2023 IEEE 16th International Conference on Cloud Computing (CLOUD 2023)

Chicago, Illinois, USA 2-8 July 2023

IEEE Catalog Number: CFP23CLO-POD ISBN:

979-8-3503-0482-4

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23CLO-POD

 ISBN (Print-On-Demand):
 979-8-3503-0482-4

 ISBN (Online):
 979-8-3503-0481-7

ISSN: 2159-6182

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2023 IEEE 16th International Conference on Cloud Computing (CLOUD) CLOUD 2023

Table of Contents

teering Committee Chair Message	xv
Congress General Chairs Message	xvi
Congress Program Chairs Message	xvii
CSVC Chair Message	. xviii
CLOUD 2023 Chairs Message	xix
CLOUD 2023 Committees	xx
CLOUD Conference Papers	
Cloud & AI - I (CLD_CON1)	
CloudServing: Automated ML Serving Across Clouds	1
Deep Reinforcement Learning in Cloud Elasticity through Offline Learning and Return Based	
caling	13
Miltiadis Chrysopoulos (CSLAB NTUA, Greece), Ioannis Konstantinou	
(University of Thessaly, Greece), and Nectarios Koziris (CSLAB NTUA,	
Greece)	
Demystifying Deep Learning in Predictive Monitoring for Cloud-Native SLOs	24
Andrea Morichetta (Distributed Systems Group, TU Wien, Austria),	
Víctor Casamayor Pujol (Distributed Systems Group, TU Wien, Austria),	
Stefan Nastic (Distributed Systems Group, TU Wien, Austria), Thomas	
Pusztai (Distributed Systems Group, TU Wien, Austria), Philipp Raith	
(Distributed Systems Group, TU Wien, Austria), Schahram Dustdar	
(Distributed Systems Group, TU Wien, Austria), Deepak Vij (Futurewei	
Technologies, Inc., USA), Ying Xiong (Futurewei Technologies, Inc.,	
USA), and Zhaobo Zhang (Futurewei Technologies, Inc., USA)	

Cloud Management and Operations - I (CLD_CON2)

Gourav Rattihalli (Hewlett Packard Labs, USA), Ninad Hogade (Hewlett Packard Labs, USA), Ninad Hogade (Hewlett Packard Labs, USA), Eitan Frachtenberg (Hewlett Packard Labs, USA), Rolando Pablo Hong Enriquez (Hewlett Packard Labs, USA), Pedro Bruel (Hewlett Packard Labs, USA), Alok Mishra (Hewlett Packard Labs, USA), and Dejan Milojicic (Hewlett Packard Labs, USA) Packard Labs, USA)
Storm-RTS: Stream Processing with Stable Performance for Multi-cloud and Cloud-Edge
Blaze: A High-Performance, Scalable, and Efficient Data Transfer Framework with Configurable and Extensible Features
Kepler: A Framework to Calculate the Energy Consumption of Containerized Applications
Cloud Security - I (CLD_CON3)
Argus: Rapid Wildfire Tracking Using Satellite Data Collections
The Case for the Anonymization of Offloaded Computation
Wawel: Architecture for Scalable Attestation of Heterogeneous Virtual Execution Environments
Zurich; Metaco Labs), and Silvio Dragone (IBM Research Europe - Zurich)

Cloud & AI - II (CLD_CON4)

IRIS: Interference and Resource Aware Predictive Orchestration for ML Inference Serving
GNOSIS: Proactive Image Placement Using Graph Neural Networks & Deep Reinforcement Learning
A Framework for Characterizing Very Large Cloud Workload Traces with Unsupervised Learning 129 Basem Suleiman (The University of New South Wales; The University of Sydney, Australia), Mohammed Mustafa Fulwala (The University of Sydney, Australia), and Albert Zomaya (The University of Sydney, Australia)
Keep It Simple: Fault Tolerance Evaluation of Federated Learning with Unreliable Clients
Cloud & AI - III (CLD_CON5)
EN-Beats: A Novel Ensemble Learning-Based Method for Multiple Resource Predictions in Cloud
Learning Representations on Logs for AIOps
Hawk: DevOps-Driven Transparency and Accountability in Cloud Native Systems

Selective Preemption of Distributed Deep Learning Training
Cloud & AI - IV (CLD_CON6)
μP: A Development Framework for Predicting Performance of Microservices by Design
HydraGen: A Microservice Benchmark Generator
Detecting and Resolving Coupling-Related Infrastructure as Code Based Architecture Smells in Microservice Deployments
Cloud Management and Operations - II (CLD_CON7)
A Carbon-Aware Workload Dispatcher in Cloud Computing Systems 212 Tayebeh Bahreini (IBM T.J. Watson Research Center), Asser Tantawi (IBM T.J. Watson Research Center), and Alaa Youssef (IBM T.J. Watson Research Center)
Declarative and Linear Programming Approaches to Service Placement, Reconciled
An Auto-Scaling Framework for Predictable Open Source FaaS Function Chains
Cloud Management and Operations - III (CLD_CON8)
Object as a Service (OaaS): Enabling Object Abstraction in Serverless Clouds

Zero-Cost In-Depth Enforcement of Network Policies for Low-Latency Cloud-Native Systems Gerald Budigiri (imec-DistriNet, KU Leuven, Belgium), Christoph Baumann (Ericsson Security Research, Sweden), Eddy Truyen (imec-DistriNet, KU Leuven, Belgium), Jan Tobias Mühlberg (Université libre de Bruxelles, Belgium), and Wouter Joosen (imec-DistriNet, KU Leuven, Belgium)	249
Application and Infrastructure-Aware Orchestration in the Cloud-to-Edge Continuum	262
Composability of Cloud Accelerators in Virtual World Simulations	272
Cloud Security - II (CLD_CON9)	
Free the Turtles: Removing Nested Virtualization for Performance and Confidentiality in the Cloud	275
Making Your Program Oblivious: a Comparative Study for Side-Channel-Safe Confidential Computing A K M Mubashwir Alam (Marquette University, USA) and Keke Chen (Marquette University, USA)	282
InsightsSumm - Summarization of ITOps Incidents through In-Context Prompt Engineering Suranjana Samanta (IBM Research, India), Oishik Chatterjee (IBM Research, India), Neil Boyette (IBM Software, USA), Guangya Liu (IBM Software, USA), and Prateeti Mohapatra (IBM Research, India)	290
Towards Confidential Computing: A Secure Cloud Architecture for Big Data Analytics and AI Naweiluo Zhou (Leibniz Supercomputing Centre (LRZ), Germany), Florent Dufour (Leibniz Supercomputing Centre (LRZ), Germany), Vinzent Bode (Leibniz Supercomputing Centre (LRZ), Germany), Peter Zinterhof (Leibniz Supercomputing Centre (LRZ), Germany), Nicolay J Hammer (Leibniz Supercomputing Centre (LRZ), Germany), and Dieter Kranzlmüller (Leibniz Supercomputing Centre (LRZ), Germany)	293
On the Value of Sequence-Based System Call Filtering for Container Security Somin Song (Kyungpook National University, Republic of Korea), Sahil Suneja (IBM TJ Watson Research Center, USA), Michael V. Le (IBM TJ Watson Research Center, USA), and Byungchul Tak (Kyungpook National University, Republic of Korea)	296

Cloud & AI - V (CLD_CON10)

FedGen: Generalizable Federated Learning for Sequential Data	08
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training	19
Performance Characterization of Multi-container Deployment Schemes for Online Learning	30
Peini Liu (Universitat Politécnica de Catalunya, Spain), Jordi Guitart (Universitat Politécnica de Catalunya, Spain), and Amir Taherkordi (University of Oslo; NTNU, Norway)	
Economics of Spot Instance Service: A Two-Stage Dynamic Game Approach	41
Infrastructure - I (CLD_CON11)	
AdaCache: A Disaggregated Cache System with Adaptive Block Size for Cloud Block Storage3- Qirui Yang (Samsung), Runyu Jin (Arizona State University), Ni Fan (Samsung), Devasena Inupakutika (Samsung), Bridget Davis (Samsung), and Ming Zhao (Arizona State University)	48
Elevating Performance of LSM-Tree-Based Key-Value Stores with Gradient Data Hierarchy30 Hui Sun (Anhui University, China), Jinfeng Xu (Anhui University, China), and Xiao Qin (Auburn University, USA)	60
Virtual Network Function Migration Considering Load Balance and SFC Delay in Cloud	
Datacenter	70
AutoOPT: Data Generation and Optimization for Digital Twin Network (DTN)	76
Infrastructure - II (CLD_CON12)	
Enabling Scalability in the Cloud for Scientific Workflows: An Earth Science Use Case	83

NVMe-Driven Lazy Cache Coherence for Immutable Data with NVMe over Fabrics	394
Performance Analysis of Apache OpenWhisk Across the Edge-Cloud Continuum Areej Alabbas (Cardiff University, United Kingdom; Imam Abdulrahman Bin Faisal University, Saudi Arabia), Ashish Kaushal (Indian Institute of Technology Ropar, India), Osama Almurshed (Cardiff University, United Kingdom), Omer Rana (Cardiff University, United Kingdom), Nitin Auluck (Indian Institute of Technology Ropar, India), and Charith Perera (Cardiff University, United Kingdom)	401
Effective Management of Time Series Data	408
Design-Time Analysis of Time-Critical and Fault-Tolerance Constraints in Cloud Services	415
Cloud Economics (CLD_CON13)	
DEMOTS: A Decentralized Task Scheduling Algorithm for Micro-Clouds with Dynamic Power-Budgets	418
Austria), Maria A. Rodriguez (The University of Melbourne, Australia), Patricia Arroba (Universidad Politécnica de Madrid, Spain), and Rajkumar Buyya (The University of Melbourne, Australia)	
Austria), Maria A. Rodriguez (The University of Melbourne, Australia), Patricia Arroba (Universidad Politécnica de Madrid, Spain), and Rajkumar Buyya (The University of Melbourne, Australia) Cost-Aware Multifaceted Reconfiguration of Serviceand Cloud-Based Dynamic Routing	428
Austria), Maria A. Rodriguez (The University of Melbourne, Australia), Patricia Arroba (Universidad Politécnica de Madrid, Spain), and Rajkumar Buyya (The University of Melbourne, Australia) Cost-Aware Multifaceted Reconfiguration of Serviceand Cloud-Based Dynamic Routing Applications Amirali Amiri (University of Vienna, Austria) and Uwe Zdun (University	
Austria), Maria A. Rodriguez (The University of Melbourne, Australia), Patricia Arroba (Universidad Politécnica de Madrid, Spain), and Rajkumar Buyya (The University of Melbourne, Australia) Cost-Aware Multifaceted Reconfiguration of Serviceand Cloud-Based Dynamic Routing Applications	439

Cloud Management and Operations - IV (CLD_CON14)

MicroBlend: An Automated Service-Blending Framework for Microservice-Based Cloud Applications	460
QoS-Aware Deployment of Service Compositions in 5G-Empowered Edge-Cloud Continuum Marco Anisetti (Università degli Studi di Milano, Italy), Filippo Berto (Università degli Studi di Milano, Italy), and Ruslan Bondaruc (Università degli Studi di Milano, Italy)	471
Workload Failure Prediction for Data Centers Jie Li (Texas Tech University, USA), Rui Wang (Texas Tech University, USA), Ghazanfar Ali (Texas Tech University, USA), Tommy Dang (Texas Tech University, USA), Alan Sill (Texas Tech University, USA), and Yong Chen (Texas Tech University, USA)	479
Efficient Resource Scheduling for Distributed Infrastructures Using Negotiation Capabilities	486
Junjie Chu (Uppsala University, Sweden), Prashant Singh (Uppsala University, Sweden), and Salman Toor (Uppsala University, Sweden)	
Cloud as a Service (CLD_CON15)	
Cloud as a Service (CLD_CON15) Hybrid Serverless Platform for Service Function Chains	493
Hybrid Serverless Platform for Service Function Chains	[
Hybrid Serverless Platform for Service Function Chains	[
Hybrid Serverless Platform for Service Function Chains Sheshadri K R (Indian Institute of Science, India) and J Lakshmi (Indian Institute of Science, India) A Microservice-Based SaaS Deployment in a Data Center Considering Computational Server and Network Energy Consumption Amal Alzahrani (Queensland University of Technology, Australia) and Maolin Tang (Queensland University of Technology, Australia) A Structured Literature Review Approach to Define Serverless Computing and Function as a Service	505
Hybrid Serverless Platform for Service Function Chains Sheshadri K R (Indian Institute of Science, India) and J Lakshmi (Indian Institute of Science, India) A Microservice-Based SaaS Deployment in a Data Center Considering Computational Server and Network Energy Consumption Amal Alzahrani (Queensland University of Technology, Australia) and Maolin Tang (Queensland University of Technology, Australia) A Structured Literature Review Approach to Define Serverless Computing and Function as a Service Johannes Manner (Otto-Friedrich-University, Germany)	505 516
Hybrid Serverless Platform for Service Function Chains Sheshadri K R (Indian Institute of Science, India) and J Lakshmi (Indian Institute of Science, India) A Microservice-Based SaaS Deployment in a Data Center Considering Computational Server and Network Energy Consumption Amal Alzahrani (Queensland University of Technology, Australia) and Maolin Tang (Queensland University of Technology, Australia) A Structured Literature Review Approach to Define Serverless Computing and Function as a Service	505 516

Cloud Security - III (CLD_CON16)

Integrating Homomorphic Encryption and Trusted Execution Technology for Autonomous and Confidential Model Refining in Cloud	529
Reliable and Accurate Fault Detection with GPGPUs and LLVM Yuichi Ozaki (Kyushu Institute of Technology), Sousuke Kanamoto (Kyushu Institute of Technology), Hiroaki Yamamoto (Kyushu Institute of Technology), and Kenichi Kourai (Kyushu Institute of Technology)	540
GuaranTEE: Introducing Control-Flow Attestation for Trusted Execution Environments	547
Secure Lattice-Based Ciphertext-Policy Attribute-Based Encryption from Module-LWE For Cloud Storage	554
Enabling Efficient Multidimensional Encrypted Data Aggregation for Fog-Cloud-Based Smart Grid	557
Infrastructure - III (CLD_CON17)	
Infrastructure - III (CLD_CON17) A Case for Performance- and Cost-Aware Multi-Cloud Overlays	560
A Case for Performance- and Cost-Aware Multi-Cloud Overlays	
A Case for Performance- and Cost-Aware Multi-Cloud Overlays	

. 581