5th International Conference on Earthquake Engineering and Disaster Mitigation (ICEEDM-2022)

IOP Conference Series: Earth and Environmental Science Volume 1244

Yogyakarta, Indonesia 27 - 28 September 2022

ISBN: 978-1-7138-7979-4

ISSN: 1755-1307

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

This work is licensed under a Creative Commons Attribution 3.0 International Licence. Licence details: http://creativecommons.org/licenses/by/3.0/.

No changes have been made to the content of these proceedings. There may be changes to pagination and minor adjustments for aesthetics.

Printed with permission by Curran Associates, Inc. (2024)

For permission requests, please contact the Institute of Physics at the address below.

Institute of Physics Dirac House, Temple Back Bristol BS1 6BE UK

Phone: 44 1 17 929 7481 Fax: 44 1 17 920 0979

techtracking@iop.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400

Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

_	^
Dra	toca
110	Iacc

Deer	Deview	Statement
Peer	REVIEW	Siatement

Strength Enhancement and Deformability of Confined High-Strength Steel Fiber Concrete After Burning	1
Purwanto, Antonius, Prabowo Setiyawan, Aris Krisdiyanto	I
Numerical Study on Slender Circular Reinforced Concrete Column Clamped with Steel Sheet	9
Experimental Study on Replaceable Shear Link on Reinforced Concrete Shear Wall	19
Application of Modal Analysis of Earthquake Force and Natural Frequency Tanjung Baru Bridge	27
Hybrid Viscoelastic Damper Using Natural Rubber Compound, Waste of Rubber Tire Crumb with Various Compacted Sands (iron Sand, Natural Sand, and Silica Sand) to Increase Damping Property for Non-Engineered Buildings	37
The Influence of Reverse Loading Sequence on the Behaviour of Beam-Column Joints	47
Shear Capacity of Hollow Reinforced Concrete Members Without Stirrups	57
The Effect of Adding Gypsum and Lime on Lightweight Interlock Bricks with Merapi Sand as Fine Agregat	65
Structural Performance of Buildings with Tension-Only Braced Frame Under Seismic Loading	75
Performance Evaluation of Structures with Buckling Restrained Braced Frame Under Earthquake Load	84
Seismic Performance of Ordinary and Damage-Tolerant Concrete Beam-Column Joints Under Reversed Cyclic Loading	92
The Behavior of Slab on Pile Structure with a Variation of Support End Interconnection Under Earthquake Load According to the SNI 2833:2016	103
Pushover Analysis in Slab-On-Piles Bridge Using Reinforced Concrete-Filled Spun Piles	114
Analysis of RC Precast Modular Building with Frame Element Approach	125

The Effect of Floor Slabs in a Structure with Frame Shear Walls Modeling in Pushover Analysis	139
Numerical Comparative Study on Seismic Response of Half-Span and Full-Span Scaled Models of a Floating Type Cable-Stayed Bridge	149
Dynamic Field Load Testing of a Horizontally Curved Longspan LRT Kuningan Bridge Using Eccentric Mass Vibrator and Experimental Modal Analysis	160
The Comparison of X-Braced Frame and Moment Frame on Structural Building (case Study: Government Office of North Toraja, South Sulawesi, Indonesia)	168
Performance-Based Analysis of Building Structures in Various Earthquake Zones	174
Non-Engineering House Damage After the February 25th, 2022 West Pasaman Earthquake	187
Tunnel Stability Analysis Under Seismic Load Using Finite Element Method: A Case Study of Spillway Tunnel, Sidan Dam, Bali, Indonesia	197
Identifying the Potential Development of HAZUS Model as an Earthquake Disaster Loss Model for School Buildings in Indonesia	206
Liquefaction Potential Analysis and Soil Improvement Method for Yogyakarta-Bawen Toll Road in Sleman, Yogyakarta	217
Evaluation of Liquefaction Potential Index in the Educational Infrastructure Reconstruction Project at the University of Tadulako, Palu City, Central Sulawesi	227
Analysis of Liquefaction Potential in Solo-Yogyakarta-NYIA Kulon Progo Sta. 16+700 – 22+500	242
Study of Soil Liquefaction Potential at Anutapura General Hospital, Palu City, Central Sulawesi Province	252
The Stability of Sidoarjo Mud Volcano Embankment Induced by the Excess Pore Water and Mud Pressure Based on Numerical Simulation	263
A Study of Liquefaction Potential on Retaining Wall and Embankment in Parangtritis Village	275
Comparison Between Liquefaction Potential Index and Liquefaction Risk Index in Solo – Yogyakarta – YIA Kulon Progo Toll Road (STA. 07+500 – STA. 16+700)	285
Analysis of Liquefaction Potential in the Malalayang Beach Area, North Sulawesi	295

Liquefaction Potential Index Analysis in Solo – Yogyakarta - NYIA Kulon Progo Toll Road (Section Karanganyar to Klaten Regency) at Central Java	306
Askaviolita, Sito Ismanti, Teuku Faisal Fathani	
Ground Motion and Liquefaction Study at Opak River Estuary Bantul	316
Dynamic Soil-Structure Interaction Through 2-D Site-Specific Response Analysis	331
Seismic Load Design of Rukoh Dam Suppletion Tunnel in Pidie Regency, Aceh, Indonesia, Based on Deterministic and Probabilistic Seismic Hazard Analyses	343
Analytical Study on Ground Behavior During the 2018 Sulawesi Earthquake, Indonesia	351
Response Spectrum Design Based on Site Class and Site-Specific Analysis in the Transition Zone W Dwiyantoro, T F Fathani, A D Adi	361
Earthquake Risk Potential Caused by Active Faults in Sumatra (Case Study: Earthquakes in the Land of West Sumatra Province and Its Vicinity)	371
Jaya Murjaya, Aditya Setyo Rahman, Petrus Demon Sili, Dwikorita Karnawati, Supriyanto, Siti Fatimah, Sutiyono, Dedi Sugianto, Suaidi Ahadi	
Building Treatments in Numerical Modeling of Dam Break Induced Flow in Urban Area	383
Issues and Problems Affecting Post-Disaster Reconstruction Activities in Indonesia	394
Design of Vertical Evacuation Building at Painan City Using Results from Tsunami Propagation Modeling	404
1 Italinasati, D Itasumasuu, 14 D Линунтин	
Implementation of a Quick Assessment Application Called InaRISK for Damaged Houses After the West Pasaman Earthquake (2022)	413

Author Index