building age and type.

While more spatially accurate this approach still relies on the PR variable which is difficult to calculate without
measured data of a similar system or an accurate model of the system. Additionally, a system’s PR varies with
time and when considering the dynamics of grid pricing and storage is a key parameter to understand. A tem-
porally resolved approach exists in [8, 9], which employs similar methods to characterise potential irradiance,
but does so for each hour of the year through the input of Typical Meteorological Year (TMY) weather data and
angular modifiers to model reflection on the glass surface of a PV module. Other models exist as well such as
Huld’s modification of King’s model [10] or the PV Watts method [9]. These methods employ more advanced
methods of calculating output from the PV cell that are temperature dependent. To calculate module temper-
ature (Tmog [°C]) the nominal operating cell temperature (NOCT [°C]) model is often employed [11], shown in
Eqg. 1, where NOCT is a parameter typically given on PV module data sheets and Ty ([°C]) is the ambient air
temperature, and Gt must be given in [2%].

7NOC;;) 20 Ger (1)
While these models employ more complexity to characterise module performance through various uses of cell
temperature, but do not increase the level of detail used for calculating Geg. This increase in spatial resolution
can be found in the models employed in urban and building energy modeling tools such as in Fonseca et
al. (2016) [12] and Waibel et al. (2017) [13]. These approaches use 3D scenes to simulate irradiance on
any number of sensor points. In the former surfaces are discretized using a small amount of sensor points,
typically 2-5 m? per sensor points, to reduce computation time. Daysim [14], a form of the validated lighting
simulation engine Radiance [15], is then used to conduct ray tracing for the sensor points, taking into account
any obstructions in the scene along with their reflectivity and transparency. The received irradiance is then used
with a variation of Eq. 2 to calculate the yield for an hour of the day. Here Gsrc is the irradiance during standard
test conditions (STC) and Ppc stc [W] the power output. Similarly the latter framework uses ray tracing and
view factors to rapidly assess potential irradiance on a sensor point and use it as input to a variation of Eq. 2.

Tod = Tair +

Geff
Po =
27 Gsre

- Poc,ste (1 + 7 (Tmod — Tref)) 2)

These methods improve upon the spatial resolution of the irradiance gathering portion of a necessary PV
performance modeling framework, but do not necessarily allow modelers to look at the performance of an
array from a module-specific perspective, as they still rely on generic parameters for the type of cell. For
module-specific calculations a method such as that employed in EnergyPlus [16] is necessary. The Sandia
Performance Model (SPM) [17], utilises module and cell specific parameters to characterise the performance
of the module being examined. It is also extended into a larger ecosystem of arrays and systems to account
for transmission loss, inverter loss, and other factors such as maintenance to provide a value for system-wide
grid-ready power Pac s,s. The limitation is that while the SPM uses a cell-based approach of sorts it does not
record the current-voltage (1V) curve of the module, just the output power for a timestep. This makes assessing
its performance within a larger electrical topology such as a central or string inverter based system difficult
as one needs to be able to calculate the maximum power point (MPP) that would come from the inverter or
maximum power point tracking device (MPPT).
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Figure 1: An example of a module under the partial shading of a tree branch (a) and its impact on the I1V-curve
and power output (b) as compared the a module under standard test conditions. These results were calculated
using the proposed framework.

2.2. Existing cell based modeling approaches

When a module is partially shaded, as shown in Figure 1, it operates below optimum. This is due to unshaded
cells (high current) reverse-biasing shaded cells (low current) in a string, which leads to overheating in the
shaded cells and potential damage, referred to as mismatch. This is mitigated by bypass diodes to reduce the
risk of catastrophic failures, but at the expense of total output. It is therefore vital to parameterise these effects
in models of PV arrays if they are expected to operate under conditions with a great deal of partial shading.
Furthermore, new module types, such as half-cut modules employ less straightforward configurations of cell
arrangement and BIPV modules are typically highly customised such that contextualising the cells in module
not only in their series placement but also in parallel is necessary to entirely account for the location of bypass
diodes.

Additionally, specifying the type of electrical topologies as a part of the modeling framework is necessary to
account for the entire impact of partial shading on system performance[18, 19, 20, 21]. This is due to the way
in which current and voltage are accumulated when the IV curves of the cells and modules do not match.

Therefore, a highly detailed modeling framework should be able to model the impact of partial shading on a
bespoke module’s performance as well as throughout a larger electrical topology. Meyers et al. (2017) [22]
and Chaudhari et al. (2018) [23] describe a modeling framework for characterising the mismatch in PV cells
and modules to better account for partial shading on systems. Walker et al. (2019) [24] developed a workflow
to simulate PV modules using a cell-based approach that begins from simulating the irradiance on the cell or
an even finer resolution.

Both of the above approaches employ techniques for characterising cell performance that are crucial for mod-
ules under highly uneven irradiance such as reverse bias and bypass diodes. Additionally, modelers may want
to study arrays with different sized modules (which is common in BIPV design) or explicitly model changes
to modules such as front covers for aesthetics, or different bypass diode configurations during parametric
optimisation.

3. Methodology, Data, and Tools

In this section we describe the models and methods used to conduct our comparative analysis of PV perfor-
mance modeling frameworks.

First, we then describe the measured PV yield data (Section 3.1.) to which we compare the proposed frame-
work. For the simulations we use a common monocrystalline module type, Sharp Solar 235Wp (Sharp-NU-
U235F2). It was selected due to the availability of its parameters in the California Energy Commission’s module
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database ! and it is the sole module found in the measured data. Then, in Section 3.2. the two 3D models
that contain the fagades and rooftop arrays which we use to compare the performance of the modeling frame-
works are described. Then, the four modeling frameworks are summarised. The first (Section 3.3.) is currently
common within the literature and employs simpler methods and lower levels of details than the third (Section
3.6.), which is the framework which we are proposing. We also describe the two other levels of detail that
operate between these two methods that improve on the spatial resolution of the first, but utilise the same
power conversion model; Module Center in Section 3.4. and Cell Center in Section 3.5..

3.1. Measured Datasets

We use a sub array from a rooftop installation at the United States of America National Institute of Standards
and Technology (NIST) to evaulate the performance of the proposed modeling framework’s power conversion
model. The dataset for the sub array (SC3) is reported on in detail by Boyd (2015) [25]. It contains minute
averages for a variety of sensors placed throughout a large rooftop array. The dataset was chosen for its
availability and clean data. Ideally the dataset to compare against would be one that is vertically oriented and
subject to partial shading. However, to the knowledge of the authors this does not exist. The array comprises of
84 modules of the module mentioned in Section 3.. Of the 84 modules there are seven strings of 12 modules
that are combined in parallel to create a single DC output stream. The recorded data from this output was
resampled into hourly data and compared against the IV-curve based framework. For the input Get and Teg
we rely on the measured data from within the array. Ges comes from a single silicon reference cell in the array.
Teen is @ mean value gather from several back-of-module sensors throughout the array. We evaluate the model
results using mean absolute error (MAE) and a qualitative comparison of the result distribution.

3.2. 3D Building Geometry

We conduct a comparative analysis between the proposed framework (i.e. Cell IV) and the frameworks from
the literature to describe the differences in their output and identify situations in which it may not be worth the
computational cost of the more detailed method. To make the analysis more relevant to a broader audience we
identify two Representative fagades to simulate through a clustering analysis of buildings in a district in Zurich
Switzerland. A third surface was added as well to compare a minimally obstructed rooftop situation. Clustering
was done on building morphology metrics extracted from the urban region following Biljecki et al. (2022) [26].
Principal Component Analysis (PCA) was used to reduce the parameter space before applying a K-Medoids
clustering process.2.

Clustering returned three archetypal buildings, for which the southern-facing fagades were extracted. On one
of the buildings the extracted fagade was unobstructed and it was decided to remove this from the analysis,
leaving the two buildings and fagades shown in Figure 2. The upper roof section of Building B was used for
the roof analysis, where a 30° tilt facing south was assigned to the array. The buildings were modeled in a
Rhino/Grasshopper [27] 3D environment and a script was developed to add BIPV and rooftop module arrays
with each cell parameterized based on a landscape orientation of the PV module in the NIST dataset. Nearby
opaque context was modeled with a 20% reflectivity. A tree exists near one of the residential buildings. This
was modeled following Peronato et al. (2018) [28]. The scenes were used for ray-tracing to gather annual
irradiance profiles with hourly timesteps.

3.3. Surface-based framework

The existing approach for urban-scale analysis of photovoltaics is to evaluate one or several sensor points on
a facade and use those as the basis for the power conversion model. The surface’s are discretized using a
moderate resolution of two meters between each sensor point to reduce possible error to a negligible amount,
as recommended by Peronato et al. (2018) [28]. We remove the area where the window faces intersect with
the discretized grid cells to accurately account for the area available to potential PV. In the case of the rooftop
array, the flat surface of the roof was split into faces and the center points were assigned the surface normal
that would be associated with tilted modules, instead of rotating the faces themselves.

Typically the irradiance simulation would only be done for the sparse sensor points on the surface being anal-
ysed. However, due to the stochastic nature of the Radiance engine we use the irradiance map created for the
cell-based approach described in a later section. For this we simply take the mean value of the three nearest
points to each sensor point on the surface. This irradiance value, for both direct (Ggy;r) and diffuse irradiance
(Ggift), is used to calculate Gei using Eq. 4 and Eq. 3.

Gqir and Gy are simulated for each sensor point using the enhanced 2-Phase ray-tracing method found in
Subramanian (2017) [29] using Radiance.® They can be modified for any front-covers that an integrated PV
module may have using Eq. 3, which in the case of this study is a clear solar glass. Here Gy is the initially
calculated irradiance for the sensor point, either direct or diffuse. For fi,ss a factor is dependant on the colouring

Thttps://www.energy.ca.gov/media/2367
2|mplementation of the PCA and K-Medoids are from the Python library scikit-learn
Sparameters: -ab 5 -ad 50000 -as 4096 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -Ir 8 -lw 2e-07 -ss 1.0 -st 0.15
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Figure 2: The two archetypal fagades and unobstructed roof (highlighted) used in the study are shown next to
their 3D models. In (a) we utilise a lower rise building in the district with a moderately obstructed facade and
nearby vegetation. In (b) we utilise a larger facade with more obstruction.

of the front cover and comes from [30].

Gx = GxO . (1 - ﬁoss) (3)
To calculate G for each sensor point we account for the reflectivity of the glass and front cover with an angle
of incidence modifier (AOI), shown in Eq. 4 for each timestep based on the location, orientation of the surface,
and tilt of the surface.

Gett = GairK(©) + Gaitt K (60°) (4)
K is the angular response factor calculated following Martin and Ruiz (2001) [31], formulated in Eq. 5. K is
dependent on © and a dimensionless fitting parameter, a,, which is fixed at 0.17.

1 cos(8)
ex (1 —e & )
K= T (5)
ex —1
Given G of each sensor point, the power conversion model for each hour of the year, shown in Eq. 6, is
based on the nominal efficiency of the module(n,om), total surface area available for modules (area), and a
performance correction dependant on the maximum power temperature coefficient of the module (v.ef) and cell
or module temperature (Teensor) Which comes from Eq. 1. In this instance we calculate area by subtracting the
area of windows found within each discretized section the fagade from the area of the section. We account for
losses in the system due to soiling, cabling, and inverter loss using /misc, Which is fixed at 0.10.

G
PAC = (Gieff . Ppeak . [1 + Yref (Tsensor - stc)]) : (1 - Imisc) (6)
stc

For the surface-based analysis we calculate Pyeax Using Eq. 7 where Phamepiate denotes the standard mod-
ule capacity, Chameplate denotes the number of cells in a standard module, Anamepiate denotes the area of the
standard module, and A, denotes the area associated with sensor point in the discretized surface:

Prame G
plate nameplate
. . Aface (7)

A peak = C A
nameplate nameplate

3.4. Module-based framework

To represent another existing approach to modeling the performance of PV in urban arrays we evaluate sim-
ulated performance of modules placed into the surfaces analysed in the previous method. The modules are
assessed using a single irradiance sensor point located at the module’s center and the power conversion model
of Eqg. 6, with the only difference being the input for Ppeax Where we employ each module’s unique size. The
modules are created in a 3D model of the surface which begins by assuming that no windows or impediments
exist on the surface. Where they does exist the modules are cut into smaller rectangles. Then we replace Aace
in Eq. 7 with the area of each individual module.
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3.5. Cell-based framework

We increase the resolution of the previous framework by calculating power for the center point of each cell in
the array’s modules using Eq. 6. The modules modeled in the previous framework are discretized by the cell
dimensions, frame width, and spacing between the frame. The input for Az in Eq. 7 is then calculated based
on the cell dimensions.

3.6. |V curve-based framework

In this section we describe the proposed modeling framework for high-resolution BIPV analysis that is the focus
of this paper. Given the spatially discretized grid from the previous approach we improve the model resolution
here by changing the power model. We build on an existing approach for cell-based modeling found in Walker
et al. [24]. With this approach we have included a more flexible input for the module type that enables the use
of module sizes that are non-standard, which is common in BIPV design and occurs in the 3D models being
assessed in this study. With the modules and cells modeled in the 3D space, string connections of modules
are built up by first grouping modules of the same cell count into strings. Then the string with the standard
module size is split into separate strings with each string having the same modules of the same vertical height.
In preparation for the power calculation, each module is assigned four numerical arrays. The first contains the
Cartesian position of each cell’s center point. The second contains the surface normal of the cells. The third
represents to which bypass diode in the module that each cell belongs to. The final is used if a module has
multiple sub-modules in parallel, such as in a Half-Cut module, and represents to which sub-module each cell
belongs.

Geyr is calculated in the same way as the previous framework but is applied to a different power model. The
power conversion model is more detailed in this approach as we calculate the IV-curve for each cell. Then, the
module IV-curve is compiled based on bypass diodes and string or parallel connections. With each module’s
IV characteristics, we evaluate the arrays for several electrical topologies: micro-inverter, string inverter, central
inverter.

The initial 1V-curve for a cell is calculated following Bishop (1988) [4], using Eq. 8. This formulation follows
the common single-diode equivalent circuit model that is also applied by EnergyPlus [16] and in the method
of Walker et al. (2019) which we build upon. It is assumed that a single cell can be modeled as a portion of
the larger module. This is important as the parameters necessary for the single-diode model are typically only
given for a module as it was characterised during manufacturer testing. This approach uses the five-parameter
input from De Soto et al. (2006) [32]. This uses Get, Teen (Which comes from Eqg. 1), the short-circuit tem-
perature coefficient (asc), diode ideality factor (np), number of cells in series (Ns), the thermal voltage across
the cell (V4n), light generated photocurrent at reference conditions (1 r), diode reverse saturation current at
reference conditions (I ref), Shunt resistance at reference conditions (Rsn ref), and series resistance at reference
conditions (Rsref). The calculations provided by De Soto et al. produce the diode voltage (Vy4), photocurrent
(L), saturation current (Ip), series resistance (Rs), shunt resistance (Rsn), and nNsVth. We use the default pa-
rameters for breakdown factor (a, 0.0), breakdown voltage ( Vi, -5.5), and the breakdown exponent (m, 3.28).
We include g—j for completeness, but it is not used in this study as it is only relevant for amorphous silicon cells,
therefore it is assigned a value of 0. With the parameters assembled the IV-curve is calculated for each cell,
envisioning it as a single module. The resulting curve’s V values are divided by the number of cells in series
and the | values are divided by the number of cells in parallel.

o i

/=/L—/0(expl—1)—£—h¢—aﬁ(1—ﬁ> (8)
nNs Vi Rsh  NsWoi— Vg Ren Voor

This model enables the characterisation of the cell in the second quadrant of the IV-curve plot. This is the
characterisation of the reverse-bias potential of the cell. If two cells with mismatched curves are connected in
series and operated with the more illuminated cell’'s maximum power potential, then the less illuminated cell
will draw current from the first cell. Thus, the real operation of these cells would require the more illuminated
cell to be operated at the level of the lower cell, limiting maximum power potential (MPP). It is this phenomenon
that is common in partial shading and we suspect is not well captured in the other three frameworks. Using this
approach all cell IV-curves are calculated and first connected in series within each diode pathway, following
Kirchoff’s circuit laws. Then the various diode pathways of a module are connected in series. If parallel
connections exist within the module then these are made to finalise the characterisation of each module’s
IV-curve.

From here the approach branches to simultaneously evaluate performance of the array using multiple electrical
topologies. This is essential for properly characterising MPP in each module as explained earlier, devices under
different illumination can limit each other to avoid reverse-bias.

First, individual modules are evaluated using a micro-inverter approach where DC to AC inversion occurs
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along with the maximum power point tracking (MPPT). Then, using the same principles of series and parallel
connection within the module, strings of modules are connected and the MPPT and inversion is applied to
extract MPP for each string. Lastly, strings are connected in parallel to evaluate their power using a single
central inverter. We apply a simple 95% inverter efficiency to all inverter operations.

4. Results & Discussion

Here we present and analyse the results of the two portions of the study. First, the proposed modeling frame-
work is evaluated alongside a measured dataset. Second, the simulation results of the proposed framework
and surface-based framework are compared.

4.1. Evaluation of High-Resolution Proposed Framework

Figure 3 describes the two power outputs against Ge with a linear curve fitted to the data scatter. Qualitatively,
we observe generally good agreement between the two models at lower irradiance levels. However, with
higher irradiance levels the proposed model produces a larger Ppc response. MAE and root mean squared
error (RMSE) of the two data sets is 0.73 kWh, and 1.41 respectively. Additionally, we do not observe in the
modeled data very low Pp¢ response at high levels of irradiance, such as seen in the measurement data. We
suspect that in this case that much of the measurement array was covered by a shadow, but the censor cell
was not. Despite these points the standard deviation and variance of the measurement dataset is lower than
that of the model output.

The lack of multiple sensors throughout the array impedes our ability to model the array under heterogeneous
conditions, which is likely closer to reality. Factors such as cloud cover that may cover much of the array
while the sensor cell is still directly illuminated would then not be captured by the model. This could lead to
the over prediction that we witness. Additionally, the proposed framework is meant for vertical facades in an
environment with a lot of shading and a only slightly ventilated air cavity between the model and mounting
surface. A dataset that contains these attributes would be a better tool to evaluate and eventually validate the
proposed framework.

4.2. Comparison of Modeling Frameworks

Here we compare the outputs of the modeling frameworks and discuss their implications for use in larger
models. First we evaluate the received irradiance for each framework. Irradiance results for each framework
are influenced by the number of sensor points available to the ray-tracing simulation as this allows the ray-
tracing to more accurately depict objects that might shade the receiving surface. In Figures 4a-4c we show
difference between the irradiance, normalised by available surface area, levels across both of the 3D models
through their probability distribution functions. A trend emerges with each in that the Cell Center and Cell
IV framework have overlapping curves, while the Surface Face is closely aligned, and the Module Center
framework contains a time series of larger values. This is due to the self-shading of the array not being
captured by the center point on the module, whereas in the Cell Center and Cell IV a shared sensor grid is
used that has many points. The close alignment of the Surface Face model is interesting, due to it having many
less sensor points. This is worthwhile for future research.

In Figure 5a we show the discretized modules of the Commercial Building’s rooftop array. The selected date
was chosen for being the hour of the year with the maximum variance amongst the G values within each
modules, the value being indicated in Table 2. We can see that for the majority of the modules there is a
shaded section caused by the module in front. This leads to a high degree of variance across the module. In
the case of the Module Center the shaded portion of the module is not captured as only the central point is
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Figure 4: Comparison of the results of the simulations for each of the frameworks. (a-c) The probability dis-
tribution function for the irradiance intensity time series (8760 hours) for each of the three surfaces examined.
(d-f) Yield comparison resampled for monthly sums. (g-i) Linear regression of the irradiance intensity of the
module and the yield for each framework on the three arrays.

sampled to calculate G- This inability to capture self-shading extends to the Surface Face framework as well,
but due to the lack of rotation of the face the total irradiance available to these surfaces is limited anyway.

Looking at the other arrays in Table 2 we see some degree of variance across the modules but with means
around 1 and 3 % This contributes to the yield of the arrays being more consistent amongst the different
frameworks, shown in Figures 4e-4f.

Simpler models such as the Module Center of Cell Center could be used in place of the much more compu-
tationally expensive Cell IV approach if the conditions for shading are met. In Figures 4g-4i we show linear
regression of yield and irradiance intensity on the module. As the variance found in the Commercial Facade
and Residential Facade are quite low the regressed models fit the data well. While still a good fit, the lowest
r? is seen in the Cell IV framework of the Commercial Rooftop where, the regression is fit to a wider spread of
data points. For the same levels of irradiance intensity different levels of yield are found. This is because the
plot shows the irradiance intensity across the entire array, and does not reflect the activity in the modules under
mismatch conditions. The results shown for the Cell IV framework are those for a system with micro-inverters.
This type of electrical topology is able to handle the mismatch conditions well as maximum power (MP) track-
ing occurs at the module level. We show in Figure 5b the same array conditions in Figure 5a. Here the string
inverter system controls the MP of each row of modules independently while the central inverter controls the
MP of all modules. We see a drop in the yield if the system is configured with a central inverter due to the need
of the system to operate the southern-most row of modules at the same level as the other strings.

Computationally speaking the Cell IV approach requires the most setup, although all require the same 3D

geometry. From a computational standpoint the Cell IV require on average 800 seconds for each simulation of
a surface, while the other methods require around 120 seconds.*

4These numbers come from operating the models on a 2021 Macbook Pro with 8-cores (ARM).
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Figure 5: The irradiance intensity for the rooftop array on the 15! of April at 1400 (a) and the comparison (b) of
power output of the array for all three electrical topologies and the Cell Center framework

Commercial Roof Commercial Facade Residential Facade

mean 70.355 0.994 3.134 Table 2: The descriptive statistics for
std 76.694 1.363 6.216 the standard deviation found within the
min 0.109 0.001 0.004 effective irradiance (W/m2) for each
25% 9.591 0.204 0.345 module’s cell points across the year in
50% 35.793 0.575 0.94 each of the three arrays.
75% 115.716 1.228 2.087
max 319.586 12.575 55.133

5. Conclusion

In this paper we proposed a detailed modeling framework for the simulation of building-based PV performance
through the characterisation of system-wide IV-curves. This approach is based on existing work in the field with
some adjustments to capture a variety of potential electrical topologies. We evaluated this model’s performance
against measured data and found that the model generally over-predicts, with a mean absolute error of 0.65
kWh. We propose that to better tune the framework a better measurement dataset is needed that can provide
a more comprehensive picture of array-wide irradiance and cell temperature characteristics. Additionally, the
measurement data should be for vertical arrays under partial shading.

We compared the proposed framework to three common approaches found in the literature. We found that
in systems with self shading, the proposed framework is capable of capturing the impact on the modules
while surface based and module center based methods are not. The similarly spatially accurate cell center
based framework yields similar results, but with less computational expense. The three frameworks found in
the literature do not provide a way to compare between electrical topologies, which in the case of partially
shaded modules is necessary to evaluate which topology to choose. If you need to analyse different electrical
topologies the Cell IV framework is necessary.

Beyond this, more research is necessary to compare this framework to the proposed to determine in what
cases the more expensive method should be used. We believe though that this suggests that the type of
shading cast on the array is important in determining which model is necessary to most accurately predict
system yield. Future research should be dedicated to understanding the shading profiles and objects that
occlude arrays in order to classify them so we might use the type of shading to select the power conversion
model.
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