Proceedings of ASME 2023
International Design Engineering
Technical Conferences and
Computers and Information in
Engineering Conference

(IDETC-CIE2023)

Volume 7

19th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)

> August 20-23, 2023 Boston, Massachusetts

Conference SponsorsDesign Engineering Division

Computers and Information in Engineering Division

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

© 2023 The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8735-6

TABLE OF CONTENTS

Development of a Pillow Placement Process for Robotic Bed-Making	1
Hand Assemble Action Recognition Using Spatial Temporal Graph Convolutional Network	11
Embedded Vision System for Real-Time Shelves Rows Detection for Planogram Compliance Check	18
Rocco Pietrini, Alessandro Galdelli, Adriano Mancini, Primo Zingaretti	
A Digital Twin Development Framework for a Smart Saltwater Greenhouse	25
Noodle: Design of a Modular, Configurable Serpentine Robot With Series Elastic Actuators and Modular Segment Panels	30
A Flexible Framework for Robotic Post-Processing of 3D Printed Components	38
Consideration of Autonomous Decentralized Coordination of Electric Balancer and Robotic Arm With Inertia Compensation for Larger Payload Manipulation	47
Localisation of Mobile Robots via Ultra-Wideband Systems	56
Leveraging Smart Farming Technologies for Optimal pH Adjustments With Variable Rate Lime Application	63
"LEVER" - Low-Cost Electric Vehicle Charging Robot: Development and Testing	68
The Objective Way to Detect the Path to Purchase by Clustering Shoppers' Trajectories	77
Case Study: Rapid Design Process for a High-Velocity and Accurate Linear Stage in an Optomechanical Device	87
Hyperdimensional Cognitive Computing for Lightweight Cyberattack Detection in Industrial Internet of Things	94
Fardin Jalil Piran, Hamza Errahmouni Barkam, Mohsen Imani, Farhad Imani	
Can the Attributes of a Waste Bin Improve Recycling? A Literature Review for Sensors and Actuators to Define Product Design Objectives	104

Design and Tracking Control of a Large-Range Reluctance-Actuated Compliant Nano-Manipulator	A Tale of Two Turrets: Transitioning Hands-On, Project-Based Learning to a Remote Environment	114
Performance Assessment of Fractional-Order Control of Non-Minimum Phase Power Converter Systems		120
Systems		126
Daniel Morris, Christopher Pretty Evaluating Heart-Rate Variability Metrics As a Measure of Stress During Unsedated Medical Procedures	Systems	132
Procedures		142
·	Procedures	151
		161

Author Index