Aerospace Power Systems

Papers Presented at the AIAA SciTech Forum and Exposition 2023

National Harbor, Maryland, USA and Online 23 - 27 January 2023

ISBN: 978-1-7138-7562-8

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

a		•			43		•				41 .	• 4	•
Some	tormat	ICCITAC	inheren	t in	the e	-media	Version	may 9	alen ar	mear II	1 thic	nrint	version.
Some	ivi illat	issucs			u	-mcuia	VCI SIUII	11161 7 6	aisu ap	pcai ii	1 (1113	թւաւ	VCI SIUII.

The contents of this work are copyrighted and additional reproduction in whole or in part are expressly prohibited without the prior written permission of the Publisher or copyright holder. The resale of the entire proceeding as received from CURRAN is permitted.

For reprint permission, please contact AIAA's Business Manager, Technical Papers. Contact by phone at 703-264-7500; fax at 703-264-7551 or by mail at 34922 Uwptkug'Xcmg{'Ftkxg."Uwkg'422, Reston, VA 20191, USA.

TABLE OF CONTENTS

LUNAR ORBIT AND SURFACE POWER SYSTEMS AND COMPONENT TECHNOLOGIES
System Architecture Study of a Robust High Power Solar Array for LEO and Lunar Environments
Lunar Array, Mast, and Power System (LAMPS) for Deployable Lunar Power Provision
Energy Storage Requirements for a Lunar DC Micro-Grid System
Supervisory On-Line Optimal Control of an Electric Power Microgrid Design for Lunar Habitation
Optimal Sensor Placement for Fault Detection and Isolation in a Lunar DC Microgrid
DESIGN, FABRICATION, AND PERFORMANCE OF AEROSPACE POWER SYSTEM COMPONENTS
Methodology to Assess Emissions and Performance Trade-Offs for a Retrofitted Solid Oxide Fuel Cell Hybrid and Hydrogen Powered Aircraft
Seebeck Effect Generators for Orbit-to-Ground Power Supply
Author Index