
  

 CHALLENGES AND PROGRESS IN PREDICTIVE MAINTENANCE OF LONG-
ENDURANCE & LONG-RANGE UNCREWED PLATFORMS 

Kenneth Lu*, Sanja Cvijic†, Arjuna Balasuriya‡ 
Today’s uncrewed platforms are typically operated by humans using remote control to guide 

every detailed aspect of a mission. However, as missions become more complex, there are many 
scenarios (particularly in the marine and ground domains) in which operators are unable to com-
municate with these uncrewed platforms in real time (due to adverse environmental conditions, 
regulatory restrictions on communications in ecologically sensitive areas, active interference by 
adversaries, or the desire to remain covert), making it challenging to know the health and status of 
the platform, and to recalibrate and update mission and control parameters on the fly. This becomes 
challenging especially when the uncrewed platforms are deployed for long-endurance and long-
range missions. Fortunately, significant technical advances in onboard computing power and en-
hanced sensors offer a pathway to a level of autonomy that can overcome such communications 
limitations. Predictive maintenance algorithms and digital twins of health and status are becoming 
essential in preventing unexpected failure and extending the lifespan of uncrewed platforms.  

In this paper, we present insights into the importance of predictive maintenance and provide 
examples of implementation of predictive maintenance in uncrewed platforms such as robotic com-
bat vehicles (RCVs). Moreover, we will discuss how hybrid artificial intelligence (Hybrid-AI) tech-
niques rooted in probabilistic models serve as a foundation for predicting health and status of un-
crewed platforms.  

INTRODUCTION 

Uncrewed platforms provide a bevy of advantages for operators, Warfighters, and decision-
makers across the Department of Defense (DoD) and industry abroad. For one, their ability to en-
gage adversaries and navigate hazardous terrain (both underseas and on the ground) far beyond the 
forward line of troops offers protection to Warfighters operating remotely. Second, their payloads 
support the deployment and usage of a wide range of command, control, communications, comput-
ers, intelligence, surveillance, and reconnaissance (C4ISR) capabilities, providing intel on environ-
ments, adversaries, and other information far beyond the natural reach of humans. Finally, combin-
ing their combat and reconnaissance capabilities, as well as their overall mobility in rugged terrain, 
these uncrewed platforms can dramatically reduce the overall labor requirements on humans. How-
ever, as uncrewed platforms are increasingly used in hostile, complex, and dynamic environments, 
maintaining these vehicles to ensure that they are mission capable becomes increasingly difficult. 
Due to long-endurance and long-range missions in harsh environments, hardware system (sensors 
and actuators) performance of these uncrewed platforms can deteriorate and due to unreliable com-
munication, the operators will not be aware of these performance changes in the platform affecting 
the mission objectives. Therefore, it is essential to have health monitoring/predictive maintenance 
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and adaptive behavior capabilities on board uncrewed platforms to successfully complete missions 
in such environments.  

Fortunately, thanks to advances in the modern sensing and computing capabilities on board 
these uncrewed platforms, these predictive analytics are attainable. However, there are several key 
technical challenges to address for such analytics to be feasible and useful for the end user. First, 
modern uncrewed systems like robotic combat vehicles (RCVs) will have modular mission pay-
loads (MMPs) in which various capabilities can be swapped in and out. Furthermore, these systems 
will have other lowest replaceable units (LRUs) that can be changed based on the upgrade cy-
cle/schedule of the system. As a result, an analytic designed for one set of MMPs and LRUs must 
be adaptable to various combinations of capabilities and components. Furthermore, the analytic 
must learn and evolve through use, meaning that it must incorporate any new information and data 
about the system without having to rely on a software engineer completely rewriting the analytic. 
Second, data sources on uncrewed systems will often be sparse and limited, meaning that the solu-
tion must be robust to partial or infrequent information. This requires that the solution be robust 
enough to reason well under uncertainty and avoid overfitting to spurious trends or red-herring 
correlations. Third, the solution must be computationally compact as edge-computing environ-
ments on uncrewed systems are limited in hardware and communication bandwidth. For instance, 
and RCV computing platform may have as little as 20 kilobits (20kb) of wireless bandwidth de-
pending on signal strength, and much of that bandwidth is designated for remote control of the 
vehicle. Finally, the solution must build trust with the end user. This requires that the solution can 
explain its outputs to the end user in an intuitive way and is particularly important because an end 
user who does not understand or believe the output of an analytic will not use it, regardless of how 
accurate or performant its underlying computation. 

CURRENT APPROACHES  

In reliability engineering and condition-based maintenance (CBM+), expert models are useful 
for building digital twins that can provide highly accurate and faithful predictions of real-world 
systems and are useful for systems with known dynamics. We have seen examples of this when 
building physics-based models for assessing structural damages of generic structures to predicting 
the remaining life of lithium-ion batteries.1,2 However, these approaches are often brittle and diffi-
cult to maintain as operating conditions and environmental dynamics keep changing. For instance, 
a physics model of an RCV with a combination of lidar and radar along with an aerial drone plat-
form will differ wildly from a physics model of an RCV that has an almost identical suite of com-
ponents but swapping out the drone platform for a 9 mm turret.  

Data-driven algorithms based on techniques in artificial intelligence and machine learning 
(AI/ML), specifically in deep learning and reinforcement learning, are used for predictive mainte-
nance. However, these methods require huge amounts of training data to learn the performance 
models of various components on board uncrewed platforms. Also, these data-driven models are 
often seen as “black boxes” and lack explainability, making it difficult for the end user to build 
trust or explain the outcome of these AI/ML models. A 2021 survey by Theissler et al. showed that 
most papers published in areas of predictive maintenance rely on deep learning approaches centered 
around a labeled dataset.3 We have seen work from Li et al. that shows promise in detecting the 
remaining useful life for vehicle’s power system and work from Manoharan et al. that yields similar 
results.4,5 However, these methods do not work in the context of assessing vehicle control stability, 
as neural network models, while highly optimized, are difficult to generalize across domains. 
Ragone et al. use a physical model that simulates a vehicle powertrain to predict battery state of 
charge based on an electrochemical–thermal model of lithium-ion batteries.6 While this method 
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works well for a well-scoped component like the battery, this approach would become enormously 
difficult to sustain and generalize across multiple components for a vehicle.  

Furthermore, we have seen in the past few years the emergence of powerful large language 
models (LLMs) that have had success in generative AI.7 However, these models are enormous in 
size, requiring 500 pflops/s of computation to train and involving thousands of GPUs. Even after 
training, these models frequently take up to 200 GB of memory to load, which far exceeds the 
computational capacity of any RCV platform.  

Work that combines expertise and data-driven approaches has attempted to extend physics-
based models to inform deep-learning and has seen success in determining the natural degradation 
of machine components in a vacuum.8 However, this approach still has limitations. For one, failure 
modes that do not follow the natural degradation (i.e., sudden perturbations like environmental 
impact or battle damage) will not be captured. This is because physics-of-failure models cannot 
capture these sudden dynamics easily, and training data for deep-learning models will usually lack 
these scenario-specific datapoints. Furthermore, this approach is largely shoehorning a physics ap-
proach into a data-driven approach and lacks the compactness, adaptability, and ease of implemen-
tation of alternative Hybrid-AI approaches. 

HYBRID-AI APPROACH USING PROBABILISTIC PROGRAMMING 

In this paper, we describe a more holistic and natural approach to Hybrid-AI for predictive 
maintenance rooted in probabilistic programming. Probabilistic programming is a computer pro-
gramming paradigm that raises uncertainty to a first-class programming language construct and 
automates the processes of parameter learning and statistical inference, including evaluation of 
complex queries against the model. This enables the modeler to combine domain expertise, in the 
form of hard-coded prior probability distributions, with data, in which a model can learn summary 
statistics and parameters directly from a dataset. PP builds on probabilistic graphical models 
(PGMs), greatly generalizing their capabilities in three ways: (1) Instead of specifying model struc-
ture in a domain-specific language, PP models are specified in an ordinary programming language 
that is augmented with two simple, intuitive additional sample and observe statements.  Writing x 
= sample(a, p) is equivalent to sampling x p(x|… ) and recording the sampled value, along with 
its probability, in a maplike data structure at the address a, while writing observe(a, p, v) is equiv-
alent to evaluating p(x = v|… ) and similarly recording the observed value and its probability at a. 
(2) Instead of enforcing a static model structure, probabilistic programs can encode arbitrarily com-
plex model structures, including those with stochastic choice (in which future model state depends 
on the value of random choices) and open-universe structure (in which the model may include 
arbitrarily many random variables).   

This interplay between incorporating domain knowledge with data is crucial because it provides 
probabilistic programs with (1) adaptability¸ as probabilistic programs are naturally modular and 
composable, meaning that with minimal sets of changes, they can be repurposed to fit new operat-
ing contexts of an uncrewed platform; (2) robustness, as probabilistic programs can rely on prior 
domain knowledge in the absence of data and also encode that knowledge as probability distribu-
tions with confidence bounds, enabling reasoning under uncertainty; (3) compactness, as these 
models do not require detailed understanding like a rich physics simulator, nor terabytes of data to 
train; and finally (4) explainability, in which probabilistic programs are easily traceable, and an end 
user can gain an understanding into the logical underpinnings of a probabilistic model. 
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CASE STUDY EXPERIMENTS AND RESULTS

Robotic Combat Vehicle 

As part of our latest work with the Army Applications Lab, we conducted a series of experi-
ments on a simulated dataset related to an RCV. This builds upon our previous work on this pro-
gram, where we demonstrated diagnostics and health monitoring on a surrogate vehicle using prob-
abilistic programming.9 In this case study, we demonstrated that we could predict future health and 
status of a vehicle at least 100 minutes into the future with error bounds that are reasonably accurate 
so that the predictions are useful for the vehicle operator and decision-makers higher up the chain 
of command. In this experiment, we worked with the Army as well as domain experts on the vehicle 
to create a dataset representing the gradual, and then sudden, breakage, of a bogey-beam that sup-
ports the track and suspension system of an RCV, and we observe this gradual decay in the form 
of a changing angle of the bogey-beam relative to the ground. 

For this experiment, we were able to quickly design and implement a probabilistic program 
representing a dynamic Bayesian network and we used a sequential Monte Carlo (SMC) inference 
algorithm to predicting with this model. In this model we encoded domain expertise representing 
the relationships between the observe bogey-beam angle and the health and status of the bogey-
beam, along with a historical dataset of angles representing nominal operating conditions of the 
bogey-beam. 

Our results showed that we were able to predict 100 minutes into the future on a non-noisy 
dataset with an average error of 6.1 minutes, and when predicting up to 30 minutes in advance, we 
had an average error of 2.7 minutes. Additionally, when we added noise to the data, equivalent to 
the hard-coded rate of change of the bogey-beam’s angle, our error rate went up to 13.1 minutes 
when predicting up to 100 minutes, and 6.0 minutes when predicting up to 30 minutes. We visu-
alize our prediction results in Figures 1 and 2. 
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Figure 1. Results of Predictions without Noise. The blue line indicates the ground-truth re-
maining life of the bogey-beam, which degrades in perfect linear fashion as time elapses. Orange 

dots indicate the predicted remaining useful life of the bogey-beam at each time step. 
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Figure 2. Results of Predictions with Noise. Compared with Figure 1, the results are more 
erratic initially, but within a 30-minute prediction window, we see that the error rate starts converg-
ing to be similar to that of the noiseless scenario. Also, the noise induced in this scenario was 
deemed to be much higher than that of a real-world sensor. 

In terms of compactness and performance, this prognostics model takes up less than 1 MB of 
memory. Moreover, we have demonstrated previously that over 100 probabilistic models can run 
on less than 2 GB of memory on a Jetson Nano hardware system. Furthermore, this approach shows 
how a probabilistic model can compactify streams of sensor data into a single prediction of health 
and status, making its output (one number) suitable for transmission in a low-bandwidth signal 
environment. 

CONCLUSION

In this work, we demonstrated the power of PP-based Hybrid-AI as a tool for predictive mainte-
nance at the edge for uncrewed systems. We extended domain expertise to relate the observed angle 
of a bogey-beam for a track and suspension system to the likely health and status state of the vehi-
cle. We also leveraged historical data to learn summary statistics representing the nominal operat-
ing conditions of the bogey-beam. This approach has been demonstrated on both a simulated da-
taset as well as real-world data, to show both health monitoring and predictive analytics, and can 
be easily extended to an RCV thereby providing Army Warfighters with a diagnostics tool that
enables operational decision-making. Specifically, by notifying the RCV operator of a future failure 
in the bogey-beam, the operator can adjust their driving to compensate, by either reducing their 
speed in rough terrain, or by changing their steering to compensate for a steering angle bias. They 
can also inform a higher-level Commander on whether to bring the RCV back to the  motor pool 
for repair. This in turn not only reduces the downtime for RCV repair, but also improves the ability 
to support longer range missions, as operators can drive RCV further beyond the forward line of 
troops, knowing the Hybrid-AI prediction capabilities can accurately gauge vehicle health and sta-
tus. At the same time, commanders at higher level echelons can plan out tactical engagements and 
missions where RCVs are deployed across a wide geographical area, knowing that they will have 
awareness and insights into future fleet level availability of capabilities 
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