2023 IEEE Conference on Artificial Intelligence (CAI 2023)

Santa Clara, California, USA 5-6 June 2023

IEEE Catalog Number: CFP23BJ7-POD

979-8-3503-3985-7

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23BJ7-POD

 ISBN (Print-On-Demand):
 979-8-3503-3985-7

 ISBN (Online):
 979-8-3503-3984-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE Conference on Artificial Intelligence (CAI) **CAI 2023**

Table of Contents

veicome from the General Chairs	
Velcome from the Technical Program Chairs	
EEE CAI 2023 Organizing Committee	
EEE CAI 2023 Vertical Teams	
EEE CAI 2023 Reviewers	
Conference Supporters	xxxiv
Poster Session I (Transportation & Energy Focus)	
et Engine Modulation Recognition with Deep Learning Anne L. Lee (Raytheon Technologies, USA), Phillip Ly (Raytheon Technologies, USA), Marsh Jackson (Raytheon Technologies, USA), Elliott Saint-Pierre (Raytheon Technologies, USA), Phil - Phuoc T. Ho (Raytheon Technologies, USA), and David Wilson (Raytheon Technologies, USA)	1
earning Collaborative Multi-target Search for a Visual Drone Swarm	5
Adaptive Duty Cycle Control for Optimal Battery Energy Storage System Charging by Beinforcement Learning	8
Measuring Modality Utilization in Multi-modal Neural Networks Saurav Singh (Rochester Institute of Technology, USA), Panos P. Markopoulos (The University of Texas at San Antonio, USA), Eli Saber (Rochester Institute of Technology, USA), Jesse Lew (New York University, USA), and Jamison Heard (Rochester Institute of Technology, USA)	11
AI-Based Approach for Behind-the-Meter Solar Photovoltaic Power Forecasting	15

AV in Action: A Development of Robust and Efficient Planning and Perception System for Autonomous Food Delivery Vehicle	19
Ensemble Stacking with the Multi-Layer Perceptron Neural Network Meta-Learner for Passenger Train Delay Prediction	21
A DL-Based Estimation Probability Approach for VRU Collision Avoidance	23
Federated Learning for Robust Computer Vision in Intelligent Transportation Systems	26
Crash Frequency Modeling Using Realistic Artificial Data	28
Forecasting Partial Discharges of Cable Joints using Weather Data Raymon van Dinter (Sioux Technologies, The Netherlands; Wageningen University & Research, The Netherlands), Sander Rieken (Alliander, The Netherlands), Philippe Leduc (Sioux Technologies, Singapore), Gerdtinus Netten (Sioux Technologies, The Netherlands), Bedir Tekinerdogan (Wageningen University, The Netherlands), and Cagatay Catal (Qatar University, Qatar)	30
Data-Driven Modeling Approach for the Virtual Conversion of a Hybridized Passenger Car Timo Hagenbucher (FKFS, Germany), Sasa Milojevic (IFS University of Stuttgart, Germany), Michael Grill (FKFS, Germany), and André Casal Kulzer (IFS University of Stuttgart, Germany)	32
Shedding Light on Darkness: Enhancing Object Detection Robustness with Synthetic Perturbations for Real-World Challenges Nilantha Premakumara (Institute for Human & Machine Cognition (IHMC), USA), Brian Jalaian (Institute for Human & Machine Cognition (IHMC), USA; University of West Florida, USA), and Niranjan Suri (Institute for Human & Machine Cognition (IHMC), USA)	36
Spatial Intelligence in Edge Cognitive Computing	38

Traffic Policeman Gesture Recognition with Spatial Temporal Graph Convolution Network	40
Safety Margins for Reinforcement Learning Alexander Grushin (Galois, Inc.), Walt Woods (Galois, Inc.), Alvaro Velasquez (University of Colorado Boulder), and Simon Khan (Air Force Research Laboratory)	42
Incorporating Temporal and Meteorological Data for Generating Pseudo-Measurements in Active Distribution Power Networks	44
Reinforcement Learning in Energy Management: PV & Battery Storage for Consumption Reduction	46
DeepUnseen: Unpredicted Event Recognition Through Integrated Vision-Language Models	48
Synthetic Aerial Dataset for UAV Detection via Text-to-Image Diffusion Models	51
Augmenting Vision Queries with RADAR for BEV Detection in Autonomous Driving	53
A General Spatiotemporal Imputation Framework for Missing Sensor Data	55
Electricity Consumption Prediction via WaveNet+t	59

Meta-ERM: Metaheuristic Optimization Platform for Energy Resource Management in the Smart Grid
José Almeida (GECAD, LASI, Polytechnic of Porto, Portugal), Rafael Barbarroxa (GECAD, LASI, Polytechnic of Porto, Portugal), Fernando Lezama (GECAD, LASI, Polytechnic of Porto, Portugal), Joao Soares (GECAD, LASI, Polytechnic of Porto, Portugal), Luis Gomes (GECAD, LASI, Polytechnic of Porto, Portugal), Francisco Oliveira (GECAD, LASI, Polytechnic of Porto, Portugal), and Zita Vale (GECAD, LASI, Polytechnic of Porto, Portugal)
Robust Active Simultaneous Localization and Mapping Based on Bayesian Actor-Critic Reinforcement Learning
Application of XAI-Based Framework for PV Energy Generation Forecasting
Automated Energy Management and Learning
Fast All-day 3D Object Detection Based on Multi-sensor Fusion
Automated Pallet Handling via Occlusion-Robust Recognition Learned from Synthetic Data
Occupancy Forecasting For Dynamic Building Controls
Joint Handling of Data and Model Uncertainty for Interpretable Interval Prediction
Uncertainty-Aware Reinforcement Learning for Safe Control of Autonomous Vehicles in Signalized Intersections

AI-Driven Unmanned Aerial System Conceptual Design with Configuration Selection	. 83
Explainability of AI-Driven Air Combat Agent	85
RL-Based Scheduling of an AAM Traffic Network	. 87
Home Energy Management with V2X Capability Using Reinforcement Learning. Zachary Tchir (University of Alberta, Canada), Marek Z. Reformat (University of Alberta, Canada; University of Social Sciences, Poland), and Petr Musilek (University of Alberta, Canada)	. 89
Predictive Logistics Models for Autonomous Vehicles Deployment in Adversarial Environments Radu F. Babiceanu (Embry-Riddle Aeronautical University, United States)	. 92
DeepSnow/Rain: Light Weather Recognition	. 95
DeepViss: For Camera Image-Based Visibility Estimation Using Atmospheric Chemical Sensor Hidetomo Sakaino (AI Image Lab., Transportation Weather Lab., Weathernews Inc.), Natnapat Gaviphatt (AI Image Lab., Transportation Weather Lab., Weathernews Inc.), Alivanh Insisiengmay (AI Image Lab., Transportation Weather Lab., Weathernews Inc.), Louie Zamora (AI Image Lab., Transportation Weather Lab., Weathernews Inc.), Dwi Fetiria Ningrum (AI Image Lab., Transportation Weather Lab., Weathernews Inc.), and Hitoshi Irie (CEReS, Chiba University)	97
DeepRainX: Integrated Image Nowcast Based on Deep Learning And Physical Models	. 99

Poster Session II (Healthcare Focus)

Weakly-Supervised Self-Ensembling Vision Transformer for MRI Cardiac Segmentation	101
Efficient Deep Learning for Pathological Speech Recognition Tuan D. (Prince Mohammad Bin Fahd University, Saudi Arabia)	103
Robust AI-Enabled Simulation of Treatment Paths with Markov Decision Process for Breast Cancer Patients Shafayet Shariar Hossain (University of South Florida, USA), Mohammadreza Reza Ebrahimi (University of South Florida, USA), Balaji Padmanabhan (University of South Florida, USA), Issam El Naqa (H. Lee Moffitt Cancer Center and Research Institute, USA), Paul C. Kuo (Morsani College of Medicine, USA), Abigail Beard (Morsani College of Medicine, USA), and Sarah Merkel (Morsani College of Medicine, USA)	105
Forecasting Teeth Cavities By Convolutional Neural Network T. Wang (Washington University, Olin Business School), M. Aqeel (Saint Louis University), P. Norouzzadeh (Saint Louis University), S. Tutun (Washington University, Olin Business School), E. Snir (Washington University, Olin Business School), G. Rouie Miab (Pacific Dental Services), L. Al Dehailan (Imam Abdulrahman Bin Faisal University, Saudi Arabia), and B. Rahmani (Saint Louis University)	109
EEG-Based Sleep Staging with Hybrid Attention	112
Post-Stroke Virtual Assessment Using Deep Learning Najmeh Razfar (Toronto Metropolitan University, Canada), Rasha Kashef (Toronto Metropolitan University, Canada), and Farah Mohammadi (Toronto Metropolitan University, Canada)	116
Multi-pooling 3D Convolutional Neural Network for fMRI Classification of Visual Brain States Zhen Zhang (Kochi University of Technology, Japan), Masaki Takeda (Kochi University of Technology, Japan), and Makoto Iwata (Kochi University of Technology, Japan)	118
Unfolding the Variability of Clinical Data in Parkinson Treatment Using Multi-objective Analysis	120

Artificial Intelligence for Medical Image Interpretation Using Expert Knowledge and	100
Machine Learning Lars E.O. Jacobson (University of Portsmouth, United Kingdom), Adrian A. Hopgood (University of Portsmouth, United Kingdom), Mohamed Bader-El-Den (University of Portsmouth, United Kingdom), Vincenzo Tamma (University of Portsmouth, United Kingdom), David Prendergast (Innovative Physics Ltd, Portsmouth, United Kingdom), Peter Osborn (Portsmouth Hospitals University NHS Trust, United Kingdom), Shah Siddiqui (University of Portsmouth, United Kingdom), Alexander Gegov (University of Portsmouth, United Kingdom, English Faculty of Engineering, Technical University of Sofia, Bulgaria), and Farzad Arabikhan (University of Portsmouth, United Kingdom)	122
Finger Versus Wrist Photoplethysmography Signals: Implications for Wearable Blood Pressure Monitoring	124
Online Spatio-Temporal Action Detection for Eldercare	126
A Feature-Driven Approach to Identifying Unseen Pathologies in Skin Lesion Classification	128
Predicting Cognitive Load with Wearable Sensor Signals Olha Shaposhnyk (University of Calgary, Canada) and Svetlana Yanushkevich (University of Calgary, Canada)	130
Assessing Upper Limb Motor Function in the Immediate Post-Stroke Period Using Accelerometry	132
MVAR and Causal Modeling of Relationship between Physiological Signals and Affective States	134

Automatic Segmentation and Evaluation Techniques for free Flap in Reconstruction Surgery Using Deep Learning
Sang Mee Lee (SAISHT, Sungkyunkwan University, Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Republic of Korea), Myung Jin Chung (Sungkyunkwan University School of Medicine, Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Republic of Korea), Zero Kim (Sungkyunkwan University School of Medicine, Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Republic of Korea), Kyeong Tae Lee (Samsung Medical Center, Republic of Korea), Da Eun Kim (Samsung Medical Center, Republic of Korea), and Ji Su Kim (Samsung Medical Center, Republic of Korea)
3D Dental Biometrics: Transformer-Based Dental Arch Extraction and Matching
Synergistic-Based Feature Selection for Online Learning with Gaussian Processes
Artificial Intelligence Based Diagnosis of Heart Disease Using ECG and Deep Neural Networks
A Time Series Clinical Data-Driven Preprocessing Approach to Early Sepsis Diagnosis
Multi-channel 3D Deep Learning Architectures for Evaluation of Prostate Lesion Detection
Exploration and Comparison of Locomotion Mode Recognition Models for Prosthetic Gait

Domain Generalization via Feature Disentanglement with Reconstruction for Pathology Image Segmentation
Yu-Hsuan Lin (National Cheng Kung University, Taiwan), Hung-Wen Tsai (National Cheng Kung University Hospital, Taiwan), Meng-Ru Shen (National Cheng Kung University Hospital, Taiwan), and Pau-Choo Chung (National Cheng Kung University, Taiwan)
Deep Spectral Features to Detect Atrial Fibrillation Using Single-Lead ECG Signals
Ensemble Deep Convolutional Neural Network to Identify Fractured Limbs Using CT Scans 15 Anup Khanal (University of South Dakota), Rodrigue Rizk (University of South Dakota), and Kc Santosh (University of South Dakota)
Detecting Early Risk of Alzheimer's Disease Using Self-Supervised Multimodal Representation Learning
Automated Fracture Detection from CT Scans
Improving Idiopathic Pulmonary Fibrosis Damage Prediction with Segmented Images in a Deep Learning Model
Retinoblastoma Detection via Image Processing and Interpretable Artificial Intelligence Techniques
Poster Session III (Industrial AI and Societal Implications Focus)
Building Trust – The People's Panel for AI

On the Connection Between Concept Drift and Uncertainty in Industrial Artificial ntelligence	171
Jesus L. Lobo (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain), Ibai Laña (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain), Eneko Osaba (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain), and Javier Del Ser (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain; University of the Basque Country (UPV/EHU), Spain)	17 1
Zio: An Artificial Intelligence Digital Twin to Build Virtual Markets	173
Machine Learning Prediction of Ultimate Strain of CFRP/GFRP- RC Column with lap Spliced Rebars Subjected to Cyclic Loads	175
Artificial Intelligence Designer of Materials and Processes for Advanced Power Generation Vyacheslav Romanov (U.S. Department of Energy, USA)	177
The Right to Be Forgotten in Artificial Intelligence: Issues, Approaches, Limitations and Challenges Jesus L. Lobo (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain), Sergio Gil-Lopez (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain), and Javier Del Ser (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain)	179
Forecasting IT Industry Trends Using a Fuzzy Decision Support System	181
A Constrained Langevin-Adapted Particle Filter for Aircraft Engines' Health Monitoring	183
lymbolic AI for External Magnetic Interference Classification in Magnetostrictive Position densors Aimal Khan (Pforzheim University, Germany) and Thomas Greiner (Pforzheim University, Germany)	. 185
Neural Network Based Prediction of Terrorist Attacks Using Explainable Artificial Intelligence	189

Neural Network Based Identification of Terrorist Groups Using Explainable Artificial Intelligence	1י
Gegov (University of Portsmouth, United Kingdom), Djamila Ouelhadj (University of Portsmouth, United Kingdom), Adrian Hopgood (University Of Portsmouth, United Kingdom), and Serge Da Deppo (NATO Allied Command Transformation, United States)	
Quantifying Domain Knowledge in Large Language Models	3
Explainable Learning-Based Intrusion Detection Supported by Memristors	5
Surrogate Functions and Digital Twin Simulation for Modern Facility Layout Planning	7
Fuzzy Networks for Explainable Artificial Intelligence	9
Deep Learning Models for Fault Detection and Diagnosis in Photovoltaic Modules Manufacture 20 Khuong Nguyen-Vinh (RMIT University, Vietnam; VSB - Technical University of Ostrava, Czech Republic), Quang-Nguyen Vo-Huynh (Oklahoma State University, USA), Minh Hoang (University of Washington, USA), and Khoa Nguyen-Minh (Aalto University, Finland)	1
A Novel Efficient Deep Learning Framework for Facial Inpainting 2000 Akshay Ravi (San Jose State University), Navrati Saxena (San Jose State University), Abhishek Roy (MediaTek USA Inc.), and Srajan Gupta (San Jose State University)	3
Can AI Have a Personality?	5
Multi-scale Inverse Design of Optical Metasurfaces Using Physics-Informed Computational Intelligence	7

Spectral Analysis Perspective of why Misinformation Containment is Still an Unsolved Problem
Attention-Based Underwater Oil Leakage Detection
Risk Assessment Model Based on Centrifugal Governors and Artificial Neural Networks
Efficient Wafer Defect Patterns Recognition Using Deep Convolutional Neural Network
A Coevolution Approach for the Multi-Objective Circular Supply Chain Problem
Multimodal and Multi-view Predictive Maintenance: A Case Study in the oil Industry
Prompt Evolution for Generative AI: A Classifier-Guided Approach Melvin Wong (Nanyang Technological University (NTU), Singapore), Yew-Soon Ong (Nanyang Technological University (NTU), Singapore; Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore), Abhishek Gupta (Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore), Kavitesh Kumar Bali (Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore), and Caishun Chen (Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore)
How Well Can Language Models Understand Politeness? 230 Can Li (University of Missouri, USA), Bin Pang (University of Missouri, USA), Wenbo Wang (University of Missouri, USA), Lingshu Hu (Washington and Lee University, USA), Matthew Gordon (University of Missouri, USA), Detelina Marinova (University of Missouri, USA), Bitty Balducci (Washington State University, USA), and Yi Shang (University of Missouri, USA)

Eliminating External Factors with Variables Standardization for Monitoring Applications	232
Knowledge Graph Guided Semantic Evaluation of Language Models For User Trust	234
Machine Excellence Tradeoffs to Ethical and Legal Perspectives	237
Exploring Large Language Models' Emotion Detection Abilities: Use Cases From the Middle East	241
Radhakrishnan Venkatakrishnan (University at Albany, SUNY), Mahsa Goodarzi (University at Albany, SUNY), and M. Abdullah Canbaz (University at Albany, SUNY)	
Application of Functional Kernel Hypothesis Testing for Channel Selection in Time Series Classification	245
AI Enabled Sensor Driven Marketability Prediction of Strawberry Digital Twins	248
AI for Expensive Optimization Problems in Industry Niki van Stein (LIACS, Leiden University, The Netherlands), Roy de Winter (LIACS, Leiden University, The Netherlands), Thomas Bäck (LIACS, Leiden University, The Netherlands), and Anna V. Kononova (LIACS, Leiden University, The Netherlands)	251
Towards a new Model for a 6G Network-of-Networks	255
LSTM-Based Network Churn Classification from EDA Phasic Data Ana Coelho (MindProber Labs, Portugal), Pedro Silva Moreira (MindProber Labs; University of Minho, Portugal), Pedro R. Almeida (MindProber Labs, Portugal), and Nuno Dias (MindProber Labs, Portugal)	257
Explaining Cyberbullying Trait Detection Through High Accuracy Transformer Ensemble Bruce Goldfeder (George Mason University, USA) and Igor Griva (George Mason University, USA)	259
Leveraging the Power of Artificial Intelligence and Blockchain in Recruitment Using Beetle Platform	262

Autoregressive Self-Evaluation: A Case Study of Music Generation Using Large Language Models Berker Banar (Queen Mary University of London, UK) and Simon Colton (Queen Mary University of London, UK)	264
Continuous Inference of Time Recurrent Neural Networks for Field Oriented Control	266
Poster Session IV (Earth System and Healthcare Focus)	
Water Pressure Optimisation for Leakage Management Using Q Learning Ahmed Negm (Lancaster University Energy Group, UK), Xiandong Ma (Lancaster University Energy Group, UK), and George Aggidis (Lancaster University Energy Group, UK)	270
A Model of Computational Creativity Based on Engram Cell Theory Qinhan Li (Washington Institute for Health Sciences, USA) and Bin Li (Georgetown University Medical Center, USA)	272
Transfer Learning with BERT and a-Priori Knowledge-Based Sentence of Interest Selection in Radiology Impressions for Phenotyping Venous Thromboembolism	274
Revolutionizing Healthcare: A Futuristic AI Hospital	276
Skeleton-ID: AI-Driven Human Identification	278

The Global Workspace Theory: A Step Towards Artificial General Intelligence	280
Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge Amirhossein Ravari (Northeastern University), Seyede Fatemeh Ghoreishi (Northeastern University), and Mahdi Imani (Northeastern University)	282
Learning to Fight Against Cell Stimuli: A Game Theoretic Perspective	285
AI-Enabled Soft Millirobot for Targeted Drug Delivery Victor Luo (Mission San Jose High School, USA)	288
Faulty Neural Networks	290
Deforestation Detection in the Brazilian Amazon Using Transformer-Based Networks	292
Linking Field Decomposition and Coverage Path Planning: A Coevolution Approach	294
A Case Study of Privacy Protection Challenges and Risks in AI-Enabled Healthcare App	296
Learning a Logistic Regression with the Help of Unknown Features at Prediction Stage	298
Transforming AI Solutions in Healthcare—The Medical Information Tokens Wael Hafez (Semarx Research Ltd., USA), Sherif Elshamy (Semarx Research Ltd., USA), Abdelaziz Farid (Semarx Research Ltd., USA), and Rokya Camara (GFO Kliniken Bonn, Germany)	300
Fast and Robust Wind Speed Prediction Under Impulsive Noise via Adaptive Graph-Sign Diffusion Yi Yan (Tsinghua University) and Ercan E. Kuruoglu (Tsinghua University)	302
Transforming Rapid Diagnostic Tests into Trusted Diagnostic Tools in LMIC Using AI	306

3D Nuclei Segmentation Through Deep Learning	309
GreenTea: Time-Series Exploration as-a-Service for Environmental Science Francesco Puoti (Politecnico di Milano, Italy), Alessandro Falcetta (Politecnico di Milano, Italy), Manuel Roveri (Politecnico di Milano, Italy), Diego Riva (Dhiria S.r.l., Italy), and Davide Chiggiato (Dhiria S.r.l., Italy)	311
FLAg: An Automated Client-Independent Federated Learning System on HPC for Digital Pathology Slice Training	314
Novel Method to Measure Marginal Reflex Distance-1(MRD-1) Using Based on Deep Learning Method	316
Blended Temperature Forecasting Model for Thailand Using Multiple Data Sources	319
Prediction of Length-of-Stay at Intensive Care Unit (ICU) Using Machine Learning Based on MIMIC-III Database	321
Evaluations of Semi-Supervised Methods for Hepatocellular Carcinoma Segmentation from Pathological Images	324

Identifying Important Leisure-Time Living Activities for Healthy Aging in the Singapore Longitudinal Aging Cohort Using Machine Learning Techniques
Active Learning to Minimize the Risk from Future Epidemics
Affective Computing for Social Companion Robots Using Fine-Grained Speech Emotion Recognition
A New Method Using LLMs for Keypoints Generation in Qualitative Data Analysis
Unsupervised Cognitive Monitoring in a Mixed-Reality Flight Simulator for Smart Debriefing 335 <i>Victor Manuel Hidalgo (National Aeronautical Company of Chile, Chile)</i>
Analyzing Ground Motion Records with CVI Fuzzy ART
Addressing Vulnerability in Medical Deep Learning Through Robust Training
PharmBERT: a Fine-Tuned Model for Pharmaceutical Error Prediction 343 Gang Hu (SUNY Buffalo State University, USA), Bo Yu (Dalhousie University, Canada), and Dustin Doctor (SUNY Buffalo State University, USA)
Improved Contrastive Unpaired Translation for Metal Artifacts Reduction in Nasopharyngeal CT Images
Parallel Sessions
Federated Learning with Trust Evaluation for Industrial Applications

Structural Health Monitoring of Steel Moment Frame Buildings via Sequence-Based Recurrent Neural Networks	349
Khashayar Heydarpour (New Mexico State University, USA), Doeun Choe (New Mexico State University, USA), and Kyungyong Chung (Kyonggi University, South Korea)	
AI Digital Tool Product Lifecycle Governance Framework Through Ethics and Compliance by	
Design Eduardo Ortega (Duke University, USA), Michelle Tran (Duke University, USA), and Grace Bandeen (Duke University, USA)	353
Explainable AI via Linguistic Summarization of Black Box Computer Vision Models	. 357
3D Reconstruction of Underwater Scenes Using Nonlinear Domain Projection	359
Video-Based Detection of Hemiparetic Weakness Side in Post-Stroke Patient	362
Skilled Agricultural Task Delivery by a Digital Twin	. 364
Vision Transformer for Beamforming on Phased Array Antennas	366
EENED: End-to-End Neural Epilepsy Detection Based on Convolutional Transformer	. 368
RippleGo - An AI-Based Voyage Planner for US Inland Waterways David Sathiaraj (Trabus Technologies), Andrew Smith (Trabus Technologies), Eric Rohli (Trabus Technologies), Cathy Hsieh (Trabus Technologies), Arthur Salindong (Trabus Technologies), Nicholas Woolsey (Trabus Technologies), and Andres Tec (Trabus Technologies)	372

Author Index	375
--------------	-----