## 2023 International Conference on **Machine Learning and Applications (ICMLA 2023)**

Jacksonville, Florida, USA 15-17 December 2023

Pages 1-751



**IEEE Catalog Number: CFP23592-POD ISBN**:

979-8-3503-1891-3

## Copyright © 2023 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

\*\*\* This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23592-POD

 ISBN (Print-On-Demand):
 979-8-3503-1891-3

 ISBN (Online):
 979-8-3503-4534-6

ISSN: 1946-0740

#### Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com



# 2023 International Conference on Machine Learning and Applications (ICMLA) ICMLA 2023

#### **Table of Contents**

| Invited Talks Organizing Committee Program Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xlvi<br>l |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| In Person Tracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| Main Conference (in person, long papers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| PLSR: Unstructured Pruning with Layer-Wise Sparsity Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |
| Multitask Learning for Time Series Data with 2D Convolution  Chin-Chia Michael Yeh (Visa Research, University of California, Riverside), Xin Dai (Visa Research, University of California, Riverside), Yan Zheng (Visa Research, University of California, Riverside), Junpeng Wang (Visa Research, University of California, Riverside), Huiyuan Chen (Visa Research, University of California, Riverside), Yujie Fan (Visa Research, University of California, Riverside), Audrey Der (Visa Research, University of California, Riverside), Zhongfang Zhuang (Visa Research, University of California, Riverside), Liang Wang (Visa Research, University of California, Riverside), and Wei Zhang (Visa Research, University of California, Riverside) | <u>c</u>  |

| Control of Composite Manufacturing Processes through Deep Reinforcement Learning                          |
|-----------------------------------------------------------------------------------------------------------|
| Solving the Electricity Technician Dispatch Problem                                                       |
| AReID: Rethinking Re-Identification and Occlusions for Multi-Object Tracking                              |
| Mandible Segmentation from CT and CBCT Images Based on a Patch-Based Convolutional Neural Network         |
| Efficient Defense Against Model Stealing Attacks on Convolutional Neural Networks                         |
| ChemVise: Maximizing Out-of-Distribution Chemical Detection with a Novel Application of Transfer Learning |
| StitchNet: Composing Neural Networks from Pre-Trained Fragments                                           |
| SwinFVC: A Swin Flow Video Colorization Example-Based Method                                              |
|                                                                                                           |

| Ryan McCoppin (Air Force Research Laboratory, CAE USA, WPAFB, USA), Colin Dawson (Air Force Research Laboratory, Aptima, Inc., WPAFB, USA), Sean M. Kennedy (Air Force Research Laboratory, WPAFB, USA), and Leslie M. Blaha (Air Force Research Laboratory, WPAFB, USA)                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamic Patch Sampling for Efficient Training and Dynamic Inference in Vision Transformers 83<br>Bradley McDanel (Franklin and Marshall College, USA) and Chi Phuong<br>Ngoc Huynh (Franklin and Marshall College, USA)                                                                                                                                               |
| Learning, Tiny and Huge: Heterogeneous Model Augmentation towards Federated Tiny Learning .<br>90                                                                                                                                                                                                                                                                     |
| Madhureeta Das (Michigan Technological University, USA), Gaurav Bagwe<br>(Michigan Technological University, USA), Miao Pan (University of<br>Houston, USA), Xiaoyong Yuan (Michigan Technological University, USA),<br>and Lan Zhang (Michigan Technological university, USA)                                                                                        |
| Automating Lichen Monitoring in Ecological Studies using Instance Segmentation of Time-Lapse Images                                                                                                                                                                                                                                                                   |
| Improved Batching Strategy For Irregular Time-Series ODE                                                                                                                                                                                                                                                                                                              |
| Stochastic Learning Manipulation of Object Pose with Under-Actuated Impulse Generator Arrays                                                                                                                                                                                                                                                                          |
| C. Kong (Mitsubishi Electric Research Labs), W. S. Yerazunis<br>(Mitsubishi Electric Research Labs), and D. Nikovski (Mitsubishi<br>Electric Research Labs)                                                                                                                                                                                                           |
| Improving Embeddings for High-Accuracy Transformer-based Address Matching using a Multiple in-Batch Negatives Loss                                                                                                                                                                                                                                                    |
| Exploring Neural Network Structure through Sparse Recurrent Neural Networks: A Recasting and Distillation of Neural Network Hyperparameters                                                                                                                                                                                                                           |
| Enhancing Complex Image Synthesis with Conditional Generative Models and Rule Extraction  136  Chafic Abou Akar (BMW Group, Germany; Univ. Franche-Comté, France), Andre Luckow (BMW Group, Germany), Ahmad Obeid (BMW Group, Germany), Christian Beddawi (BMW Group, Germany), Marc Kamradt (BMW Group, Germany), and Abdallah Makhoul (Univ. Franche-Comté, France) |

| A Bayesian Hierarchical Analysis on the Disparity of Emergency Department Visits for COVID-19: A Cohort Study Using National COVID Cohort Collaborative (N3C) Data                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials                                                                                                          |
| ALLFA: Active Learning through Label and Feature Augmentation                                                                                                                                                            |
| Illuminating the Black Box: A Comparative Study of Explainable AI for Interpreting Time Series Data in Vehicle Power Net Consumption Models                                                                              |
| A Graph-Based Recommendation Model Using Contrastive Learning for Inductive Scenario 174<br>Yuma Dose (Osaka University, Japan), Shuichiro Haruta (KDDI Research,<br>Japan), and Takahiro Hara (Osaka University, Japan) |
| Deep Reinforcement Learning for the Joint Control of Traffic Light Signaling and Vehicle Speed Advice                                                                                                                    |
| Energy Efficient ECG Classifier Using Smart Lead Switching and Apache TVM                                                                                                                                                |
| Fall Detection using Machine Learning Techniques and Frequency-Driven Riemannian Manifolds 194                                                                                                                           |
| Shan Suthaharan (University of North Carolina at Greensboro, USA)                                                                                                                                                        |
| Bayesian Optimization that Limits Search Region to Lower Dimensions Utilizing Local GPR 202<br>Yasunori Taguchi (Toshiba Corporation, Japan) and Hiro Gangi (Toshiba<br>Corporation, Japan)                              |

| Decoding Ethiopian Abodes: Towards Classifying Buildings by Occupancy Type Using Footprint  Morphology                                                                                                                                                                                                                                                                            | ) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Daniel S. Adams (Oak Ridge National Laboratory, USA), Taylor Hauser<br>(Oak Ridge National Laboratory, USA), and Jessica Moehl (Oak Ridge<br>National Laboratory, USA)                                                                                                                                                                                                            |   |
| Federated Learning for Network Anomaly Detection in a Distributed Industrial Environment 218 Alireza Dehlaghi-Ghadim (Malardalen University, Sweden), Tijana Markovic (Malardalen University, Sweden), Miguel Leon (Malardalen University, Sweden), David Soderman (Westermo Network Technologies AB, Sweden), and Per Erik Strandberg (Westermo Network Technologies AB, Sweden) | 3 |
| Will Poppy Fall? Predicting Robot Falls in Advance Based on Visual Input                                                                                                                                                                                                                                                                                                          | 5 |
| Padding-Free Convolution based on Preservation of Differential Characteristics of Kernels 233<br>Kuangdai Leng (Science and Technology Facilities Council, UK) and<br>Jeyan Thiyagalingam (Science and Technology Facilities Council, UK)                                                                                                                                         | 3 |
| Improving Adversarial Robustness of Few-Shot Learning with Contrastive Learning and Hypersphere Embedding                                                                                                                                                                                                                                                                         | l |
| Anomaly Detection for MPC Forecast in Fleet of Water Heaters                                                                                                                                                                                                                                                                                                                      | ) |
| Improving Robustness of Convolutional Networks Through Sleep-Like Replay                                                                                                                                                                                                                                                                                                          | 7 |
| Multi-Model-based Federated Learning to Overcome Local Class Imbalance Issues                                                                                                                                                                                                                                                                                                     | 5 |
| Modeling Regularity and Predictability in Human Behavior from Multidimensional Sensing Signals and Personal Characteristics                                                                                                                                                                                                                                                       | l |

| 9 |
|---|
|   |
|   |
| 3 |
| 1 |
| 8 |
| 6 |
| • |
| 4 |
| _ |
| 2 |
|   |

| Forecasting Critical Overloads based on Heterogeneous Smart Grid Simulation                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time Efficient Micro-Expression Recognition using Weighted Spatio-Temporal Landmark Graphs 347                                                                                                                                                                                                                                                                                                       |  |
| Nikin Matharaarachchi (Malaysia School of Information Technology,<br>Monash University, Malaysia), Muhammad Fermi Pasha (Malaysia School of<br>Information Technology, Monash University, Malaysia), Sonya Coleman<br>(Intelligent Systems Research Centre, University of Ulster, United<br>Kingdom), and Dermot Kerr (Intelligent Systems Research Centre,<br>University of Ulster, United Kingdom) |  |
| Real-Time Human Activity Classification Using Gait Cycle Averaging and Biometric Heuristics                                                                                                                                                                                                                                                                                                          |  |
| Grant Ellison (Loyola Marymount University, USA), Milla Penelope<br>Markovic (Loyola Marymount University, USA), and Delaram Yazdansepas<br>(Loyola Marymount University, USA)                                                                                                                                                                                                                       |  |
| Sequential2D: Organizing Center of Skip Connections for Transformers                                                                                                                                                                                                                                                                                                                                 |  |
| Reinforcement Learning for Supply Chain Attacks Against Frequency and Voltage Control 369  Amr S. Mohamed (University of Toronto, Canada), Sumin Lee (University of Toronto, Canada), and Deepa Kundur (University of Toronto, Canada)                                                                                                                                                               |  |
| Early Detection of Mental and Behavioral Health Issues from High-School Academic Performance                                                                                                                                                                                                                                                                                                         |  |
| Davide Porello (University of Illinois Chicago, USA), Ugo Buy<br>(University of Illinois Chicago, USA), Kyle W. Boerke (OSF Healthcare,<br>USA), and Sr. M. Pieta Keller (OSF Healthcare, USA)                                                                                                                                                                                                       |  |
| Graph Pyramid Autoformer for Long-Term Traffic Forecasting                                                                                                                                                                                                                                                                                                                                           |  |
| Physically Informed Graph-based Deep Reasoning Net for Efficient Combinatorial Phase  Mapping                                                                                                                                                                                                                                                                                                        |  |
| Yimeng Min (Cornell University, USA), Ming-Chiang Chang (Cornell University, USA), Shufeng Kong (Sun Yat-sen University, China), John M. Gregoire (California Institute of Technology, USA), R. Bruce van Dover (Cornell University, USA), Michael O. Thompson (Cornell University, USA), and Carla P. Gomes (Cornell University, USA)                                                               |  |
| Optimizing Naval Movement Using Deep Reinforcement Learning                                                                                                                                                                                                                                                                                                                                          |  |

| An Innovative Solar Flare Metadata Collection for Space Weather Analytics                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enhancing Transfer Learning Reliability via Block-Wise Fine-Tuning                                                                                                                                                                 |
| Physics-Guided Reinforcement Learning System for Realistic Vehicle Active Suspension Control                                                                                                                                       |
| Anh N. Nhu (University of Maryland), Ngoc-Anh Le (University of Transportation and Communications, Vietnam), Shihang Li (University of Michigan, USA), and Thang D.V. Truong (Hanoi University of Science and Technology, Vietnam) |
| Determining Risk Factors for Long COVID using Positive Unlabeled learning on Electronic  Health Records Data from NIH N3C                                                                                                          |
| Deep Learning-based Student Learning Behavior Understanding Framework in Real Classroom Scene                                                                                                                                      |
| Semantic Segmentation Using Transfer Learning on Fisheye Images                                                                                                                                                                    |
| Shapelet-Preserving Bootstrapping for Time Series Data Augmentation                                                                                                                                                                |
| Empirical Mode Decomposition with Envelope Extraction and LSTM for Univariate Time Series Forecasting                                                                                                                              |
| Mohamed Ndiaye (CReSTIC, Reims Champagne Ardenne University, France)<br>and Mamadou Mboup (CReSTIC, Reims Champagne Ardenne University,<br>France)                                                                                 |
| Data Reduction to Improve the Performance of One-Class Classifiers on Highly Imbalanced Big Data                                                                                                                                   |

| DSVAE: Disentangled Representation Learning for Synthetic Speech Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Channel-Adaptive Early Exiting using Reinforcement Learning for Multivariate Time Series  Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80 |
| Leonardos Pantiskas (Vrije Universiteit Amsterdam), Kees Verstoep<br>(Vrije Universiteit Amsterdam), Mark Hoogendoorn (Vrije Universiteit<br>Amsterdam), and Henri Bal (Vrije Universiteit Amsterdam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Graph Representation Learning with Graph Transformers in Neural Combinatorial Optimization 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ١  |
| Tianze Wang (KTH Royal Institute of Technology, Sweden), Amir H.<br>Payberah (KTH Royal Institute of Technology, Sweden), and Vladimir<br>Vlassov (KTH Royal Institute of Technology, Sweden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| PS3DT: Synthetic Speech Detection Using Patched Spectrogram Transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96 |
| From Pixels to Palate: Deep Learning-based Image Aesthetics Assessment for Food and Beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04 |
| Flood-ResNet50: Optimized Deep Learning Model for Efficient Flood Detection on Edge Device 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Md Azim Khan (University of Maryland Baltimore County (UMBC), USA; Center for Real-time Distributed Sensing and Autonomy (CARDS), USA), Nadeem Ahmed (University of Maryland Baltimore County (UMBC), USA; Center for Real-time Distributed Sensing and Autonomy (CARDS), USA), Joyce Padela (University of Maryland Baltimore County (UMBC), USA), Muhammad Shehrose Raza (University of Maryland Baltimore County (UMBC), USA; Center for Real-time Distributed Sensing and Autonomy (CARDS), USA), Aryya Gangopadhyay (University of Maryland Baltimore County (UMBC), USA; Center for Real-time Distributed Sensing and Autonomy (CARDS), USA), Jianwu Wang (University of Maryland Baltimore County (UMBC), USA; Center for Real-time Distributed Sensing and Autonomy (CARDS), USA), James Foulds (University of Maryland Baltimore County (UMBC), USA), Carl Busart (DEVCOM Army Research Laboratory, Adelphi, Maryland, USA), and Robert F. Erbacher (DEVCOM Army Research Laboratory, Adelphi, Maryland, USA) |    |
| Robust Learning under Label Noise by Optimizing the Tails of the Loss Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |

| Model Fusion                                                                                                                                                                                                                                                                                                                                                                                                                           | . 528 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Michael Lindemann (University of Alaska Anchorage, USA), Kathleen DeMichele (University of Alaska Anchorage, USA), Masoumeh Heidari Kapourchali (University of Alaska Anchorage, USA), Mohammad Heidari Kapourchali (University of Alaska Anchorage, USA), Christine Waigl (University of Alaska Fairbanks, USA), Erin Trochim (University of Alaska Fairbanks, USA), and Long Zhao (South Dakota School of Mines and Technology, USA) |       |
| A Novel Multi-label Evaluation Measure with Comparative Analysis                                                                                                                                                                                                                                                                                                                                                                       | 536   |
| Iterative Feature Boosting for Explainable Speech Emotion Recognition                                                                                                                                                                                                                                                                                                                                                                  | 543   |
| Enhancing Efficiency and Privacy in Memory-Based Malware Classification through Feature Selection                                                                                                                                                                                                                                                                                                                                      | 550   |
| End-to-End Attention/Transformer Model for Solar Flare Prediction from Multivariate Time Series Data                                                                                                                                                                                                                                                                                                                                   | 558   |
| Khaznah Alshammari (New Mexico State University, USA), Kartik Saini<br>(Utah State University, USA), Shah Muhammad Hamdi (Utah State<br>University, USA), and Soukaina Filali Boubrahimi (Utah State<br>University, USA)                                                                                                                                                                                                               |       |
| Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA Sequences                                                                                                                                                                                                                                                                                                                                | 566   |
| An Empirical Evaluation of Autoencoding-based Location Spoofing Detection                                                                                                                                                                                                                                                                                                                                                              | 574   |
| Multi-factor Edge-Weighting with Reinforcement Learning for Load Balancing of Electric Vehicle Charging Stations                                                                                                                                                                                                                                                                                                                       | 580   |

| Vector Representation for Business Process: Graph Embedding for Domain Knowledge  Integration                                                                                                                                                                                                                                                                                                                                         | 588 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Thais Rodrigues Neubauer (University of Sao Paulo, Brazil), Jari<br>Peeperkorn (KU Leuven, Belgium), Sarajane Marques Peres (University of<br>Sao Paulo, Brazil), Jochen De Weerdt (KU Leuven, Belgium), and Marcelo<br>Fantinato (University of Sao Paulo, Brazil)                                                                                                                                                                   |     |
| Improving Transparency and Explainability of Deep Learning based IoT Botnet Detection using Explainable Artificial Intelligence (XAI)                                                                                                                                                                                                                                                                                                 | 595 |
| ChatGPT vs. Human Annotators: A Comprehensive Analysis of ChatGPT for Text Annotation 6<br>Mohammed Aldeen (Clemson University), Joshua Luo (The Westminster<br>Schools), Ashley Lian (SC Governor's School for Science and<br>Mathematics), Venus Zheng (SC Governor's School for Science and<br>Mathematics), Allen Hong (D.W. Daniel High School), Preethika Yetukuri<br>(Clemson University), and Long Cheng (Clemson University) | 502 |
| How Far is too Far? Identifying Suspicious Travel Patterns in Healthcare Claims using  Machine Learning                                                                                                                                                                                                                                                                                                                               | 510 |
| Multi-context Dual Hyper-Prior Neural Image Compression                                                                                                                                                                                                                                                                                                                                                                               | 518 |
| TransGlow: Attention-Augmented Transduction Model based on Graph Neural Networks for Wa<br>Flow Forecasting                                                                                                                                                                                                                                                                                                                           |     |
| EnCoDe: Enhancing Compressed Deep Learning Models through Feature Distillation and Informative Sample Selection                                                                                                                                                                                                                                                                                                                       | 533 |
| Learning Unbiased News Article Representations: A Knowledge-Infused Approach                                                                                                                                                                                                                                                                                                                                                          | 539 |
| XLNet4Rec: Recommendations based on users' Long-Term and Short-Term Interests using Transformer                                                                                                                                                                                                                                                                                                                                       | 547 |

|      | versarial Attack Driven Data Augmentation for Time Series Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 653 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 659  | Aluating Machine Learning and Statistical Models for Greenland Subglacial Bed Topography (9)  Katherine Yi (Purdue University, USA), Angelina Dewar (University of Oregon, USA), Tartela Tabassum (University of Maryland Baltimore County, USA), Jason Lu (University of Maryland College Park, USA), Ray Chen (Marriotts Ridge High School, USA), Homayra Alam (University of Maryland Baltimore County, USA), Omar Faruque (University of Maryland Baltimore County, USA), Sikan Li (Texas Advanced Computing Center, University of Texas at Austin, USA), Mathieu Morlighem (Dartmouth College, USA), and Jianwu Wang (University of Maryland Baltimore County, USA)                                                                                                                                                                            | ·   |
|      | ntext-Aware Neural Video Compression on Solar Dynamics Observatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 667 |
|      | ay-Box Adversarial Attack of Deep Reinforcement Learning-based Trading Agents<br>Foozhan Ataiefard (University of Calgary, Canada) and Hadi Hemmati<br>(York University, Canada)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 675 |
|      | otoKD: Learning from Extremely Scarce Data for Parasite Ova Recognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 683 |
| Infe | antifying Causes of Arctic Amplification via Deep Learning based Time-Series Causal erence Sahara Ali (University of Maryland, USA; NSF HDR Institute for Harnessing Data and Model Revolution in the Polar Regions (iHARP), USA), Omar Faruque (University of Maryland, USA), Yiyi Huang (University of Maryland, USA), Md. Osman Gani (University of Maryland, USA; NSF HDR Institute for Harnessing Data and Model Revolution in the Polar Regions (iHARP), USA), Aneesh Subramanian (University of Colorado Boulder, USA; NSF HDR Institute for Harnessing Data and Model Revolution in the Polar Regions (iHARP), USA), Nicole-Jeanne Schlegel (Geophysical Fluid Dynamics Laboratory, NOAA, USA), and Jianwu Wang (University of Maryland, USA; NSF HDR Institute for Harnessing Data and Model Revolution in the Polar Regions (iHARP), USA) | 689 |

## Main Conference (in person, short papers)

| Multi-class Text Classification Based in Oversampling for Highly Imbalanced Dataset  Dário Santos (University of Brazilian, Brazil), João Javidi (Hamm-Lippstadt University of Applied Sciences, Germany), Daniel Alves (University of Brazilian, Brazil), Fábio Mendonça (University of Brazilian, Brazil), Carlos Veiga (Federal Government of Brazil AGU, Brazil), and Rafael T. de Sousa (University of Brazilian, Brazil)                                                                                                                                                                                        | 752 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Characterizing CNN-based Vessel Detection Algorithm Sensitivity to Optical Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Artifacts John G. Warner (US Naval Research Laboratory, USA), Quinton Davidson (US Naval Research Laboratory, USA), Michael Tietz (US Naval Research Laboratory, USA), William Scharpf (US Naval Research Laboratory, USA), and Charles Keene (US Naval Research Laboratory, USA)                                                                                                                                                                                                                                                                                                                                     | 756 |
| Scalable Federated Learning for Clients with Different Input Image Sizes and Numbers of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 764 |
| Output Categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 704 |
| A New Self-Adaptive Hybrid Approach based on History-Driven Methods for Improving<br>Metaheuristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 770 |
| Rapid Identification of Protein Formulations with Bayesian Optimisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 776 |
| Optimizing Audio Advertising Campaign Delivery with a Limited Budget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 782 |
| Epileptic Electroencephalogram Signal Classification Based on Shearlet and Contourlet Transforms  Paulo Amorim (Technological Development Center, Oswaldo Cruz Foundation, Brazil; Division of Technologies for Production and Health, CTI Renato Archer, Brazil; Institute of Computing, University of Campinas (UNICAMP), Brazil), Thiago Moraes (Division of Technologies for Production and Health, CTI Renato Archer, Brazil), Jorge Silva (Division of Technologies for Production and Health, CTI Renato Archer, Brazil), and Helio Pedrini (Institute of Computing, University of Campinas (UNICAMP), Brazil) | 788 |
| Benefits of using Multiple Post-Hoc Explanations for Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 794 |

| Transferable Graph Neural Fingerprint Models for Quick Response to Future Bio-Threats  Wei Chen (Brookhaven National Laboratory, USA), Yihui Ren (Brookhaven National Laboratory, USA), Ai Kagawa (Brookhaven National Laboratory, USA), Matthew R. Carbone (Brookhaven National Laboratory, USA), Samuel Yen-Chi Chen (Brookhaven National Laboratory, USA), Xiaohui Qu (Brookhaven National Laboratory, USA), Shinjae Yoo (Brookhaven National Laboratory, USA), Austin Clyde (Argonne National Laboratory, USA), Arvind Ramanathan (Argonne National Laboratory, USA), Rick L. Stevens (Argonne National Laboratory, USA), Hubertus J. J. van Dam (Brookhaven National Laboratory, USA), and Deyu Lu (Brookhaven National Laboratory, USA) | 800   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| CD-NOTEARS: Concept Driven Causal Structure Learning using NOTEARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 808   |
| HCT: Hybrid Convnet-Transformer for Parkinson's Disease Detection and Severity Prediction from Gait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 814   |
| Machine Learning of Feature Importance for Biomechanical Efficiency of Baseball Pitching  Manfred Minimair (Seton Hall University, USA), Richard J. Boergers (Seton Hall University, USA), Michael Ciminiello (Seton Hall University, USA), Emily Giannini (Seton Hall University, USA), Natasha Rosa (Seton Hall University, USA), Zachary Sylvester (Seton Hall University, USA), and Anthony Viscovich (Seton Hall University, USA)                                                                                                                                                                                                                                                                                                        | 820   |
| Byzantine Resilient Federated REINFORCE (GM-FedREINFORCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 825 |
| Measuring and Modifying Factual Knowledge in Large Language Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 831   |
| Machine Learning Approach for Particle Matching, Tracing and Velocimetry with Self-Organizing Map: Application to Complex Plasmas  Max Klein (NanoP, THM University of Applied Sciencesl. Institute of Physics, Justus Liebig University, Germany), Niklas Dormagen (NanoP, THM University of Applied Sciencesl. Institute of Physics, Justus Liebig University, Germany), Andreas S. Schmitz (I. Institute of Physics, Justus Liebig University, Germany), Markus H. Thoma (I. Institute of Physics, Justus Liebig University, Germany), and Mike Schwarz (NanoP, THM University of Applied Sciences, Germany)                                                                                                                               | . 839 |
| Automated Data Labeling for Object Detection via Iterative Instance Segmentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 845 |
| SIGMA: A Dataset for Text-to-Code Semantic Parsing with Statistical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 851   |

| Facial Expression Recognition using Robust Attention-Based CNN                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| AIRABIC: Arabic Dataset for Performance Evaluation of AI Detectors                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64   |
| Detecting Dialogue Hallucination using Graph Neural Networks                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71   |
| Semmeldetector: Application of Machine Learning in Commercial Bakeries                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78   |
| Enhanced Spatio-Temporal Image Encoding for Online Human Activity Recognition                                                                                                                                                                                                                                                                                                                                                                                                                            | 84   |
| A Deep Learning Framework for Time-Series Processing-Microstructure-Property Prediction 85 Yuwei Mao (Northwestern University, USA), Mahmudul Hasan (Virginia Tech, USA), Claire Lee (Northwestern University, USA), Muhammed Nur Talha Kilic (Northwestern University, USA), Vishu Gupta (Northwestern University, USA), Wei-keng Liao (Northwestern University, USA), Alok Choudhary (Northwestern University, USA), Pinar Acar (Virginia Tech, USA), and Ankit Agrawal (Northwestern University, USA) | 90   |
| Estimating Plant Physiological State by Learning Methods Considering Imbalance and Time-Series                                                                                                                                                                                                                                                                                                                                                                                                           | 94   |
| Transfer Distance and Operating Envelopes to Detect Non-Stationarity in Cyber Environments 900 Stephen Adams (Virginia Tech National Security Institute, VA), Tyler Cody (Virginia Tech National Security Institute, VA), Ramin Salman Roughani (Virginia Tech, VA), and Peter A. Beling (Virginia Tech National Security Institute, VA; Virginia Tech, VA)                                                                                                                                              | •••• |

| Knowledge Distillation for Quantized Vehicle Sensor Data                                                                 | 800 |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| dentification of Adipogenic and Osteogenic Differentiation using Transfer Learning of ResNet-18                          | )16 |
| Meta-Analysis of the Machine Learning Operations Open Source Ecosystem                                                   | 22  |
| Fake Review Detection Using Rating-Sentiment Inconsistency                                                               | 26  |
| Zero-Shot Information Extraction with Community-Fine-Tuned Large Language Models from Dpen-Ended Interview Transcripts   | 32  |
| ntent Detection at Scale: Tuning a Generic Model using Relevant Intents                                                  | 38  |
| Medical Asset Management: Deep Learning Based Asset Usage Prediction in a Hospital Setting using Real Data               | 44  |
| Assessment of Data Augmentation and Transfer Learning for Making Pig Cough Classifier Robust to Changing Farm Conditions | )52 |
| An Enhanced YOLO Failure Detection Method                                                                                | 958 |

| An Unsupervised Approach to Motion Detection Using WiFi Signals                                                                                                                                                                                                                                                                                                                                                    | 966  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Facial Expression Recognition using Convolutional Neural Network through Region-based Patch Generation: Harnessing Subtle Facial Cues                                                                                                                                                                                                                                                                              | 973  |
| Posterior Collapse in Variational Gradient Origin Networks                                                                                                                                                                                                                                                                                                                                                         | 980  |
| Benchmarking Communicative Reinforcement Learning Frameworks on Multi-robot Cooper Tasks                                                                                                                                                                                                                                                                                                                           |      |
| Muhammad Naveed Abbas (Technological University of the Shannon:<br>Midlands Midwest, Ireland), Paul Liston (Technological University of<br>the Shannon: Midlands Midwest, Ireland), Brian Lee (Technological<br>University of the Shannon: Midlands Midwest, Ireland), and Yuansong<br>Qiao (Technological University of the Shannon: Midlands Midwest,<br>Ireland)                                                | 500  |
| Accelerating Scientific Simulations with Bi-Fidelity Weighted Transfer Learning                                                                                                                                                                                                                                                                                                                                    | 994  |
| Interactive Distillation of Large Single-Topic Corpora of Scientific Papers  Nicholas Solovyev (Theoretical Division, LANL, USA), Ryan Barron (Theoretical Division, LANL, USA), Manish Bhattarai (Theoretical Division, LANL, USA), Maksim E. Eren (Advanced Research in Cyber Systems, LANL, USA), Kim Ø. Rasmussen (Theoretical Division, LANL, USA), and Boian S. Alexandrov (Theoretical Division, LANL, USA) | 1000 |
| Hybrid Quantum-Classical Machine Learning for Sentiment Analysis                                                                                                                                                                                                                                                                                                                                                   | 1006 |
| Multi-modal Relational Side Information Graph Attention Networks for Recommender Syste 1012                                                                                                                                                                                                                                                                                                                        | em   |
| Shengzhe Jiao (Osaka University, Japan), Yihong Zhang (Osaka<br>University, Japan), and Takahiro Hara (Osaka University, Japan)                                                                                                                                                                                                                                                                                    |      |

| MoEAtt: A Deep Mixture of Experts Model using Attention-based Routing Gate                                        | 18 |
|-------------------------------------------------------------------------------------------------------------------|----|
| Fracture Estimation based on Deformation History with Recurrent Neural Networks                                   | 25 |
| Hierarchical Multi-agent Reinforcement Learning for Air Combat Maneuvering                                        | 31 |
| The Impact of Racial Disparities on Prenatal Care Adequacy: An Algorithmic Fairness  Perspective                  | 39 |
| Robotic Peg-in-Hole Insertion with Tight Clearances: A Force-based Deep Q-Learning Approach                       | 45 |
| Advancing Precision Medicine: An Evaluative Study of Feature Selection Methods                                    | 52 |
| CNN-LSTM-based Deep Recurrent Q-Learning for Robotic Gas Source Localization                                      | 60 |
| Deep Learning Based Segmentation of Luria's Alternating Series Test to Support Diagnostics of Parkinson's Disease | 66 |
| Addressing Class Imbalance in Aeroengine Fault Detection                                                          | 72 |
|                                                                                                                   |    |

| Accuracy of TextFooler Black Box Adversarial Attacks on 01 Loss Sign Activation Neural  Network Ensemble                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (New Jersey Institute of Technology, USA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Towards Safe Online Machine Learning Model Training and Inference on Edge Networks 1082 Md Al Maruf (Ontario Tech University, Canada), Akramul Azim (Ontario Tech University, Canada), Nitin Auluck (Indian Institute of Technology, India), and Mansi Sahi (Indian Institute of Technology, India)                                                                                                                                                                                                        |
| Accelerated Text Data Augmentation Using a Paraphrase Generation Model with Round-Trip Translation as a Supervisor                                                                                                                                                                                                                                                                                                                                                                                         |
| AssistTaxi: A Comprehensive Dataset for Taxiway Analysis and Autonomous Operations 1094 Parth Ganeriwala (Florida Institute of Technology, USA), Siddhartha Bhattacharyya (Florida Institute of Technology, USA), Sean Gunther (Florida Institute of Technology, USA), Brian Kish (University of Michigan, USA), Mohammed Abdul Hafeez Khan (BITS Pilani Dubai Campus, United Arab Emirates), Ankur Dhadoti (Florida Institute of Technology, USA), and Natasha Neogi (Langley Research Center, NASA, USA) |
| A Lightweight Deep Recurrent Q-Learning Technique for Autonomous Wildfire Surveillance . 1100<br>Jeremy Cantor (University of North Florida, USA), Patrick Kreidl<br>(University of North Florida, USA), John Nuszkowski (University of<br>North Florida, USA), Alan Harris (University of North Florida, USA),<br>and Ayan Dutta (University of North Florida, USA)                                                                                                                                       |
| A Lock Contention Classifier based on Java Lock Contention Anti-Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hybrid Wavelet Transform and Deep Stacking Ensemble Model for Network Traffic Prediction                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nader Joojili (Carleton University, Canada), Alexis<br>Amezaga-Hechavarria (Carleton University, Canada), Omair Shafiq<br>(Carleton University, Canada), Akram Bin Sediq (Ericsson-Canada,<br>Canada), Peiliang Chang (Ericsson, Sweden), and Hatem Abou-Zeid<br>(University of Calgary, Canada)                                                                                                                                                                                                           |
| ConKGP: A Contrastive Learning Framework on Knowledge Graphs for Commonsense Reasoning with Perturbation                                                                                                                                                                                                                                                                                                                                                                                                   |
| XTSC-Bench: Quantitative Benchmarking for Explainers on Time Series Classification                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Patronizing and Condescending Language Detection                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breaking the Limits of Scanning Tunneling Microscopy Using Image Super Resolution 1138  Rockwell T. Li (Ocean Lakes High School, USA), Shashika Wijerathna (Old Dominion University, USA), and Yuan Zhang (Old Dominion University, USA)                                                                                                                                                                                                                            |
| Analysis of Cardholder Spending Behavior and Transaction Authentication to Enhance Credit Card Fraud Detection                                                                                                                                                                                                                                                                                                                                                      |
| Hi-GoTE: Hierarchical Group-Wise Temporal Ensembling for Semi-Supervised Pedestrian Attribute Recognition                                                                                                                                                                                                                                                                                                                                                           |
| Demonstrating Automated Generation of Simulation Models from Engineering Diagrams 1156  Jan Marius Stürmer (German Aerospace Center (DLR), Institute for the  Protection of Terrestrial Infrastructures, Germany), Tobias Koch  (German Aerospace Center (DLR), Institute for the Protection of  Terrestrial Infrastructures, Germany), and Marius Graumann (German  Aerospace Center (DLR), Institute for the Protection of Terrestrial  Infrastructures, Germany) |
| Hierarchical Federated Transfer Learning: A Multi-cluster Approach on the Computing  Continuum                                                                                                                                                                                                                                                                                                                                                                      |
| User-Centric Synthetic Road Network Generation using Graph Neural Networks and Graph Autoencoders                                                                                                                                                                                                                                                                                                                                                                   |
| Behavior Analysis of Parent-Child Interactions from Text                                                                                                                                                                                                                                                                                                                                                                                                            |
| Multi-spectral Entropy Constrained Neural Compression of Solar Imagery                                                                                                                                                                                                                                                                                                                                                                                              |

| Utilizing Machine Learning to Enhance Profit Generation from Technical Trading Rules in Portfolio Construction within the Stock Exchange of Thailand                                                                                                                    | 9 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Impact of Stress on Sleep Levels: A Comparative Machine Learning Study Based on Wearable Data                                                                                                                                                                           | 4 |
| Assessor Models with a Reject Option for Soccer Result Prediction                                                                                                                                                                                                       | 0 |
| α-Mutual Information: A Tunable Privacy Measure for Privacy Protection in Data Sharing 120<br>MirHamed Jafarzadeh Asl (McGill University, Canada), Mohammadhadi<br>Shateri (École de technologie supérieure, Canada), and Fabrice Labeau<br>(McGill University, Canada) | 6 |
| Machine Learning-based California Wildfire Risk Prediction and Visualization                                                                                                                                                                                            | 2 |
| Identifying Household Fingerprint using Intelligent Passive Monitoring for People Living with Dementia                                                                                                                                                                  | 8 |
| Many-to-One: Transformer-based Unsupervised Anomaly Detection and Localization on Industrial Images                                                                                                                                                                     | 4 |

| Building Brid<br>1228                                           | lges of Knowledge: Innovating Education with Automated Crossword Generation                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (University<br>Leonardo                                         | einalipour (University of Siena, Italy), Tommaso laquinta<br>y of Siena, Italy), Giovanni Angelini (Expert.ai, Italy),<br>Rigutini (Expert.ai, Italy), Marco Maggini (University of<br>y), and Marco Gori (University of Siena, Italy)                                                                        |
| Syed Ham<br>(University                                         | l of Vision-Language Models for Content Moderation of Children's Videos 1237<br>Imad Ahmed (University of Central Florida, USA), Shengnan Hu<br>If y of Central Florida, USA), and Gita Sukthankar (University<br>If Florida, USA)                                                                            |
| Rose Atua<br>USA), Dan                                          | one Intensity Forecasting Using Deep Learning                                                                                                                                                                                                                                                                 |
| Pouya Ho.<br>State Univ<br>Soukaina                             | lassification with Meta-Learning and Multimodal Stratified Time Series Forest 1248<br>sseinzadeh (Utah State University, USA), Omar Bahri (Utah<br>versity, USA), Peiyu Li (Utah State University, USA),<br>Filali Boubrahimi (Utah State University, USA), and Shah<br>ad Hamdi (Utah State University, USA) |
| Adarsha E                                                       | Hardware Co-Optimization of Crossbar-based Neuromorphic Systems                                                                                                                                                                                                                                               |
| 1261<br>Ebelechuk                                               | Mitigating Man-in-the-Middle Attacks in IoT Networks using Graph-based Learning  Swu Nwafor (Villanova University, USA), Carter Schmidt  University, USA), and Habeeb Olufowobi (University of Texas  on, USA)                                                                                                |
| Approach  Bulent Soy                                            | Multi Commodity Flow Problem Under Uncertainty: A Deep Reinforcement Learning<br>                                                                                                                                                                                                                             |
| Cory Davi<br>Stockton (                                         | llysis for Enhancing the Performance of Graph Neural Networks                                                                                                                                                                                                                                                 |
| Amanda (<br>Brynielsso<br>Defence R                             | ing for Improvement of Classification of Cyberthreat Actors in Text Fragments 1279<br>Carp (KTH Royal Institute of Technology, Sweden), Joel<br>on (KTH Royal Institute of Technology, Sweden; FOI Swedish<br>Jesearch Agency, Sweden), and Agnes Tegen (FOI Swedish Defence<br>Agency, Sweden)               |
| Systems<br>Khalil Bac<br>(University<br>University<br>Descartes | ustering Using Sparse Non-Negative Matrix Factorization for Recommendation                                                                                                                                                                                                                                    |

| Quantitative Analysis of Forecasting Models: In the Aspect of Online Political Bias                                                                                                                                                                                                                                                                                                                                               | 1295  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Vision Transformer-based Classification for Lung and Colon Cancer using Histopathology Images                                                                                                                                                                                                                                                                                                                                     | 1300  |
| Munjur Hasan (Gono Bishwabidyalay, Bangladesh), Md Saifur Rahman (University of Minnesota Crookston, USA), Sabrina Islam (Florida Atlantic University, USA), Tanvir Ahmed (North Dakota State University, USA), Nafiz Rifat (North Dakota State University, USA), Mostofa Ahsan (North Dakota State University, USA), Rahul Gomes (University of Wisconsin-Eau Claire, USA), and Md. Chowdhury (East Stroudsburg University, USA) | 1300  |
| Learning Discriminative Feature Representations via Metric Learning for Early Operation of Wind Turbine Anomaly Detection Systems  Taiki Inoue (Waseda University), Jun Ogata (National Institute of Advanced Industrial Science and Technology), Makoto lida (The University of Tokyo), and Tetsuji Ogawa (Waseda University)                                                                                                    | 1305  |
| Novel Representation Learning Technique using Graphs for Performance Analytics                                                                                                                                                                                                                                                                                                                                                    | 1311  |
| Node Selection in Federated Learning Using Sparsity Regularization and Compressive Sensir<br>1319  Mohammad Islam (Wayne State University, USA) and Mohammed Alawad<br>(Wayne State University, USA)                                                                                                                                                                                                                              | ıg    |
| Special Session 1: Deep Learning                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Conditioned Cycles in Sparse Data Domains: Applications to Electromagnetics                                                                                                                                                                                                                                                                                                                                                       | 1324  |
| Detection of Coronavirus Disease (COVID-19) based on Deep Features and Support Vector Machine                                                                                                                                                                                                                                                                                                                                     | N/A   |
| Is GPT Powerful Enough to Analyze the Emotions of Memes?  Jingjing Wang (clemson university, USA), Joshua Luo (The Westminster Schools, USA), Grace Yang (South Windsor High School, USA), Allen Hong (D.W. Daniel High School, USA), and Feng Luo (Clemson University, USA)                                                                                                                                                      | .1338 |
| Deep Learning based Forecasting of COVID-19 Hospitalisation in England: A Comparative Analysis                                                                                                                                                                                                                                                                                                                                    | .1344 |

| Reliable Classification using Compact Support Probabilistic PCA                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From Sky to Strategy: Construction Activity Index and Stage Estimation from Drone-Captured Imagery                                                                                                                                                                                                                                                                                                               |
| Re-Identification Robustness Over Time – The Case for Synthetic Training Data                                                                                                                                                                                                                                                                                                                                    |
| MIS-AVoiDD: Modality Invariant and Specific Representation for Audio-Visual Deepfake  Detection                                                                                                                                                                                                                                                                                                                  |
| Vinaya Sree Katamneni (University of North Texas, USA) and Ajita<br>Rattani (University of North Texas, USA)                                                                                                                                                                                                                                                                                                     |
| Deep Single Models vs. Ensembles: Insights for a Fast Deployment of Parking Monitoring Systems                                                                                                                                                                                                                                                                                                                   |
| Towards Graph based Semi-Supervised Learning on Audio Embeddings for Label Classification 1385 Rishabh Chandaliya (University of Galway, Ireland), Mohan Timilsina (University of Galway, Ireland), John Breslin (University of Galway, Ireland), and Martin Serrano (University of Galway, Ireland)                                                                                                             |
| Caveline Detection at the Edge for Autonomous Underwater Cave Exploration and Mapping  1392  Mohammadreza Mohammadi (University of South Carolina, USA), Sheng-En Huang (University of Florida, USA), Titon Barua (University of South Carolina, USA), Ioannis Rekleitis (University of South Carolina, USA), Md Jahidul Islam (University of Florida, USA), and Ramtin Zand (University of South Carolina, USA) |
| A Comprehensive Python Library for Deep Learning-Based Event Detection in Multivariate  Time Series Data                                                                                                                                                                                                                                                                                                         |

| Rethinking Real Estate Pricing with Transformer Graph Neural Networks (T-GNN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attention-based Regularisation for Improved Generalisability in Medical Multi-Centre Data 1412 Daniel Silva (The Netherlands Cancer Institute, Netherlands; INESC TEC, Portugal; Faculty of Engineering, University of Porto, Portugal), Georgios Agrotis (The Netherlands Cancer Institute, Netherlands; University Hospital of Larissa, Greece), Regina Beets-Tan (The Netherlands Cancer Institute, The Netherlands; GROW School for Oncology and Developmental Biology, The Netherlands), Luís Teixeira (INESC TEC, Portugal; Faculty of Engineering, University of Porto, Portugal), and Wilson Silva (The Netherlands Cancer Institute, The Netherlands; INESC TEC, Portugal) |
| Toward Scene Understanding with Depth and Object-Aware Clustering in Contested Environment 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Manish Bhurtel (Howard University, USA), Yuba Siwakoti (Howard<br>University, USA), Danda Rawat (Howard University, USA), Brian Sadler<br>(U.S. Army Research Laboratory, USA), John Fossaceca (U.S. Army<br>Research Laboratory, USA), and Daniel Rice (BAE Systems, USA)                                                                                                                                                                                                                                                                                                                                                                                                          |
| Depression Diagnosis Algorithm Based on R2U-Net Using Facial Images                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Towards Augmentation Based Defense Strategies Against Adversarial Attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Evaluating Impact of Wearing Masks in Face Recognition Using Deep Learning Algorithms 1438<br><i>Mustafa Atay (Winston-Salem State University, USA) and Megh Poudyel</i><br>(Winston-Salem State University, USA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Towards Few-Shot Time Series Anomaly Detection with Temporal Attention and Dynamic Thresholding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Recurrent Neural Network and Convolutional Neural Network for Detection of Denial of Service Attack in Microservices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Key Information Extraction from Invoices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Modified Grouped Convolution-Based EfficientNet Deep Learning Architecture for Apple Disease Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# **Special Session 2: Machine Learning for Natural Language Processing**

| Sentence Embedding with Named Entities for Conversation Fingerprint                                                   |
|-----------------------------------------------------------------------------------------------------------------------|
| Word Class Representations Spontaneously Emerge in a Deep Neural Network Trained on Next Word Prediction              |
| A Sentiment Analysis Benchmark for Automated Machine Learning Applications                                            |
| Gaussian Process with Correlation Factor for Text Classification Problem                                              |
| Detection of Anti-Human Rights Discourse from Colombian Social Media Conversations using  Advanced Transformer Models |
| Data Augmentation for Emotion Detection in Small Imbalanced Text Data                                                 |
| UNF-IDT: Automated Irony Detection in English Tweets                                                                  |
| Exploring Multi-level Threats in Telegram Data with Al-Human Annotation: A Preliminary Study                          |
| GPT-Detox: An In-Context Learning-Based Paraphraser for Text Detoxification                                           |

#### **Special Session 3: Neuromorphic Computing and Applications**

| No | isyDECOLLE: Robust Local Learning for SNNs on Neuromorphic Hardware<br>Tim Stadtmann (RWTH Aachen University, Germany), Benedikt Wahl (RWTH<br>Aachen University, Germany), and Tobias Gemmeke (RWTH Aachen<br>University, Germany)                                                                                                                                                                             | 1535 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| _  | perparameter Optimization and Feature Inclusion in Graph Neural Networks for Spiking plementation                                                                                                                                                                                                                                                                                                               | 1541 |
|    | Guojing Cong (Oak Ridge National Laboratory, USA), Shruti Kulkarni (Oak Ridge National Laboratory, USA), Seung-Hwan Lim (Oak Ridge National Laboratory, USA), Prasanna Date (Oak Ridge National Laboratory, USA), Shay Snyder (George Mason University, USA), Maryam Parsa (George Mason University, USA), Dominic Kennedy (University of Tennessee, USA), and Catherine Schuman (University of Tennessee, USA) |      |
| Re | altime Facial Expression Recognition: Neuromorphic Hardware vs. Edge Al Accelerators Heath Smith (University of South Carolina, USA), James Seekings (University of South Carolina, USA), Mohammadreza Mohammadi (University of South Carolina, USA), and Ramtin Zand (University of South Carolina, USA)                                                                                                       | 1547 |

## **Special Session 4: Machine and Deep Learning in Cybersecurity and Privacy**

| Optimal Asynchronous Federated Learning for the Internet of Battlefield Things (IoBT) |
|---------------------------------------------------------------------------------------|
| BERT-Based Sentiment Forensics Analysis for Intrusion Detection                       |
| An Investigation of Large Language Models for Real-World Hate Speech Detection        |

## **Special Session 5: Machine Learning for Predictive Models in Engineering Applications**

Wind Turbine Generator bearing Anomaly Detection and Explanation using RRCF Approach . 1574 Raubertin Randrianandraina (Univ. of Lille, France), Julien Chapuy (Scientific campus, France), Lala Rajaoarisoa (Univ. of Lille, France), and Moamar Sayed-Mouchaweh (Univ. of Lille, France)

| PIPENet: A Semantic Segmentation Approach to Pipeline Component Detection from Magnetic Flux Leakage Readings                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amir Behbahanian (T.D. Williamson Inc.), Ron Lundstrom (T.D.                                                                                                                                                                                                                  |
| Williamson Inc.), Adrian Belanger (T.D. Williamson Inc.), Paul                                                                                                                                                                                                                |
| Dalfonso (T.D. Williamson Inc.), and Robert Coleman (T.D. Williamson<br>Inc.)                                                                                                                                                                                                 |
| Overwater Emitter Localization with a Single Receiver using Neural Network Modeling                                                                                                                                                                                           |
| General Model for Manufacturing Defect Detection Crossing Multiple Products                                                                                                                                                                                                   |
| Performance Improvement in Time Series Prediction through Pecnet Framework                                                                                                                                                                                                    |
| Truth Seeker of the Largest Social Media Content using Machine Learning Algorithms 160 Maysa Khalil (Princess Sumaya University for Technology, Jordan) and Mohammad Azzeh (Princess Sumaya University for Technology, Jordan)                                                |
| DADO - Low-Cost Query Strategies for Deep Active Design Optimization                                                                                                                                                                                                          |
| Incremental Domain Learning for Surface Quality Inspection of Automotive High Voltage Battery                                                                                                                                                                                 |
| Majid Shirazi (BMW AG, Germany), Georgij Safronov (BMW AG, Germany),<br>and Amr Rizk (University of Duisburg-Essen, Germany)                                                                                                                                                  |
| A Machine Learning Approach to Support Neuromorphic Device Design and Microfabrication 1627                                                                                                                                                                                   |
| Abdi Yamil Vicenciodelmoral (Washington State University Vancouver,<br>USA), Md Mehedi Hasan Tanim (Washington State University Vancouver,<br>USA), Feng Zhao (Washington State University Vancouver, USA), and<br>Xinghui Zhao (Washington State University Vancouver, USA)  |
| Object Detection in Pineapple Fields Drone Imagery Using Few Shot Learning and the Segment Anything Model                                                                                                                                                                     |
| Fabian Fallas-Moya (The University of Tennessee, University of Costa<br>Rica Fellow, USA), Saul Calderon-Ramirez (Instituto Tecnologico de<br>Costa Rica, Costa Rica), Amir Sadovnik (The University of Tennessee,<br>USA), and Hairong Qi (The University of Tennessee, USA) |

| Orbit Propagation from Historical Data using Physics-informed Neural ODEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AlloyGAN: Domain-Promptable Generative Adversarial Network for Generating Aluminum Alloy Microstructures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Semi-Supervised Learning Based Femur Segmentation from QCT Images                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DeepSC-Edge: Scientific Corrosion Segmentation with Edge-Guided and Class-Balanced Losses  1662  Biao Yin (Worcester Polytechnic Institute, USA), Nicholas Josselyn (Worcester Polytechnic Institute, USA), Thomas Considine (Worcester Polytechnic Institute, USA), John Kelley (Worcester Polytechnic Institute, USA), Berend Rinderspacher (Worcester Polytechnic Institute, USA), Robert Jensen (Worcester Polytechnic Institute, USA), James Snyder (Worcester Polytechnic Institute, USA), Ziming Zhang (Worcester Polytechnic Institute, USA), and Elke Rundensteiner (Worcester Polytechnic Institute, USA) |
| Detection of Exponential Regimes from Time Series for Characterizing the Thermal Dynamics of Buildings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Special Session 6: Machine Learning Applications in Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Utilizing Machine Learning Techniques in Predicting Job Viability of Information<br>Technology Program Graduates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Detection Success Assessment of Machine Learning Algorithms Through Manifest File Permissions Demanded by Malicious Android Wares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Enhancing Transfer Learning of LLMs through Fine-Tuning on Task-Related Corpora for Automated Short-Answer Grading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A Comparative Analysis of Nature-Inspired Feature Selection Algorithms in Predicting Student Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Modeling Student Improvement in Tests with Multiple Attempts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# Special Session 9: REU Symposium in Data Science, Systems and Security (only for undergraduate REU students)

| Evi | ilELF: Evasion Attacks on Deep-Learning Malware Detection over ELF FilesAndrew Kosikowski (Rose-Hulman Institute of Technology), Daniel Cho (Hamilton College), Mabon Ninan (University of Cincinnati), Anca Ralescu (University of Cincinnati), and Boyang Wang (University of Cincinnati)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1702 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Α 9 | Study on the Vulnerability of Test Questions against ChatGPT-based Cheating<br>Shanker Ram (Lynbrook High School, USA) and Chen Qian (University of California at Santa Cruz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1710 |
| Α ( | ChatGPT-Like Solution for Power Transformer Condition Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1716 |
| То  | wards Privacy Preserving Financial Fraud Detection<br>Stephanie Abanilla (New Jersey City University, USA), Moitrayee<br>Chatterjee (New Jersey City University, USA), and Shuvalaxmi Dass<br>(University of Louisiana at Lafayette, USA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1723 |
|     | celerating Real-Time Imaging for Radiotherapy: Leveraging Multi-GPU Training with Torch  Ruth Obe (University of Houston-Clear Lake, USA), Brandt Kaufmann (University of San Francisco, USA), Kaelen Baird (Skidmore College, USA), Sam Kadel (Mount Holyoke College, USA), Yasmin Soltani (University of Houston, USA), Mostafa Cham (University of Maryland, Baltimore County, USA), Matthias Gobbert (University of Maryland, Baltimore County, USA), Carlos Barajas (University of Maryland, Baltimore County, USA), Zhuoran Jiang (Duke University, USA), Vijay Sharma (University of Maryland School of Medicine, USA), Lei Ren (University of Maryland School of Medicine, USA), Stephen Peterson (University of Cape Town, South Africa), and Jerimy Polf (H3D, Inc, USA) | 1727 |
| En  | ergy-Efficient GPU-Intensive Workload Scheduling for Data Centers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1735 |
| De  | enial-of Service (DoS) Attack Detection Using Edge Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1741 |
| An  | Extended Study of the Applications of Using Gesture Control to Pilot UAVs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1746 |

| Integrating Fourier Transform and Residual Learning for Arctic Sea Ice Forecasting                                                                                                                                                                                                                                                                                                                                                  | 53  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Implementing Recycling Methods for Linear Systems in Python with an Application to Multiple Objective Optimization                                                                                                                                                                                                                                                                                                                  | '59 |
| A Remote Sensing Framework for Automated Monitoring of Roadside Water Quality                                                                                                                                                                                                                                                                                                                                                       | 65  |
| Virtual Tracks                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Main Conference (virtual, long papers)                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Towards the Semantic Interpretation of Arbitrary Traffic Signs: Semantic Parsing for Action-Oriented Signs                                                                                                                                                                                                                                                                                                                          | '71 |
| DualCam: A Novel Benchmark Dataset for Fine-Grained Real-Time Traffic Light Detection 17 Harindu Jayarathne (University of Moratuwa, Sri Lanka), Tharindu Samarakoon (University of Moratuwa, Sri Lanka), Hasara Koralege (University of Moratuwa, Sri Lanka), Asitha Divisekara (University of Moratuwa, Sri Lanka), Ranga Rodrigo (University of Moratuwa, Sri Lanka), and Peshala Jayasekara (University of Moratuwa, Sri Lanka) | 78  |
| Dormant Neural Trojans                                                                                                                                                                                                                                                                                                                                                                                                              | 84  |
| Corn Yield Prediction using Spatial-Temporal Data and Deep Learning                                                                                                                                                                                                                                                                                                                                                                 | 92  |
| Semi-supervised Learning using Sparsely Labelled Sip Events for Online Hydration Tracking Systems                                                                                                                                                                                                                                                                                                                                   | '99 |
| Controlled Randomness Improves the Performance of Transformer Models                                                                                                                                                                                                                                                                                                                                                                | 05  |

| End-to-End Optimized Pipeline for Prediction of Protein Folding Kinetics                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exploring Hessian Regularization in Mixup                                                                                                                                                                                                                           |
| TransNet: A Transfer Learning-Based Network for Human Action Recognition                                                                                                                                                                                            |
| GraphWavenet+TimeGrad Probabilistic Model for High-Dimensional Time Series Prediction . 1833<br>Xiuxuan Sun (Louisiana State University, USA) and Jianhua Chen<br>(Louisiana State University, USA)                                                                 |
| Robust and Transferable Graph Neural Networks for Medical Images                                                                                                                                                                                                    |
| W3Detector: Detecting Fraudulent Online Sellers Based on Temporal and Spacial Information                                                                                                                                                                           |
| 1845 Shengbo Tong (Tsinghua University, China), Yuyang Xie (Tsinghua University, China), Shenghua Liu (Chinese Academy of Science, University of Chinese Academy of Sciences, China), Wenjian Yu (Tsinghua University, China), and Jixuan Cai (Tencent Inc., China) |
| Combining Improvements in FQF Distributional Reinforcement Learning Algorithm                                                                                                                                                                                       |
| Genetic Algorithm for Combinational Logic Circuit Synthesis Using Directed Graph                                                                                                                                                                                    |
| Primitives                                                                                                                                                                                                                                                          |
| APAM: Adaptive Pre-Training and Adaptive Meta Learning in Language Model for Noisy Labels                                                                                                                                                                           |
| and Long-Tailed Learning                                                                                                                                                                                                                                            |
| Multi-modal Machine Learning for Navigating Noisy Objectives of Automotive Manufacturing Quality Inspection                                                                                                                                                         |
| A Graph Neural Network based Learning Model for Urban Metro Flow Prediction                                                                                                                                                                                         |

| FRENG: Federated Optimization by using Regularized Natural Gradient Descent                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weak Supervision for Question and Answering Sentiment Analysis                                                                                                                                                                                                                                                                                                                                                 |
| Towards the Diagnosis of Heart Disease Using an Ensemble Learning Approach                                                                                                                                                                                                                                                                                                                                     |
| Multi-label Classification of CS Papers Using Natural Language Processing Models                                                                                                                                                                                                                                                                                                                               |
| Detection of Anomalies in Civil Structures using Machine Learning Models: Benchmark Study                                                                                                                                                                                                                                                                                                                      |
| Vitor dos Santos Amorim (Federal University of Espírito Santo,<br>Brazil), Wyctor Fogos da Rocha (Institut Polytechnique de Paris,<br>France; Federal Institute of Espírito Santo, Brazil), Flavio Tongo da<br>Silva (Federal Intitution of Espírito Santo (Ifes), Brazil), and Aalah<br>Adam (Institut polytechnique de Paris, France)                                                                        |
| Event-driven Sentiment Drift Analysis in Text Streams: An Application in a Soccer Match 1920 Cristiano Mesquita Garcia (Pontifícia Universidade Católica do Paraná (PUCPR), Brazil), Alceu de Souza Britto (Pontifícia Universidade Católica do Paraná (PUCPR), Brazil), and Jean Paul Barddal (Pontifícia Universidade Católica do Paraná (PUCPR), Brazil)                                                    |
| Advancing Multinomial Regression and Topic Modeling with Beta-Liouville Distributions 1928<br>Pantea Koochemeshkian (Concordia university, Canada) and Nizar<br>Bouguila (Concordia university, Canada)                                                                                                                                                                                                        |
| Revisiting Knowledge Graph Embedding: An Alternative Solution to Biased Visual Scene Graphs                                                                                                                                                                                                                                                                                                                    |
| Sen Jia (Toronto Al Lab, LG Electronics, Canada) and Homa Fashandi<br>(Toronto Al Lab, LG Electronics, Canada)                                                                                                                                                                                                                                                                                                 |
| Augmentation-Based Approaches for Overcoming Low Visibility in Street Object Detection 1943 João Pedro Novo (INESC-ID, Instituto Superior T´ecnico, Portugal), Manuel Goulão (INESC-ID, Neuralshift Inc., Portugal), Lourenço Bandeira (Schréder Hyperion, Portugal), Bruno Martins (INESC-ID, Instituto Superior Técnico, Portugal), and Arlindo L. Oliveira (INESC-ID, Instituto Superior Técnico, Portugal) |
| Multi-scale Loss based Electron Microscopic Image Pair Matching Method                                                                                                                                                                                                                                                                                                                                         |
| What Factors Influence the Popularity of user-Generated Text in the Creative Domain? A  Case Study of Book Reviews                                                                                                                                                                                                                                                                                             |

| A Study of Distance Functions in FastMapSVM for Classifying Seismograms                                                                                                                    | 53         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Fairness-Aware Model Selection Using Differential Item Functioning                                                                                                                         | <b>7</b> 1 |
| Detecting Relevant Information in High-Volume Chat Logs: Keyphrase Extraction for Grooming and Drug Dealing Forensic Analysis                                                              | 79         |
| A Framework for Developing the Next Generation Interactive Soil Moisture Forecasting System Using the Long-Short Term Memory Model                                                         | 36         |
| SAttisUNet: UNet-Like Swin Transformer with Attentive Skip Connections for Enhanced Medical Image Segmentation                                                                             | )4         |
| Two Efficient Training Strategies for DyDaSL: A Dynamic Data Stream Learner Framework with Semi-Supervised Learning                                                                        | )0         |
| Main Conference (virtual, short papers)                                                                                                                                                    |            |
| Semi-Supervised Graph Learning Meets Dimensionality Reduction                                                                                                                              | )6         |
| A Two-Stage Deep Learning Framework for Enhanced Waste Detection and Classification 201<br>Hongbo Pang (Carleton University, Cnanda) and Changcheng Huang<br>(Carleton University, Canada) | 4          |

| Gaze Reveals Emotion Perception: Insights from Modelling Naturalistic Face Viewing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MILPdM: a Predictive Maintenance Architecture for the Military Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Energy Efficient Learning Algorithms for Glaucoma Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A Content-based Skincare Product Recommendation System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trading-Off Mutual Information on Feature Aggregation for Face Recognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Parameter-Efficient Harmonic Networks for JPEG Compression Artifact Removal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dynamic Changes of Brain Network during Epileptic Seizure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A Domain Specific Students' Assistance System for the Provision of Instructional Feedback 2069<br>Chukwuka Victor Obionwu (Otto von Guericke Universität, Germany),<br>Taruna Tiwari (Otto von Guericke Universität, Germany), Bhavya Baburaj<br>Chovatta Valappil (Otto von Guericke Universität, Germany), Nishanth<br>Raikar (Otto von Guericke Universität, Germany), Damanpreet Singh<br>Walia (Otto von Guericke Universität, Germany), S.M Laique Abbas Abbas<br>(Otto von Guericke Universität, Germany), Chukwuemeka Okafor (Otto von<br>Guericke Universität, Germany), David Broneske (German Center for<br>Higher Education Research and Science Studies, Germany), and Gunter<br>Saake (Otto von Guericke Universität, Germany) |
| The Effectiveness of Machine Learning to Estimate the Risk of Failure in Brazilian Public  Contracts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Early Churn Prediction from Large Scale User-Product Interaction Time Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## **Special Session 12: Machine Learning in Health**

| Machine and Deep Learning Techniques to Classify Arousal Judgments in Dynamic Virtual Experience of Architecture                                                                                                                                                                      | 2087   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted Outcomes to Analyze Longitudinal Social Media Data                                                                                                                                                             | . 2095 |
| Injury Risk Prediction in Soccer Using Machine Learning  Brendan Shen (Wayland High School, USA), Mikhail Shalaginov  (Massachusetts Institute of Technology, USA), and Tingying Zeng  (Academy for Advanced Research and Development, USA)                                           | 2103   |
| Breast Cancer Segmentation on Ultrasound Images using U-Net and Grad-CAM                                                                                                                                                                                                              | , 2107 |
| On Rejecting Low Quality Images to Improve Deep Smartphone Wound Assessment                                                                                                                                                                                                           | , 2113 |
| Improving AML Diagnosis Precision: Deep Learning-based Classification of Leukocyte Morphology and Malignancy                                                                                                                                                                          | 2119   |
| Microvilli Semantic Segmentation in Microscopy Images Using a Visual Learning Pipeline Fabricio Quirós-Corella (National High Technology Center, Costa Rica), Reinaldo Pereira (National High Technology Center, Costa Rica), and Yendry Regina Corrales-Urena (University of Bremen) | 2125   |

| In Ensemble Model for the Analysis of Parent-Child Interactions from Text and Audio                                                                                                                                                                                                                                                                                                                                                                    | 33 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ew-Shot Image Classification for Rare Ocular Disease with an Ensemble of Pretrained eature Extractors and a Statistical Classifier                                                                                                                                                                                                                                                                                                                     | 41 |
| nhancing Health Information Retrieval with Large Language Models: A Study on MedQuAD Pataset                                                                                                                                                                                                                                                                                                                                                           | 47 |
| mbedding Representations of Diagnosis Codes for Outlier Payment Detection                                                                                                                                                                                                                                                                                                                                                                              | 53 |
| utomated Machine Learning Based Triage for Decision Support in Clinical and Urgent Care<br>161<br>Jose RuizMejia (Howard University, USA) and Danda Rawat (Howard<br>University, USA)                                                                                                                                                                                                                                                                  |    |
| n Edge Internet of Things Framework for Machine Learning-based Skin Cancer Detection Models                                                                                                                                                                                                                                                                                                                                                            | 67 |
| pecial Session 13: Cybersecurity and Big Data                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| acial Forgery-based Deepfake Detection using Fine-Grained Features                                                                                                                                                                                                                                                                                                                                                                                     | 74 |
| idSearch: Privacy-by-Design Video Search and Retrieval System for Large-Scale CCTV Data . 21 Mehwish Tahir (Technological University of the Shannon: Midlands Midwest, Ireland), Yuansong Qiao (Technological University of the Shannon: Midlands Midwest, Ireland), Nadia Kanwal (University of Keele, UK), Brian Lee (Technological University of the Shannon: Midlands Midwest, Ireland), and Mamoona Naveed Asghar (University of Galway, Ireland) | 82 |

| Raw Packet Data Ingestion with Transformers for Malicious Activity Classifications                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine Learning for Detecting Malware in PE Files                                                                                                                                            |
| Detecting Stealthy Cobalt Strike C&C Activities via Multi-flow based Machine Learning 2200 Fabian Martin Ramos (George Mason University, USA) and Xinyuan Wang (George Mason University, USA) |
| Benchmarking YOLO Models for Automatic Reading in Smart Metering Systems: A Performance Comparison Analysis                                                                                   |
| Exploring the Faithfulness of Synthetic Data by Generative Models                                                                                                                             |
| Italy), Pierluigi Paganini (CYBHORUS srl, Italy), and Fabio Lancellotti (CYBHORUS srl, Italy)  Special Session 14: Handling Resource constraints for/using ML                                 |
| 31                                                                                                                                                                                            |
| Special Session 14: Handling Resource constraints for/using ML  Efficient Prequential AUC-PR Computation                                                                                      |

#### **Session 15: Machine Learning for Earth Observation**

| Evá | Aluating the Performance of Classification Algorithms for Land-Cover Classification<br>Marcos Pastorini (Universidad de la República, Uruguay), Angela<br>Gorgoglione (Universidad de la República, Uruguay), Rafael Rodríguez<br>(Universidad de la República, Uruguay), Lorena Etcheverry (Universidad<br>de la República, Uruguay), and Alberto Castro (Universidad de la<br>República, Uruguay) | 2240 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | mprehending Lexical and Affective Ontologies in the Demographically Diverse Spatial cial Media Discourse                                                                                                                                                                                                                                                                                            | 2247 |
| Inv | restigation of Racial Bias in Property Crime Prediction by Machine Learning Models                                                                                                                                                                                                                                                                                                                  | 2253 |

#### **Session 16: Machine Learning for Graphs**

Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph Embeddings Augmentation

Anwar Said (Vanderbilt University, USA), Mudassir Shabbir (Vanderbilt University, USA; Information Technology University, Pakistan), Tyler
Derr (Vanderbilt University, USA), Waseem Abbas (University of Texas at Dallas, USA), and Xenofon Koutsoukos (Vanderbilt University, USA)

**Author Index**