2023 9th International Conference on Big Data Computing and Communications (BigCom 2023)

Hainan, China 4-6 August 2023

IEEE Catalog Number: ISBN:

CFP23N32-POD 979-8-3503-3125-7

Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP23N32-POD
ISBN (Print-On-Demand):	979-8-3503-3125-7
ISBN (Online):	979-8-3503-3124-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2023 9th International Conference on Big Data Computing and Communications (BIGCOM) BIGCOM 2023

Table of Contents

Message from the General Chairs	xi
Message from the TPC Chairs	xii
Conference Committee	xiii
Keynote Speakers	xv

Network

NOMA-Enhanced Uplink Transmission in STIN: Joint Optimization with Long-Term
 Energy-Efficient Fairness
Usage of Application-Driven Ternary Divide-and-Conquer Architecture of Heterogeneous Internet of Things in Environmental Monitoring
Internet of Things in Environmental Monitoring9Jinxin Zhang (University of Science and Technology of China, China),7Zhaoyi Meng (Anhui University, China), Fuyou Miao (University of7Science and Technology of China, China), Yan Xiong (University of7Science and Technology of China, China), Zonghao Xu (University of7Science and Technology of China, China), Yajie Yun (University of7Science and Technology of China, China), And Ruikai Wang (University of7Science and Technology of China, China), And Ruikai Wang (University of7Science and Technology of China, China)7Science and Techn
INVA: An Intelligent Network Virtualization Architecture for Big Data Platform

IoT Device Identification Base on Inter-Flow Correlation Analysis Using Graph Neural Network
Chuang Peng (University of Science and Technology of China, China), Xiaobin Tan (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China), Peng Xie (University of Science and Technology of China, China), Mengxiang Li (University of Science and Technology of China, China), Hao Wang (University of Science and Technology of China, China), and Shuangwu Chen (University of Science and Technology of China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China)
Joint Optimization of Energy Distribution, Path Selection and Time Allocation for Smart Reflector Assisted mmWave Communication System
 TagVibra: Push the Limit of RFID-Based Vibration Sensing

Security

 Network Vulnerability Assessment Based on Knowledge Graph
Reinforcement Learning Based Attack Timing Optimization in Inter-Domain Networks
A Trust Evaluation Based Attribute-Based Access Control Model for Smart Home
 Pi-Sniffer: Privacy Sniffing Through the Wall with WiFi CSI

Enabling Fuzzy Matching in Privacy-Preserving Bilateral Task Recommendation
SolScope: Effectively Hunting Potential Permission Backdoor Threats in Smart Contracts
MVVDroid: Android Malware Detection Based on Multi-View Visualization
 EOSVERIF: An Automated Analyzer for EOSIO Smart Contracts
DBFed: Debiasing Federated Learning Framework Based on Domain-Independent
An Efficient Partial Video Copy Detection for a Large-Scale Video Database
Personalized Multi-Task Federated Learning on Non-IID Medical Health Care Data

Applications

Change Point Detection and Trend Analysis for Financial Time Series	
Hengzhu Liu (Zhongnan University of Économics and Law, China), Ping	
Xiong (Zhongnan University of Economics and Law, China), Dawei Jin	
(Zhongnan University of Economics and Law, China), and Lingzhi Yi	
(Zhongnan University of Economics and Law, China)	

 Road Traffic Prediction Based on Multi-Feature BP Neural Networks
D2V-DDQN: Influence Maximization of Positive Opinions Based on Deep Reinforcement Learning 148
Yuqi Chen (Xihua University, China), Xianyong Li (Xihua University, China), Weikai Zhou (Xihua University, China), Yajun Du (Xihua University, China), Xiaoliang Chen (Xihua University, China), and Yongquan Fan (Xihua University, China)
A Coarse-to-Fine Strategy Based on a Supervised Learning Method for Non-Intrusive Load Identification
Deng Kai (China Southern Powergrid Technology Co., Ltd. of China, China), Huo Zihang (China Southern Powergrid Technology Co., Ltd. of China, China), Yi Shiqi (Electrical Engineering and Automation of China, China), Wang Peng (China Southern Powergrid Technology Co., Ltd. of China, China), Wang Shuai (China Southern Powergrid Technology Co., Ltd. of China, China), and Kong Zhengmin (Electrical Engineering and Automation of China, China)
 UAV-Assisted Maritime Data Collection via Optical Communications Using Deep Reinforcement Learning
 A Local Regression-Based SLA-Aware Energy-Efficient Virtual Machine Consolidation Algorithm in Data Centers

Computing

SAC: Dynamic Caching upon Sketch for In-Memory Big Data Analytics1	80
Mingtao Ji (Nanjing University, China), Mingxian Zhou (Nanjing	
University, China), Haodong Zou (Information & Telecommunication	
Branch, Štate Grid Jiangsu Ĕlectric Power Co., Ltd., China), Ming Tang	
(Information & Telecommunication Branch, State Grid Jiangsu Electric	
Power Co., Ltd., China), Zhuzhong Qian (Nanjing University, China),	
and Xiaoliang Wang (Nanjing University, China)	

Efficient Online Edge Learning for UAV Object Detection via Adaptive Batch Size Fitting
 Energy-Efficient Collaborative DNN Inference in UAV Swarm
HETEROPUSH: Communication-Efficient Video Analytics by Scheduling Heterogeneous Filters 203 Yi-Nan Zhang (University of Science and Technology of China), Lan Zhang (University of Science and Technology of China), Mu Yuan (University of Science and Technology of China), and Qi Song (University of Science and Technology of China)
Efficient Data Loading for Deep Neural Network Training
Sequence to Sequence Load Recognition Model Based On Sparse Self-Attention Transformer 219 Zhihua Dong (Anhui University, China) and Xing Guo (Anhui University, China)
Towards Efficient Edge Learning for Large Models in Heterogeneous Resource-Limited Environments 223 Defang Liu (Wuhan University, China), Zhibo Wang (Zhejiang University, 21 China), Xiaoyi Pang (Wuhan University, China), Yunan Sun (Wuhan 21 University, China), Jiahui Hu (Zhejiang University, China), Peng Sun (Hunan University, China), and Yuke Hu (Zhejiang University, China)
 Edge Computing Sleep Mode Task Scheduling Based on Deep Reinforcement Learning

Mining

Information Fusion Channel Pruning for Accelerating Neural Networks	240
Zhangbin Zhu (University of Science and Technology of China, China),	
Yi Zhai (University of Science and Technology of China, China), and	
Yanyong Zhang (University of Science and Technology of China, China)	

Weakly Supervised Target-Speaker Voice Activity Detection 24 Zixin Zhao (University of Science and Technology of China, China) and 24 Lan Zhang (University of Science and Technology of China, China) 24	8
 JP-DouZero: An Enhanced DouDiZhu AI Based on Reinforcement Learning with Peasant Collaboration and Intrinsic Rewards	6
 Contrastive Learning Based Human Activity Recognition Using Body Sensors	4
 LMIE-BERT: A Learnable Method for Inter-Layer Ensembles to Accelerate Inference of BERT-Style Pre-Trained Models	'1
 Multi-Skill Policy Transfer by Option-Based Deep Reinforcement Learning for Autonomous Driving	'8
Using Sensors to Complement Cameras to Save Arithmetic Power for Autonomous Driving Recognition	6
A Coalitional Autonomous Guiding Model Considering Traffic and Non-Traffic Participants29 Xiaochuan Liu (dept. Beihang University (of Aff.) Beihang University (of Aff.), China), Haohua Du (dept. Beihang University (of Aff.) Beihang University (of Aff.), China), and Fenzhu Ji (dept. Beihang University (of Aff.) Beihang University (of Aff.), China)	3
Comp-RPKI: A Decentralized Protocol for Full Route Origin Validation	1

Author Index					
--------------	--	--	--	--	--