2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023)

Echternach, Luxembourg 11-15 September 2023

Pages 1-697

IEEE Catalog Number: CFP23075-POD **ISBN:**

979-8-3503-2997-1

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP23075-POD 979-8-3503-2997-1 979-8-3503-2996-4 1938-4300

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE) **ASE 2023**

Table of Contents

Message from the Chairs	xxxii
Organizing Committee	xxxvi
Program Committee	xxxviii
Steering Committee	

Research Papers

CertPri: Certifiable Prioritization for Deep Neural Networks via Movement Cost in Feature Space
Nuances are the Key: Unlocking ChatGPT to Find Failure-Inducing Tests with Differential Prompting
Robin: A Novel Method to Produce Robust Interpreters for Deep Learning-Based Code27Classifiers27Zhen Li (Huazhong University of Science and Technology, China), Ruqian27Zhang (Huazhong University of Science and Technology, China), Deqing200Zou (Huazhong University of Science and Technology, China), Ning Wang100(Huazhong University of Science and Technology, China), Ning Wang100(Huazhong University of Science and Technology, China), Shouhuai Xu100(University of Science and Technology, China), Shouhuai Xu100(University of Colorado Colorado Springs, USA), Chen Chen (University of Central Florida, USA), and Hai Jin (Huazhong University of Science and Technology, China)

 The Devil is in the Tails: How Long-Tailed Code Distributions Impact Large Language Models 40 Xin Zhou (Singapore Management University, Singapore), Kisub Kim (Singapore Management University, Singapore), Bowen Xu (Singapore Management University, Singapore; North Carolina State University, USA), Jiakun Liu (Singapore Management University, Singapore), DongGyun Han (Royal Holloway, University of London, UK), and David Lo (Singapore Management University, Singapore)
 DeepScaler: Holistic Autoscaling for Microservices Based on Spatiotemporal GNN with Adaptive Graph Learning
 Twin Graph-Based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System
Dynamic Graph Neural Networks-Based Alert Link Prediction for Online Service Systems
Vicious Cycles in Distributed Software Systems
Fixing Privilege Escalations in Cloud Access Control with MaxSAT and Graph Neural Networks104 Yang Hu (The University of Texas at Austin, U.S.A.), Wenxi Wang (The University of Texas at Austin, U.S.A.), Sarfraz Khurshid (The University of Texas at Austin, U.S.A.), Kenneth L. McMillan (The University of Texas at Austin, U.S.A.), and Mohit Tiwari (The University of Texas at Austin, U.S.A.)
 Maat: Performance Metric Anomaly Anticipation for Cloud Services with Conditional Diffusion

Are They All Good? Studying Practitioners' Expectations on the Readability of Log Messages 129 Zhenhao Li (Concordia University, Canada), An Ran Chen (Concordia University, Canada), Xing Hu (Zhejiang University, China), Xin Xia (Zhejiang University, China), Tse-Hsun Chen (Concordia University, Canada), and Weiyi Shang (Concordia University, Canada)
LogOnline: A Semi-Supervised Log-Based Anomaly Detector Aided with Online Learning Mechanism
Repeated Builds During Code Review: An Empirical Study of the OpenStack Community
An Empirical Study of Malicious Code In PyPI Ecosystem
Understanding and Remediating Open-Source License Incompatibilities in the PyPI Ecosystem 178 Weiwei Xu (Peking University, China), Hao He (Peking University, China), Kai Gao (Peking University, China), and Minghui Zhou (Peking University, China)
Mitigating Persistence of Open-Source Vulnerabilities in Maven Ecosystem
Fork Entropy: Assessing the Diversity of Open Source Software Projects' Forks
EALink: An Efficient and Accurate Pre-Trained Framework for Issue-Commit Link Recovery 217 Chenyuan Zhang (Xiamen University, China), Yanlin Wang (Sun Yat-sen University, China), Zhao Wei (Tencent, China), Yong Xu (Tencent, China), Juhong Wang (Tencent, China), Hui Li (Xiamen University, China), and Rongrong Ji (Xiamen University, China)

 ATOM: Automated Black-Box Testing of Multi-Label Image Classification Systems	0
 Generative Model-Based Testing on Decision-Making Policies	3
ESRO: Experience Assisted Service Reliability Against Outages	5
 Prism: Revealing Hidden Functional Clusters from Massive Instances in Cloud Systems	8
An Energy-Aware Approach to Design Self-Adaptive AI-Based Applications on the Edge	1
 SmartCoCo: Checking Comment-Code Inconsistency in Smart Contracts via Constraint Propagation and Binding	4

A Needle is an Outlier in a Haystack: Hunting Malicious PyPI Packages with Code Clustering 307 Wentao Liang (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Xiang Ling (Institute of Software, Chinese Academy of Sciences, China), Jingzheng Wu (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), Tianyue Luo (Institute of Software, Chinese Academy of Sciences, China), and Yanjun Wu (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China), and Yanjun Wu (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China)
Merge-Replay: Efficient IFDS-Based Taint Analysis by Consolidating Equivalent Value Flows319 Yujiang Gui (University of New South Wales, Australia), Dongjie He (University of New South Wales, Australia), and Jingling Xue (University of New South Wales, Australia)
Learning to Locate and Describe Vulnerabilities
 When Less is Enough: Positive and Unlabeled Learning Model for Vulnerability Detection
 SCPatcher: Mining Crowd Security Discussions to Enrich Secure Coding Practices
Causality-Aided Trade-off Analysis for Machine Learning Fairness
Cell2Doc: ML Pipeline for Generating Documentation in Computational Notebooks
An Empirical Study of Parameter-Efficient Fine-Tuning Methods for Pre-Trained Code Models 397 Jiaxing Liu (Fudan University, China), Chaofeng Sha (Fudan University, China), and Xin Peng (Fudan University, China)
CAT-LM Training Language Models on Aligned Code And Tests

Domain Adaptive Code Completion via Language Models and Decoupled Domain Databases 421 Ze Tang (Nanjing University, China), Jidong Ge (Nanjing University, China), Shangqing Liu (Nanyang Technological University, Singapore), Tingwei Zhu (Nanjing University, China), Tongtong Xu (Huawei Software Engineering Application Technology, China), Liguo Huang (Southern Methodist University, USA), and Bin Luo (Nanjing University, China)
CodeGen4Libs: A Two-Stage Approach for Library-Oriented Code Generation
Adaptive REST API Testing with Reinforcement Learning
Increasing the Responsiveness of Web Applications by Introducing Lazy Loading
Let's Chat to Find the APIs: Connecting Human, LLM and Knowledge Graph Through AI Chain 471 Qing Huang (Jiangxi Normal University, China), Zhenyu Wan (Jiangxi Normal University, China), Zhenchang Xing (CSIRO's Data61 & Australian National University, Australian), Changjing Wang (Jiangxi Normal University, China), Jieshan Chen (CSIRO's Data61, Australian), Xiwei Xu (CSIRO's Data61, Australian), and Qinghua Lu (CSIRO's Data61, Australian)
Software Entity Recognition with Noise-Robust Learning
AutoLog: A Log Sequence Synthesis Framework for Anomaly Detection
Aster: Automatic Speech Recognition System Accessibility Testing for Stutterers

The Plastic Surgery Hypothesis in the Era of Large Language Models522Chunqiu Steven Xia (University of Illinois Urbana-Champaign, USA),Yifeng Ding (University of Illinois Urbana-Champaign, USA), andLingming Zhang (University of Illinois Urbana-Champaign, USA)
GAMMA: Revisiting Template-Based Automated Program Repair via Mask Prediction
Contextuality of Code Representation Learning
On-the-fly Improving Performance of Deep Code Models via Input Denoising
Using Deep Learning to Automatically Improve Code Readability
Towards Automatically Addressing Self-Admitted Technical Debt: How Far Are We?
An Integrated Program Analysis Framework for Graduate Courses in Programming Languages and Software Engineering
Precise Data-Driven Approximation for Program Analysis via Fuzzing
Two Birds with One Stone: Multi-Derivation for Fast Context-Free Language Reachability 624 Analysis 624 Chenghang Shi (Institute of Computing Technology, CAS; University of 624 Chinese Academy of Sciences, China), Haofeng Li (Institute of 624 Computing Technology, CAS, China), Yulei Sui (University of New South 624 Wales, Australia), Jie Lu (Institute of Computing Technology, CAS, 624 China), Lian Li (Institute of Computing Technology, CAS; University of 624 Chinese Academy of Sciences; Zhongguancun Laboratory, China), and 624 Jingling Xue (University of New South Wales, Australia) 624

Contrastive Learning for API Aspect Analysis
PTdetector: An Automated JavaScript Front-end Library Detector
 Revealing Performance Issues in Server-Side WebAssembly Runtimes via Differential Testing 661 Shuyao Jiang (The Chinese University of Hong Kong, China), Ruiying Zeng (Fudan University; Shanghai Key Laboratory of Intelligent Information Processing, China), Zihao Rao (Fudan University; Shanghai Key Laboratory of Intelligent Information Processing, China), Jiazhen Gu (The Chinese University of Hong Kong, China), Yangfan Zhou (Fudan University; Shanghai Key Laboratory of Intelligent Information Processing, China), and Michael R. Lyu (The Chinese University of Hong Kong, China)
 Demystifying Template-Based Invariant Generation for Bit-Vector Programs
EndWatch: A Practical Method for Detecting Non-Termination in Real-World Software
Symbolic Fixpoint Algorithms for Logical LTL Games
 Delving into Commit-Issue Correlation to Enhance Commit Message Generation Models
From Commit Message Generation to History-Aware Commit Message Completion

Automatic Generation and Reuse of Precise Library Summaries for Object-Sensitive Pointer Analysis	36
Jingbo Lu (UNSW Sydney, Australia), Dongjie He (UNSW Sydney, Australia), Wei Li (UNSW Sydney, Australia), Yaoqing Gao (Huawei Toronto Research Center, Canada), and Jingling Xue (UNSW Sydney, Australia)	
Generating Variable Explanations via Zero-Shot Prompt Learning	18
 What Makes Good In-Context Demonstrations for Code Intelligence Tasks with LLMs?	51
 HexT5: Unified Pre-Training for Stripped Binary Code Information Inference	74
LiSum: Open Source Software License Summarization with Multi-Task Learning	37
Personalized First Issue Recommender for Newcomers in Open Source Projects)0
Understanding and Enhancing Issue Prioritization in GitHub	13

Who is the Real Hero? Measuring Developer Contribution via Multi-Dimensional Data	
Integration Yuqiang Sun (Nanyang Technological University, Singapore), Zhengzi Xu (Nanyang Technological University, Singapore), Chengwei Liu (Nanyang Technological University, Singapore), Yiran Zhang (Nanyang Technological University, Singapore), and Yang Liu (Nanyang Technological University, Singapore)	825
To Share, or Not to Share: Exploring Test-Case Reusability in Fork Ecosystems Mukelabai Mukelabai (The University of Zambia, Zambia; Chalmers, University of Gothenburg, Sweden), Christoph Derks (Ruhr University Bochum, Germany), Jacob Krüger (Eindhoven University of Technology, The Netherlands), and Thorsten Berger (Ruhr University Bochum, Germany; Chalmers, University of Gothenburg, Sweden)	837
Code Difference Guided Adversarial Example Generation for Deep Code Models Zhao Tian (Tianjin University, China), Junjie Chen (Tianjin University, China), and Zhi Jin (Peking University, China)	850
iASTMapper: An Iterative Similarity-Based Abstract Syntax Tree Mapping Algorithm Neng Zhang (Sun Yat-sen University, China), Qinde Chen (Sun Yat-sen University, China), Zibin Zheng (Sun Yat-sen University, China), and Ying Zou (Queen's University, Canada)	863
ZC3 Zero-Shot Cross-Language Code Clone Detection Jia Li (Peking University, China), Chongyang Tao (Peking University, China), Zhi Jin (Peking University, China), Fang Liu (Beihang University, China), Jia Allen Li (Peking University, China), and Ge Li (Peking University, China)	875
Persisting and Reusing Results of Static Program Analyses on a Large Scale Johannes Düsing (TU Dortmund, Germany) and Ben Hermann (TU Dortmund, Germany)	888
Optimizing Continuous Development By Detecting and Preventing Unnecessary Content Generation Talank Baral (George Mason University, USA), Shanto Rahman (The University of Texas at Austin, USA), Bala Naren Chanumolu (George Mason University, USA), Başak Balcı (Technical University of Munich, Germany), Tuna Tuncer (Technical University of Munich, Germany), August Shi (The University of Texas at Austin, USA), and Wing Lam (George Mason University, USA)	901
DCLink: Bridging Data Constraint Changes and Implementations in FinTech Systems Wensheng Tang (The Hong Kong University of Science and Technology, China), Chengpeng Wang (The Hong Kong University of Science and Technology, China), Peisen Yao (Zhejiang University, China), Rongxin Wu (Xiamen University, China), Xianjin Fu (Ant Group, China), Gang Fan (Ant Group, China), and Charles Zhang (The Hong Kong University of Science and Technology, China)	914
Systematically Detecting Packet Validation Vulnerabilities in Embedded Network Stacks Paschal C. Amusuo (Purdue University, USA), Ricardo Andrés Calvo Mendez (Universidad Nacional de Colombia, Colombia), Zhongwei Xu (Xi'an JiaoTong University, China), Aravind Machiry (Purdue University, USA), and James C. Davis (Purdue University, USA)	926

 WADIFF: A Differential Testing Framework for WebAssembly Runtimes
VRGuide: Efficient Testing of Virtual Reality Scenes via Dynamic Cut Coverage
 Fast and Reliable Program Synthesis via User Interaction
From Misuse to Mastery: Enhancing Code Generation with Knowledge-Driven AI Chaining976 Xiaoxue Ren (Zhejiang University, China), Xinyuan Ye (Australian National University, Australia), Dehai Zhao (CSIRO's Data61, Australia), Zhenchang Xing (CSIRO's Data6; Australian National University, Australia), and Xiaohu Yang (Zhejiang University, China)
Generative Type Inference for Python
Compiler Auto-Tuning via Critical Flag Selection
A Comparative Study of Transformer-Based Neural Text Representation Techniques on Bug Triaging
Neural SZZ Algorithm
How to Train Your Neural Bug Detector: Artificial vs Real Bugs

 Detection of Java Basic Thread Misuses Based on Static Event Analysis
FLUX: Finding Bugs with LLVM IR Based Unit Test Crossovers
A Comprehensive Study on Code Clones in Automated Driving Software
Detecting Smart Home Automation Application Interferences with Domain Knowledge
Bridging the Gap Between Academia and Industry in Machine Learning Software Defect Prediction: Thirteen Considerations
 Identify and Update Test Cases when Production Code Changes: A Transformer-Based Approach 1111 Xing Hu (Zhejiang University, China), Zhuang Liu (Zhejiang University, China), Xin Xia (Zhejiang University, China), Zhongxin Liu (Zhejiang University, China), Tongtong Xu (Huawei, China), and Xiaohu Yang (Zhejiang University, China)
Revisiting and Improving Retrieval-Augmented Deep Assertion Generation

LEAP: Efficient and Automated Test Method for NLP Software	6
QuraTest: Integrating Quantum Specific Features in Quantum Program Testing	9
An Empirical Study on Fine-Tuning Large Language Models of Code for Automated Program Repair	2
LEAKPAIR: Proactive Repairing of Memory Leaks in Single Page Web Applications	5
Automated Fixing of Web UI Tests via Iterative Element Matching	8
 OrdinalFix: Fixing Compilation Errors via Shortest-Path CFL Reachability	0
Enhancing Malware Detection for Android Apps: Detecting Fine-Granularity Malicious Components 121 Zhijie Liu (ShanghaiTech University, China), Liang Feng Zhang (ShanghaiTech University, China), and Yutian Tang (University of Glasgow, United Kingdom)	2
 Fine-Grained In-Context Permission Classification for Android Apps Using Control-Flow Graph Embedding	5

How Android Apps Break the Data Minimization Principle: An Empirical Study
 Scene-Driven Exploration and GUI Modeling for Android Apps
Expediting Neural Network Verification via Network Reduction
HOBAT: Batch Verification for Homogeneous Structural Neural Networks
 SMT Solver Validation Empowered by Large Pre-Trained Language Models
Mutation-Based Fault Localization of Deep Neural Networks
An Intentional Forgetting-Driven Self-Healing Method For Deep Reinforcement Learning Systems
Ahmed Haj Yahmed (Polytechnique Montréal, Canada), Rached Bouchoucha (Polytechnique Montréal, Canada), Houssem Ben Braiek (Polytechnique Montréal, Canada), and Foutse Khomh (Polytechnique Montréal, Canada)
 AutoConf : Automated Configuration of Unsupervised Learning Systems using Metamorphic Testing and Bayesian Optimization
Gonni (Shvi EF Digitut, Norway), Erik Johannes Husom (Shvi EF Digitut, Norway), Sagar Sen (SINTEF Digital, Norway), Yan Naing Tun (Singapore Management University, Singapore), and Kisub Kim (Singapore Management University, Singapore)
 An Image is Worth a Thousand Toxic Words: A Metamorphic Testing Framework for Content Moderation Software

CoMSA: A Modeling-Driven Sampling Approach for Configuration Performance Testing
Effective Concurrency Testing for Go via Directional Primitive-Constrained Interleaving
 Exploration
Fuzzing for CPS Mutation Testing1377Jaekwon Lee (University of Luxembourg, Luxembourg; University of Ottawa, Canada), Enrico Viganò (University of Luxembourg, Luxembourg), Oscar Cornejo (University of Luxembourg, Luxembourg), Fabrizio Pastore (University of Luxembourg, Luxembourg), and Lionel Briand (University of Luxembourg, Luxembourg; University of Ottawa, Canada)
ReuNify: A Step Towards Whole Program Analysis for React Native Android Apps
 WeMinT: Tainting Sensitive Data Leaks in WeChat Mini-Programs
Vision-Based Widget Mapping for Test Migration Across Mobile Platforms: Are We There Yet? 1416 Ruihua Ji (Nanjing University, China), Tingwei Zhu (Nanjing University, China), Xiaoqing Zhu (Nanjing University, China), Chunyang Chen (Monash University, Australia), Minxue Pan (Nanjing University, China), and Tian Zhang (Nanjing University, China)
Detecting Memory Errors in Python Native Code by Tracking Object Lifecycle with Reference Count

Eiffel: Inferring Input Ranges of Significant Floating-Point Errors via Polynomial
 Extrapolation
PERFCE: Performance Debugging on Databases with Chaos Engineering-Enhanced Causality Analysis
Information Retrieval-Based Fault Localization for Concurrent Programs
The MAP Metric in Information Retrieval Fault Localization
 Improving Code Extraction from Coding Screencasts Using a Code-Aware Encoder-Decoder Model 1492 Abdulkarim Malkadi (Florida State University, United States; Jazan University, Saudi Arabia), Ahmad Tayeb (Florida State University, United States; King Abdulaziz University, Saudi Arabia), and Sonia Haiduc (Florida State University, United States)
InfeRE: Step-by-Step Regex Generation via Chain of Inference
MELT: Mining Effective Lightweight Transformations from Pull Requests
On the Evaluation of Neural Code Translation: Taxonomy and Benchmark

Pluggable Type Inference for Free1542Martin Kellogg (New Jersey Institute of Technology, USA), Daniel1542Daskiewicz (New Jersey Institute of Technology, USA), Loi Ngo DucNguyen (New Jersey Institute of Technology, USA), Muyeed Ahmed (NewJersey Institute of Technology, USA), and Michael D. Ernst (Universityof Washington, USA)	
 MLIRSmith: Random Program Generation for Fuzzing MLIR Compiler Infrastructure	
Thunderkaller: Profiling and Improving the Performance of Syzkaller	
PHYFU: Fuzzing Modern Physics Simulation Engines	
NaturalFuzz: Natural Input Generation for Big Data Analytics	
A Large-Scale Empirical Study on Semantic Versioning in Golang Ecosystem	
 Automated Software Entity Matching Between Successive Versions	
 Where to Go Now? Finding Alternatives for Declining Packages in the npm Ecosystem	

 ConfTainter: Static Taint Analysis For Configuration Options	40
 Merge Conflict Resolution: Classification or Generation?	52
 DeFiWarder: Protecting DeFi Apps from Token Leaking Vulnerabilities	64
 VD-Guard: DMA Guided Fuzzing for Hypervisor Virtual Device	76

New Ideas and Emerging Results

Towards Autonomous Testing Agents via Conversational Large Language Models	8
Semantic Data Augmentation for Deep Learning Testing Using Generative AI	4
Log Parsing: How Far Can ChatGPT Go?	9
Automating Bias Testing of LLMs	5

MUTEN: Mutant-Based Ensembles for Boosting Gradient-Based Adversarial Attack
 Are We Ready to Embrace Generative AI for Software Q&A?
 Towards a Knowledge Base of Common Sustainability Weaknesses in Green Software Development 1718 Priyavanshi Pathania (Accenture Labs, India), Rohit Mehra (Accenture Labs, India), Vibhu Saujanya Sharma (Accenture Labs, India), Vikrant Kaulgud (Accenture Labs, India), Sanjay Podder (Technology Sustainability Innovation, Accenture, India), and Adam P. Burden (Accenture, USA)
 Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware Model Switching 1721 Shubham Kulkarni (IIIT Hyderabad, India), Arya Marda (IIIT Hyderabad, India), and Karthik Vaidhyanathan (IIIT Hyderabad, India)
Evolve the Model Universe of a System Universe
Modeling Programmer Attention as Scanpath Prediction1732Aakash Bansal (University of Notre Dame, USA), Chia-Yi Su (University1732of Notre Dame, USA), Zachary Karas (Vanderbilt University, USA), Yifan2hang (Vanderbilt University, USA), Yu Huang (Vanderbilt University, USA), Toby Jia-Jun Li (University of Notre Dame, USA), and CollinMcMillan (University of Notre Dame, USA)
On Automated Assistants for Software Development: The Role of LLMs
Better Patching Using LLM Prompting, via Self-Consistency1742Toufique Ahmed (UC Davis, USA) and Premkumar Devanbu (UC Davis, USA)
Live Programming for Finite Model Finders

 Characterizing Flaky Tests in Node.js Applications
Sciences; University of Chinese Academy of Sciences, China), Zhenyue Long (GuangDong Power Grid; China Southern Power Grid, China), Lei Cui (GuangDong Power Grid; China Southern Power Grid, China), and Tao Huang (Chinese Academy of Sciences; China Southern Power Grid, China)
PSMT: Satisfiability Modulo Theories Meets Probability Distribution
 SAT-Verifiable LTL Satisfiability Checking via Graph Representation Learning
 PURLTL: Mining LTL Specification from Imperfect Traces in Testing
Enhancing Code Safety in Quantum Intermediate Representation
 Towards a Formal Framework for Normative Requirements Elicitation
Hot Patching Hot Fixes: Reflection and Perspectives

Symbolic Verification of Fuzzy Logic Models1787Siang Zhao (National University of Defense Technology, China),2hongyang Li (National University of Defense Technology, China),Zhenbang Chen (National University of Defense Technology, China),Ji Wang (National University of Defense Technology, China)
A Majority Invariant Approach to Patch Robustness Certification for Deep Learning Models 1790 Qilin Zhou (City University of Hong Kong), Zhengyuan Wei (City University of Hong Kong), Haipeng Wang (City University of Hong Kong), and W.K. Chan (City University of Hong Kong)
Fault Localization for Buggy Deep Learning Framework Conversions in Image Recognition 1795 Nikolaos Louloudakis (University of Edinburgh), Perry Gibson (University of Glasgow), José Cano (University of Glasgow), and Ajitha Rajan (University of Edinburgh)
 Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Graph Execution 1800 Raffi Khatchadourian (City University of New York (CUNY) Hunter College), Tatiana Castro Vélez (CUNY Graduate Center), Mehdi Bagherzadeh (Oakland University), Nan Jia (CUNY Graduate Center), and Anita Raja (City University of New York (CUNY) Hunter College; CUNY Graduate Center)
Scalable Industrial Control System Analysis via XAI-Based Gray-Box Fuzzing

Industry Showcase

Open Source Software Tools for Data Management and Deep Model Training Automation 1814 *Umut Tıraşŏglu (ORDULU Technology Corp., Turkey), Abdussamet Türker (ORDULU Technology Corp., Turkey), Adnan Ekici (ORDULU Technology Corp., Turkey), Hayri Yiğit (ORDULU Technology Corp., Turkey), Yusuf Enes Bölükbaşı (ORDULU Technology Corp., Turkey), and Toygar Akgün (TOBB University of Economics and Technology, Turkey)*

RocketHA: A High Availability Design Paradigm for Distributed Log-Based Storage System 1819 Juntao Ji (Alibaba Cloud Computing Co. Ltd., China), Rongtong Jin (Alibaba Cloud Computing Co. Ltd., China), Yubao Fu (Alibaba Cloud Computing Co. Ltd., China), Yinyou Gu (Alibaba Cloud Computing Co. Ltd., China), Tsung-han Tsai (Alibaba Cloud Computing Co. Ltd., China), and Qingshan Lin (Alibaba Cloud Computing Co. Ltd., China)

Assessing the Impact of Refactoring Energy-Inefficient Code Patterns on Software Sustainability: An Industry Case Study
Green AI Quotient : Assessing Greenness of AI-based software and the way forward 1828 Samarth Sikand (Accenture Labs, India), Vibhu Saujanya Sharma (Accenture Labs, India), Vikrant Kaulgud (Accenture Labs, India), and Sanjay Podder (Accenture, India)
Challenges of Accurate and Efficient AutoML
Zero-Config Fuzzing for Microservices
Smart Prompt Advisor: Multi-Objective Prompt Framework for Consistency and Best Practices 1846 Kanchanjot Kaur Phokela (Accenture Labs, India), Samarth Sikand (Accenture Labs, India), Kapil Singi (Accenture Labs, India), Kuntal Dey (Accenture Labs, India), Vibhu Saujanya Sharma (Accenture Labs, India), and Vikrant Kaulgud (Accenture Labs)
Improving Design Reviews at Google 1849 Celal Ziftci (Google, USA) and Ben Greenberg (Google, USA)
Software Engineering Using Autonomous Agents: Are We There Yet?
Government Mobile Apps: Analysing Citizen Feedback via App Reviews
Coding and Debugging by Separating Secret Code Toward Secure Remote Development
An Industrial Practice for Securing Android Apps in the Banking Domain

Industry Challenge (Competition)

ACWRecommender: A Tool for Validating Actionable Warnings with Weak Supervision	5
 An Automated and Flexible Multilingual Bug-Fix Dataset Construction System	L
A Closer Look at Different Difficulty Levels Code Generation Abilities of ChatGPT	7
PreciseBugCollector: Extensible, Executable and Precise Bug-fix Collection	•
Function-Level Vulnerability Detection Through Fusing Multi-Modal Knowledge	L
 BugMiner: Automating Precise Bug Dataset Construction by Code Evolution History Mining 1919 Xuezhi Song (Fudan University, China), Yijian Wu (Fudan University, China), Junming Cao (Fudan University, China), Bihuan Chen (Fudan University, China), Yun Lin (Shanghai Jiao Tong University, China), Zhengjie Lu (Fudan University, China), Dingji Wang (Fudan University, China), and Xin Peng (Fudan University, China) 	•
 RPCover: Recovering gRPC Dependency in Multilingual Projects)
VALAR: Streamlining Alarm Ranking in Static Analysis with Value-Flow Assisted Active Learning)
Pengcheng Liu (Nanjing University, China), Yifei Lu (Nanjing University, China), Wenhua Yang (Nanjing University of Aeronautics and Astronautics, China), and Minxue Pan (Nanjing University, China)	

 REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes
Potential Solutions to Challenges in C Program Repair: A Practical Perspective
Minecraft: Automated Mining of Software Bug Fixes with Precise Code Context
Unifying Defect Prediction, Categorization, and Repair by Multi-Task Deep Learning 1980 Chao Ni (Zhejiang University, China), Kaiwen Yang (Zhejiang University, China), Yan Zhu (Zhejiang University, China), Xiang Chen (Nantong University, China), and Xiaohu Yang (Zhejiang University, China)
 MalWuKong: Towards Fast, Accurate, and Multilingual Detection of Malicious Code Poisoning in OSS Supply Chains
CiD4HMOS: A Solution to HarmonyOS Compatibility Issues

Tool Demonstrations

Bus Factor Explorer
 EXPRESS 2.0: An Intelligent Service Management Framework for AIoT Systems in the Edge 2022 Jia Xu (Anhui University, China), Xiao Liu (Deakin University, Australia), Wuzhen Pan (Anhui University, China), Xuejun Li (Anhui University, China), Aiting Yao (Anhui University, China), and Yun Yang (Swinburne University of Technology, Melbourne, Australia)

RJoules: An Energy Measurement Tool for R 2026 Rajrupa Chattaraj (Indian Institute of Technology Tirupati, India) and 2026 Sridhar Chimalakonda (Indian Institute of Technology Tirupati, India) 2026	
ArduinoProg: Towards Automating Arduino Programming	
BUGSC++: A Highly Usable Real World Defect Benchmark for C/C++	
ExpressAPR: Efficient Patch Validation for Java Automated Program Repair Systems	
Polyglot Code Smell Detection for Infrastructure as Code with GLITCH	
NRAgo: Solving SMT(NRA) Formulas with Gradient-Based Optimization	
CPA-DF: A Tool for Configurable Interval Analysis to Boost Program Verification	
COMEX: A Tool for Generating Customized Source Code Representations	

TEASER: Simulation-Based CAN Bus Regression Testing for Self-Driving Cars Software
Provengo: A Tool Suite for Scenario Driven Model-Based Testing
QuCAT: A Combinatorial Testing Tool for Quantum Software
ICTDroid: Parameter-Aware Combinatorial Testing for Components of Android Apps
LIV: Loop-Invariant Validation Using Straight-Line Programs
CEGAR-PT: A Tool for Abstraction by Program Transformation
DroneReqValidator: Facilitating High Fidelity Simulation Testing for Uncrewed Aerial Systems Developers
MUT4SLX: Fast Mutant Generation for Simulink
 AutoDebloater: Automated Android App Debloating

Spe	Fuzzer: A Tool for Inferring Class Specifications via Grammar-Based Fuzzing
-	acundo Molina (IMDEA Software Institute, Spain), Marcelo d'Amorim
	North Carolina State University, USA), and Nazareno Aguirre
	Iniversity of Rio Cuarto and CONICET, Argentina)
~	

SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum Smart Contracts .. 2102 Monika di Angelo (TU Wien, Austria), Thomas Durieux (TU Delft, Netherlands), João F. Ferreira (INESC-ID and IST, University of Lisbon, Portugal), and Gernot Salzer (TU Wien, Austria)

Author Index