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A DEEP LEARNING APPROACH TO ESTIMATE GROUND RISK 
AND PLAN MISSIONS FOR UAS IN URBAN AREAS  

Jeffrey Pattison, Ph.D.*  

The past decade has seen an explosion in the use of Uncrewed Aerial Systems 
(UAS). Concerned with safety, regulatory agencies across the globe have imposed 
regulations on the use of UAS, especially around people in heavily populated ar-
eas. As a result of these restrictions, highly populated areas have been slow to 
adopt UAS. As industry pushes for more autonomous operations and the expan-
sion of UAS applications, additional risk assessment and mitigation techniques 
are required to ensure the safety of the people and property is maintained as the 
role of the pilot diminishes. Unlike common risk assessment methods found in 
literature, this research proposes a novel way to use machine learning to rapidly 
evaluate the ground risk for a UAS. This rapid risk assessment can be used to 
determine whether a UAS route exceeds an allowable level of risk, or it can assist 
in the UAS route planning, guaranteeing the ground risk is minimal. The main 
contributions are to introduce a new way to evaluate and benchmark UAS ground 
risk while also introducing an additional risk mitigation technique by being able 
to rapidly generate low risk UAS routes. 

INTRODUCTION 

Public interest in Uncrewed Aerial Systems (UAS) has grown in the past few decades as they 
are being adopted to complete an increasing number of tasks, ranging from surveillance to mapping. 
However, safety concerns around the use of UAS have slowed the adoption of the UAS into the 
National Airspace (NAS). As a result, the process of UAS adoption has been incremental, where 
rules and regulations are slowly relaxed or repealed. Some of the more restrictive regulations forbid 
operating Beyond Visual Line of Sight (BVLOS) and largely forbid operating over groups of peo-
ple. While obtaining waivers to operate BVLOS is possible, the ability to operate over people is 
still heavily regulated due to safety concerns. Hence, these requirements significantly hinder UAS 
use in urban areas that are dynamic and highly populated. 

Urban areas can see large benefits from the capabilities UAS has to offer. This includes decreas-
ing response time from first responders to improving logistics for shipping food and goods, or even 
delivering medical supplies in record times. These heavily populated areas have made UAS use 
very difficult with current regulations. Currently, regulatory agencies around the world limit the 
ability to fly over people depending on the risk levels a UAS presents to those below, so a revision 
of current regulations would be required to exploit the full benefits of UAS. This change cannot 
occur until there is sufficient reason to believe the use of UAS in these areas is sufficiently safe. 
Therefore, realistic and detailed risk analysis for UAS is required to ensure any UAS operation 
over people does not exceed some acceptable level of risk. 
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With safety being the primary goal of the FAA and similar regulatory agencies, risk evaluation 
and mitigation has long been required for all air traffic. Due to the long history of crewed aircraft, 
this risk assessment can be done using historical aviation accident and incident data2. Because the 
introduction of UAS has been more recent compared to crewed aircraft, there is an insufficient 
collection of data related to operations like flight hours, number of accidents and incidents, and 
failure rates 2. Consequently, the use of models and simulations has proven to be the next best 
option for UAS risk assessment. While the risk assessment for crewed aircraft includes the risk to 
those onboard, UAS does not pose similar threats, so the primary risk for UAS is to those in other 
aircraft and to those on the ground. This work will focus on the latter and explore ground risk. 

There are several factors that can impact the ground risk levels of UAS, including the surround-
ing environment and the characteristics of the UAS and its trajectory. Several approaches can be 
found in literature outlining how to approximate risk for a UAS. From Reference 1, the risk for a 
UAS is quantified as the expected number of fatalities per flight hour, and this metric can be deter-
mined using the kinetic energy of the UAS on impact, the probability of hitting a person, and the 
availability of shelter that might absorb some of the kinetic energy. The common ground risk as-
sessment using this approach is to take a predefined UAS path and simulate different failure events 
along the path. For each failure event, a descent trajectory can be approximated using the governing 
laws of physics to estimate the most probable impact locations. For example, in the event of a 
power failure, a ballistic trajectory can be approximated to predict where the UAS will land. Find-
ing the probable impact locations is required because there is some uncertainty in the UAS initial 
position, speed, and aerodynamic characteristics, 4 so several descent trajectories need to be simu-
lated. From the impact location, the kinetic energy can be determined. Combining kinetic energy 
with the population density, the expected fatality rate can be calculated1. As mentioned, this process 
is repeated along various points of the UAS trajectory. Because the risk assessment is completed 
for a predefined path, this is of little service if the safety levels for the given path exceed the max-
imum level of safety. Hence, more information is required to assist in the route planning phase to 
ensure the path of the UAS does not exceed maximum safety levels. 

In Reference 4, the authors build on the ground risk assessment approach previously described 
but use the approach to compile a risk map. This risk map identifies the high-risk areas and is used 
to assist in the path planning of a UAS. Using the risk map with a path planning algorithm, the 
UAS can find an optimal path that minimizes the ground risk. The authors accomplish this by dis-
cretizing a flight zone and assessing the ground risk at every discretized location for a given cruis-
ing speed and UAS model. Using the high-fidelity probabilistic ground risk approach previously 
described at every location in the risk map can become quite time consuming and computationally 
expensive. This is problematic in urban areas where the population density is incredibly dynamic, 
and the ground risk map needs to be updated frequently. To improve upon the work in Reference 
4, this work offers a novel approach for ground risk assessment for uncrewed rotor vehicles using 
a Machine Learning model in place of the physics-based model to enable rapid ground risk assess-
ment. This risk assessment can then be used by the FAA and others to quantify just how dangerous 
a UAS operation over people is and enables better decision making when planning a UAS mission. 
To compare the physics-based approach with the Machine Learning approach, both methods will 
be used to create a risk map for the campus at the Georgia Institute of Technology to see how 
closely the Machine Learning method accurately estimates the physics-based model. 

With a rapid way of generating a UAS risk map, UAS users can not only determine if a prede-
termined UAS route exceeds a maximum level of allowable risk, but it can also be used to find a 
route that minimizes risk. By minimizing the ground risk, an additional layer of safety is added to 
UAS operations in urban areas, which is required if the role of the pilot is to be reduced. Reducing 
the need for a pilot benefit all who are looking to use UAS by decreasing the cost of operation. 
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However, the safety measure alone is not the only benefit since there is a component of public trust 
as well to using UAS in urban areas. By demonstrating the UAS will be avoiding heavily populated 
areas, this may build trust in the use of UAS. 

PHYSICS-BASED MODEL FOR UAS GROUND RISK ASSESSMENT 

As mentioned in the previous section, there is a need for risk evaluation for UAS operations to 
safely operate over people in urban areas, but with UAS being introduced into the airspace rela-
tively recently, there is insufficient flight data for UAS to make similar risk assessments as for 
crewed aircraft. For this reason, modeling and simulation has become the best way to estimate UAS 
risk. The modeling and simulation method used in this work to approximate UAS risk is a physics-
based approach based on the state-of-the-art methods outlined in References 1,4,5, and 6. This 
physics-based approach will then be used to generate training data so a Machine Learning algorithm 
can approximate the UAS risk in a more time efficient manner. 

In Reference 1, the ground risk metric is defined as the expected rate of fatalities, with an ac-
ceptable level of risk being 10-7 fatalities per flight hour based on equivalent levels of safety seen 
in crewed aircraft for ground risk. The approach in Reference 4 also uses this metric for ground 
risk assessment. The equation for the expected rate of fatalities can be seen below for a given loca-
tion, as shown in Reference 4. 

 

In the above equation,  is the expected rate of casualties,  is the area exposed during the 
crash,  is the population density for the area of the crash,  is the proba-
bility of a fatality given the exposure, and  is the rate of ground impact accidents. 

Area Exposed During a Crash 

The term  from Equation (1) is the area exposed to a crash for a single person on the ground. 
From Reference 4, this area can be found with Equation (2) below.  

 

As seen above,  is the radius of the average person,  is the radius of the UAS, γ is the glide 
angle, and  is the height of the average person. With this, the area exposed during a crash can be 
determined. 

Population Density Estimation 

The population density of an area plays a crucial role in the ground risk for a UAS. Highly 
populated areas will result in a higher probability of a UAS striking a person in the event of an 
unplanned and uncontrolled descent. Obtaining accurate estimates on the population density infor-
mation is critical for enabling UAS ground risk assessment, otherwise the risk assessment is mean-
ingless. Multiple methods for estimating population density have been mentioned in literature. 

In Reference 4, city census data is used to estimate the population density. Using census data is 
adequate for demonstrating proof of concept in an academic setting and is easy to obtain, but this 
data is static and may not be indicative of how humans move throughout the day. Additionally, 
census data may be stale and outdated by the time it is available. Another method mentioned in 
Reference 4 relies on the use of mobile phone data. Mobile phone data may be a good resource for 
accurate estimates throughout the day, but obtaining this data is difficult. Accessing mobile phone 
data for a given area may take days to obtain depending on the size of the area of interest. In Ref-
erence 14, the LandScan Global Population Database is used from the Oak Ridge National 
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Laboratory15. The LandScan database is open-source and provides high resolution (about 90m x 
90m) averages of population density throughout the day and contains population density averages 
for daytime as well as nighttime. Because the LandScan database offers averages at different times 
of the day, it was the chosen database for this work to assist in population density estimates. The 
below images show a heatmap of the population density distribution at the Georgia Institute of 
Technology for daytime and nighttime created using the 2021 LandScan database. The units for 
the heatmap are people per square meter with each cell being approximately 10m x 10m. 

  
Figure 1: LandScan Population Density at Georgia Tech for Daytime (Left) and 

Nighttime (Right) 

The LandScan database has one of the same disadvantages as the census data in that it is rela-
tively static. Because LandScan is historical data, it fails to account for anomalous events that might 
result in a change in the normal expected population density. In urban areas, these anomalous events 
include festivals, concerts, or parades. As a result, any risk assessment solution used in urban areas 
will need to account for these occurrences that LandScan cannot in order to obtain a more complete 
picture on the population density as it changes. This work proposes to supplement the use of his-
torical data with a new method for monitoring population density by using social media activity. 

The popular social media site Snapchat has accessible information that shows how many posts 
have been made within a given radius for any given GPS location. Using this method, one can 
request this information for any location of interest to generate a heatmap of the Snapchat activity. 
This can become useful to gain insight on events that might draw large numbers of people, which 
would not be accounted for in the historical data for population densities. To test the validity of 
this, the social media activity was observed while the Dogwood Festival occurred at Piedmont Park 
in Atlanta, Georgia from April 15,2023 to April 17, 2023. The two images below show the social 
media activity at Piedmont Park during different times of the day while the festival took place. 
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Figure 2: Social Media Activity Generated During the 2023 Atlanta Dogwood Festival at 

10:40AM (Right) and 8:30PM (Left) 

From the images above, there was more social media activity as the day progressed, suggesting 
there was a growing population. To show this change in population was abnormal, the social media 
data was compared with the LandScan data for the same location. This comparison is shown in 
Figure 3. 
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Figure 3: A Comparison Between the LandScan Database (Left) and the Social Media 

Activity (Right) 

The discrepancy between the LandScan population density and the social media data collected 
confirms the historical data does not properly account for anomalous events like the Dogwood 
Festival. However, the social media data collected cannot be used by itself because not everyone 
uses social media, nor is it used everywhere. That is why the two combined can be used to paint a 
better picture of population densities by taking the maximum value between the two resources. This 
way the large events that draw crowds and generate social media activity can be taken into consid-
eration while the LandScan database can provide average estimates at every other location that does 
not generate much social media activity. As better methods for estimating population densities are 
derived, they can be used in place of the methods proposed in this paper.  

Probability of Fatality Given Exposure 

The probability of fatality given exposure is the probability of a UAS strike resulting in death 
if it were to impact a person. One approach outlined in Reference 1 is to map the kinetic energy of 
the UAS on impact to the probability of resulting in a fatality given the UAS impacts a person. This 
model takes into account not only kinetic energy, but it also includes a shelter factor that can pro-
vide some protection to people on the ground. This shelter factor may be different depending on if 
the shelter provided is a building, tree, or if there is no shelter at all. The more protection a shelter 
may provide, the higher this shelter factor, and the less likely a UAS accident is to result in a 
fatality. No shelter would have a shelter factor of 0 while a building would have a shelter factor of 
5, as discussed in Reference 4. The equation for finding probability of fatality given exposure, 

, can be found below with Equation (3) as seen in Reference 1. 
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In the above equation,  is the kinetic energy at impact and  is the sheltering factor to 
consider surrounding structures that may absorb some of the energy. The α parameter is the impact 
energy required for a fatality probability of 50% with a sheltering factor of 0.5 while β is the impact 
energy required for a fatality as the sheltering factor goes to 0. According to Reference 4, acceptable 
values for α and β are 100 kJ and 34 J, respectively. Common values for the sheltering factor for 
different types of shelter include 0 for no shelter, 2.5 for sparse trees, and 5 for low buildings4. The 
open-source database OpenStreetMap contains information on the location of buildings that can be 
used for finding the shelter factor16. The image below shows the building coverage layout for the 
Georgia Institute of Technology, with blue representing the buildings. Every location that did not 
have any building coverage was assumed to provide no shelter. Each cell in the image below is 
approximately 10m x 10m. 

 
Figure 4: Recorded Building Layouts for Georgia Institute of Technology 

 

The final component of Equation (1) is , which is the rate at which ground impacts occur. 
This value is measured as number of occurrences per hour, and ideally would be based on flight 
history data. In Reference 1, the value is estimated to be between 10-6 to 10-9 accidents per flight 
hour and is based on the average accident rate involving uncrewed aircraft. However, this failure 
rate is dependent on each vehicle specifically, and is subject to change as vehicles become safer. 
For this work, a constant value of 10-6 incidents per flight hour is used as the conservative estimate 
within the range from Reference 1. This value can be updated and changed as better estimates are 
collected on the true value of the probability of UAS failure. 

Determining Probable UAS Impact Locations 

The above approach outlined the different components of Equation (1) to quantify the ground 
risk as expected fatality rates for a UAS in each initial location. With the sheltering factor and 
population density playing important roles in the ground risk calculation, it is important to know 
where a UAS is going to land. If a UAS experiences a failure event at a given location, its descent 
trajectory could land the vehicle at a location far from where the incident occurred depending on 
the UAS altitude and speed. As a result, estimating the probable impact locations of the UAS is 
required for proper ground risk assessment to identify the quantities of its impact location, like 
shelter and population density. There are countless ways that a UAS could fail resulting in an un-
planned or uncontrolled descent. Some of these failures include a power outage, a loss of one or 
more propellers for multi rotor vehicles, or a loss of control from a pilot. Each of these different 
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failure types result in different descent trajectories. According to Reference 5, the ground risk of a 
UAS is dominated by a ballistic descent type that might occur if power is lost when compared to 
other descent trajectories from other failure types, so for this work only a ballistic descent is mod-
eled to find the probable impact locations. The governing laws of physics can be used to find the 
probable impact locations of a UAS that loses power at some location with some velocity, altitude, 
and physical characteristics. The governing equations to find the impact locations are shown below. 

 

 

 

In the governing equations,  is the UAS mass, , ,  are the acceleration of the UAS in the 
global frame with z being the altitude, ρ is the air density,  is the UAS drag coefficient, and A is 
the frontal area of the UAS. For some given initial location , ,  with speeds ,  the 
governing equations can be solved for when the final altitude  is zero to find the values of  and 

 , the UAS impact location. However, there is likely going to be some uncertainty in the initial 
position, velocity, and drag coefficient7. To account for the uncertainties of the initial conditions, 
several descent trajectories are required to find the most likely impact locations. Therefore, for a 
given descent trajectory i, the initial conditions , , , , , and  are pulled from a 
normal distribution with a given mean. For example, if the probable impact locations are needed 
for a UAS flying with a recorded initial speed of 5 m/s at some given location, then the velocities 
used for simulating the probable impact locations would be taken from a normal distribution cen-
tered around 5 m/s. The table below illustrates the normal distributions used for the position, ve-
locity, and drag coefficient7. 

Table 1: UAS Initial Condition Distributions 

UAS Parameter Distribution 

  

  

  

  

  

  

  

 

To fully account for the uncertainty, 500 descent trajectories were simulated to find the probable 
impact locations for a UAS traveling with some given initial conditions. Because the objective of 
the risk assessment is to create a risk map to assist in route planning, no route for the UAS has been 
determined yet, so the direction the UAS travels has not been specified. To account for this, each 
of the 500 different descent trajectories is given a different heading, with the heading determined 
by sampling from a uniform distribution ranging between 0 and 360 degrees. The image below 
shows the results of 500 simulated descent trajectories to find the most probable impact locations 
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for a UAS with some initial conditions. In the image, it is assumed the UAS initially starts at (0,0) 
with each blue marker identifying one of the probable impact locations. 

 
Figure 5: 500 Probable Impact Locations for a UAS 

For each of the 500 trajectories simulated at a given location, the kinetic energy of the UAS, 
population density and sheltering factor were recorded at the location of impact and used to find 
the expected fatality rate with the equations above. After calculating 500 expected fatality rates for 
a given UAS starting location, the mean fatality rate of the 500 trajectories was recorded as the 
fatality rate for that location with the given initial conditions. To create a risk map used to assist in 
route planning, this process needs to be repeated at various locations. For every location within the 
map, probable impact locations and expected fatality rates need to be calculated. Because of this, 
the process to generate a risk map can become quite time consuming as the size of the map in-
creases. The research in Reference 4 and Reference 7 attempt to make simplifying assumptions for 
determining the probable impact location to reduce the computation time with the trade-off of los-
ing some accuracy. However, adding simplifying assumptions can only go so far before the credi-
bility of the analysis is lost. For this reason, machine learning methods are explored to estimate the 
risk in a more time efficient manner compared to the high-fidelity physics-based model. As a result, 
the physics-based model can be made to be as high fidelity as possible with little concern for the 
computation time because the machine learning model can be used to approximate it within some 
reasonable degree of accuracy in a fraction of the time required. 

 

 

 

MACHINE LEARNING APPROACH FOR UAS GROUND RISK ASSESSMENT 

From predictive text and language processing to computer vision and autonomous vehicles, 
Machine Learning has become quite popular with the rise of Artificial Intelligence (AI). Machine 
Learning algorithms have shown tremendous capability in learning to recognize patterns in data for 
problems that are complex for traditional approaches8. For this reason, this work explores how well 
Machine Learning methods would be able to learn and estimate the ground risk of UAS based on 
the data collected from the high-fidelity physics-based model. 

There are many different types of algorithms that fit into the Machine Learning category, with 
some being better suited for certain applications over others. For the application of estimating UAS 
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ground risk, the objective is to feed the UAS initial condition parameters and spatial data around a 
GPS location into the Machine Learning model as inputs, which would then output an expected 
fatality rate for that given location. This process could be repeated at every location in an area of 
interest to generate a risk map. One way to do this would be to generate data using the physics-
based model to create a database of fatality rates mapped to the input conditions of the UAS. This 
is a supervised learning approach where the physics model generates the output data, and the Ma-
chine Learning model can learn the pattern between the input parameters and the output fatality 
rate. Because the fatality rates are continuous, the Machine Learning algorithm will need to be used 
for regression rather than classification. Therefore, a supervised learning algorithm for regression 
narrows down the list of suitable Machine Learning algorithms to use.

The type of input data will also affect which type of Machine Learning algorithm is suitable. 
Based on the description of the physics-based model, the type of input data required is mixed be-
tween numeric and spatial data. Numeric data would include the mass, speed, frontal area, and 
altitude of the UAS. All these components affect the kinetic energy upon impact, and therefore 
affect the expected fatality rate. Beyond the parameters just mentioned, the sheltering factor from 
the surrounding coverage and the population density also play a role in the fatality rate as well. 
These values are scalar but based on the probable impact locations seen in Figure 5, it is difficult 
to pinpoint a single value to use since the population density and building coverage will change 
based on where the UAS lands. For this reason, the entire area encapsulating the probable impact 
locations is required as input to accurately estimate the expected fatality rates. Therefore, the Ma-
chine Learning model used needs to be able to account for both scalar values like the UAS charac-
teristics and initial conditions and also the spatial inputs like shelter and population density. While 
some Machine Learning algorithms can handle either numeric data or spatial data, there is no one 
Machine Learning algorithm well suited for both. The approach proposed in this paper combines 
two popular Machine Learning algorithms to account for the different input data types. Based on 
the work in Reference 9, it can be shown that a Multilayer Perceptron (MLP) and a Convolutional 
Neural Network (CNN) can be combined to account for numeric as well as spatial data. The MLP 
accounts for the numeric data while the CNN accounts for the spatial data. The outputs of each of 
these models can then be combined with additional layers to produce a single output, predicting the 
expected fatality rate. A simple summary of the model can be seen in the image below.

Figure 6: Flowchart for the Machine Learning Model

The Multilayer Perceptron

The Multilayer Perceptron is one of the simplest Artificial Neural Network (ANN) architectures 
and is comprised of one or more hidden layers between an input layer and an output layer8. Each 
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layer consists of several neurons, and each neuron in a layer takes as input all the values of the 
neurons in the layer before it and then transforms the inputs using an activation function. These 
values are then passed to all the neurons in the next layer. For traditional regression applications 
using only a MLP, the final layer is called the output layer and consists of a single neuron, which 
is the predicted value. The diagram below illustrates a MLP with one input layer and two hidden 
layers used for this work. The first hidden layer has eight neurons, and the second hidden layer has 
four neurons, which is the same architecture as found in Reference 9. The input parameters are the 
UAS characteristics and initial conditions.

Figure 7: The Multilayer Perceptron of the Machine Learning Model

The Convolutional Neural Network

Convolutional Neural Networks are specialized for processing data with grid-like topology to 
learn patterns and spatial relationships, which makes them popular when images are inputs since 
images are grid-like arrays of pixels10,11. The main components of the CNN are the convolutional 
layers and the pooling layers12. Most CNN architectures are a combination of convolutional and 
pooling layers with the final layer being a fully connected layer comprised of all the nodes of an 
input array unraveled into a single layer.

For this work, the grid-like topology input for the CNN is the building coverage and population 
density for a given location of interest. This input data takes the form of two arrays, population 
density and building layouts, of the surrounding area of the location of the UAS. These arrays are 
intended to only encompass the area of land where the UAS is likely to land. The cells in the array 
for the building coverage take the value of either 0 and 1 with 0 representing shelter and 1 repre-
senting no shelter. The values in the population density array are the number of people per square 
meter. Based on the CNN architecture in Reference 9, a summary of the CNN can be seen in the 
image below. The CNN has an initial convolutional layer with 16 filters, then a max pooling layer, 
then another convolutional layer with 32 filters and max pooling layer, then the CNN is flattened 
and connected to a hidden layer with 16 neurons, and then finally one last layer with four neurons.
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Figure 8: Illustration of the CNN Used

To estimate risk using the MLP and the CNN, the two output layers of each model were then 
concatenated together. Three additional layers were then added to the combined output. Two hid-
den layers, one with 10 neurons and one with five neurons, and finally an output layer with one 
neuron, were added to the model. The final output layer with one neuron is the predicted fatality 
rate. The image below shows the entire model.

Figure 9: Combination of the MLP and the CNN to Predict Fatality Rates

Incorporating a ground risk assessment is vital to UAS operations to protect people on the 
ground as UAS becomes more ubiquitous in the rapidly evolving national airspace, especially in 
highly populated areas. The benefit of using a Machine Learning model like the one proposed over 
the physics-based models currently used is the reduction in computation time required. However, 
this benefit comes with the trade-off that there will be some error between the results of the Machine 
Learning model and the physics-based model. The main challenge with Machine Learning appli-
cations is how to reduce the error. Often this error reduction can be accomplished by increasing the 
data used for training. By leveraging the physics-based model, a significant supply of data can be 
generated to train the Machine Learning model.

220https://doi.org/10.52202/075106-0018



 13 

Generating Training Data for the Machine Learning Approach 

To train the Machine Learning model, data is required mapping the input conditions to the out-
put fatality rate. Fortunately, the physics-based model can be used to generate this data by using 
the initial conditions of the UAS and the spatial data at the UAS location to calculate an expected 
fatality rate. An ideal Machine Learning model used for UAS risk assessment would be able to 
handle any combination of UAS speed, altitude, mass, frontal area, and velocity along with any 
distribution of shelter and population density, so the training data would also ideally reflect several 
of these combinations. However, this is not practical in the real world, so the objective is to include 
many these combinations by observing the common operating conditions of UAS today. A sum-
mary of the ranges used for the UAS characteristics can be seen below and was created using off-
the-shelf UAS characteristics. 

Table 2: UAS Parameter Ranges 

UAS Parameter Minimum Maximum 

Mass (kg) 2.0 9.0 

Frontal Area (m2) 0.347 0.81 

Speed (m/s) 5 35 

Altitude (m) 15 140 

The minimum limit for the mass was based on the findings from Reference 17 that show a 
significant difference in the chance of causing a neck injury between the 1.2 kg DJI Phantom 3 and 
the 3.1 kg DJI Inspire 1. The DJI Phantom 3 had little chance of causing a neck injury while the 
DJI Inspire 1 had a much higher chance, so a mass of 2 kg between the DJI Phantom and DJI Inspire 
was used as the minimum value for this work. 

With the ranges for the UAS characteristics determined, finding a way to sample many combi-
nations of parameters is still required to train a Machine Learning model to be as robust as possible. 
For this, a Design of Experiments was used to efficiently explore the design space. A Latin Hyper-
cube Design of Experiments was chosen because it is a space-filling design that creates design 
points evenly spread throughout the design space18. To ensure the design space was being thor-
oughly sampled, 248,000 data points of different combinations of UAS parameters were generated. 
However, the design points of the UAS parameters are only a portion of the data required, and 
spatial data for each of the design points was still needed. 

To generate the input training spatial data, the building coverage and population density for the 
Georgia Institute of Technology were used. In Figure 1 and Figure 4, the population density and 
building coverage for the Georgia Institute of Technology are shown as 2D arrays, with each 10 m 
x 10 m cell being a unique location. The total size of the array was 113 rows and 135 columns, 
resulting in 15,504 unique locations. For each unique location of interest, a 29 cells x 29 cells 
window of the building coverage and population density was extracted and used as the spatial input 
data for that location of interest. The figure below demonstrates this concept. In the figure, the 
expected fatality rate is estimated for the location identified by the marker. 
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Figure 10: Spatial Data Extracted for a Single Location of Interest with Building Lay-

outs (Left) and Population Density (Right)

To capture the effect of population density and shelter coverage on the fatality rate with the 
effect of the UAS conditions, 16 different UAS conditions were used at each location of interest to 
utilize the full data set generated using the Latin Hypercube Design of Experiments. With the com-
bination of the input spatial data and the input numeric data, the physics-based model described in 
the paper was then used to estimate the expected fatality rate for each of the 248,000 cases.

Training the Machine Learning Model

A key aspect to any machine learning model training is the hyperparameters. Like how the 
model architecture can alter the performance, so can the hyperparameters set for training. These 
hyperparameters include the type of loss function used, the learning rate, batch size, and even the 
number of epochs used for training. The loss function used for this work was the Mean Absolute 
Percent Error 16 (MAPE). The batch size and number of epochs were 128 and 200, respectively. 
These values were the same as used in Reference 9. However, an early stop condition was imple-
mented to prevent the model from overfitting the training data if the testing validation accuracy 
stopped improving.

Aside from the hyperparameters mentioned above, other hyperparameters that affect the perfor-
mance of the model are those associated with the architecture of the model, like the number of 
layers or the number of neurons in each layer of the MLP. Changing the architecture can alter the 
performance, so several different architectures should be explored to find the best one. However, 
with an unlimited number of possibilities for architectures, it is infeasible to try them all. For this 
reason, it is recommended to find a suitable model that has decent performance as the baseline and 
fine tune the baseline model from there. The model architecture described in Reference 9 was used 
as the baseline architecture of the Machine Learning model. Parameters in the baseline model ar-
chitecture subject to change include the number of neurons in each of the MLP layers, the number 
of filters in the CNN convolutional layers, the number of neurons in the CNN fully connected layer, 
and the number of neurons in the final two fully connected layers after the outputs of the CNN and 
MLP have been connected. A range of each of these parameters is summarized in the table below.
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Table 3: Hyperparameter Ranges for Machine Learning Model Training 
Model Parameter Minimum Maximum 

MLP Hidden Layer 1 Neurons 4 100 

MLP Hidden Layer 2 Neurons 4 100 

Number of Filters in Convolutional 
Layer 1 

4 32 

Number of Filters in Convolutional 
Layer 2 

4 128 

CNN Hidden Layer 1 Neurons 4 32 

CNN Hidden Layer 2 Neurons 4 32 

Hidden Layer 1 Neurons 4 32 

Hidden Layer 2 Neurons 4 32 

The Machine Learning model training was done in Python using TensorFlow. Compatible with 
TensorFlow is another Python package, Keras. One of the functionalities of Keras is to automate 
the random search to find the optimal model configuration, so 200 random model combinations 
were generated from the ranges above and tested. Because there is some randomness in the actual 
training process, each model combination was trained three different times. The model with the 
best performance out of the 200 random combinations was saved. 

RESULTS AND DISCUSSION 

Evaluating the Machine Learning Model Performance 

The baseline Machine Learning model and the Machine Learning model optimized with the 
hyperparameter random search both showed promising results when observing their MAPE on the 
training and validation dataset. A summary of their two architectures and their performance can be 
seen in the table below.  

Table 4: Summary of the Machine Learning Model Architectures 

Model Parameter Baseline Model Optimized Model 
MLP Hidden Layer 1 Neurons 8 54 
MLP Hidden Layer 2 Neurons 4 54 

Number of Filters in Convolutional 
Layer 1 

16 24 

Number of Filters in Convolutional 
Layer 2 

32 4 

CNN Hidden Layer 1 Neurons 16 32 
CNN Hidden Layer 2 Neurons 4 32 

Hidden Layer 1 Neurons 10 54 
Hidden Layer 2 Neurons 5 12 

Training MAPE (%) 16 15 
Validation MAPE (%) 22 17 

223 https://doi.org/10.52202/075106-0018



16

Based on the table above, it is shown that both the baseline model and the optimized model 
performed similarly with the training data, but the optimized model performed a little better on the 
validation data. However, the two models still need to be compared to the physics-based model.

To compare the physics-based model with the Machine Learning models, a risk map was created 
for the campus of the Georgia Institute of Technology using the daytime population density infor-
mation from LandScan combined with the social media activity collected. A UAS was assumed to 
have a mass of 6 kg, a frontal area of 0.6 m2, a flight altitude of 35 m and a flight speed of 25 m/s 
operating over the campus. With this UAS configuration, a risk map was finally created using the 
physics-based model after hours required for completion while the Machine Learning models were 
able to complete the risk map in a matter of seconds with the same UAS conditions. Although the 
optimized model seemed to do better during training, the baseline model performed better when 
compared to the risk map created by the physics-based model. When compared to the physics-
based risk map, the MAPE for the baseline was 19.3% while it was 22.3% for the optimized model, 
so the baseline model was selected as the superior model. A comparison between the risk map 
created using the baseline Machine Learning model and the physics-based risk map can be seen in 
the image below. As mentioned, it took several hours to create the physics-based risk map and a 
few seconds to create the Machine Learning risk map. The heat map in each figure represents the 
expected fatality rate, measured as fatalities per flight hour.

     
Figure 11: Comparison Between the Machine Learning Model Risk Map (Left) and the 

Physics-Based Model Risk Map (Right)

The comparison above shows the Machine Learning can identify the same high-risk areas as the 
physics-based model, although the predicted risk from the Machine Learning model in these high-
risk areas appears to be less than that from the physics-based model. However, the MAPE for the 
Machine Learning model creating this risk map was still only about 19%. This can be interpreted 
as if the physics-based model determines the risk for a single location is 1x10-6 fatalities per flight 
hour, then the Machine Learning model might predict the risk value to be 0.81x10-6 fatalities per 
flight hour. That is one fatality every 114 years compared to a predicted 0.81 fatalities every 114 
years. Because of how low this frequency is, the 19% MAPE was deemed reasonable, although 
future work will include trying to minimize the MAPE further.

One benefit of using the Machine Learning model is the rapid generation of risk maps for UAS 
users to identify how the UAS flight conditions might affect risk. The images below show two 
different risk maps created for two different UAS configurations.
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Figure 12: Risk Map Created Using the Machine Learning Model when Mass=8 kg, 
Frontal Area=0.75 m2, Speed=30 m/s and Altitude =35 m

Figure 13: Risk Map Created Using the Machine Learning Model when Mass=2 kg, 
Frontal Area=0.4 m2, Speed=25 m/s and Altitude =35 m

By altering the UAS flight conditions and UAS parameters, UAS pilots can observe how the 
risk map changes. As expected, a larger and faster UAS increases the risk compared to a smaller 
and slower UAS. This ability to rapidly create risk maps with changing UAS flight parameters is 
meant to assist UAS pilots in the route planning to ensure the maximum level of allowable safety 
is not exceeded.

Risk-Informed Route Planning

Using the risk maps, risk-informed routes can be generated using a variety of different route 
planning methods. One such approach uses a modified version of the common A* algorithm that 
modifies the heuristic function to become a bi-objective equation comprised of total distance trav-
eled and cumulative ground risk19. As a result, the route planning algorithm can be used to find a 
combination of the safest route or the fastest route as desired. For this work, the Machine Learning 
model can be used to create a risk map to use with the route planning algorithm. This allows for 
the algorithm to find the safest route based on minimizing the risk of the path using the risk map. 
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This route planning algorithm was used to find the safest route between two points at the Georgia 
Institute of Technology using both risk maps created by the physics-based model and the Machine 
Learning model to compare the resulting paths. The comparison of the routes created can be seen 
below where the red route is the route created using the physics-based risk map and the black route 
is the route created using the Machine Learning model. The heat map in the figure is the risk map 
associated with the Machine Learning model. 

 
Figure 14: Comparison of Routes Created Using the Machine Learning Risk Map 

(Black) and Physics-Based Risk Map (Red) 

The two routes created using each of the risk maps are strikingly similar, suggesting the Machine 
Learning model is adequate at replacing the physics-based model for assisting in route planning. 
Additional confirmation of this is found when comparing the predicted risk and actual risk of the 
route created using the Machine Learning risk map. The table below summarizes the risk for this 
route. The predicted risk values and actual risk values are the risk values obtained using the Ma-
chine Learning risk map and physics-based risk map, respectively. 

Table 5: Summary of Risk Using the Machine Learning Risk Map for Route Planning 
Risk Predicted (fatalities / hour) Actual (fatalities / hour) Absolute Percent Error 

(%) 

Maximum Risk   10 

Average Risk   2.4 

From the table above, the error between the predicted maximum risk level and the actual risk 
level is greater than the error of the predicted average risk and the actual average risk. As stated 
previously, the Machine Learning model has a higher error with the higher risk areas, but with the 
model still able to identify the high-risk regions, it correctly avoids these areas when assisting in 
route planning. The error between the predicted average risk and the actual average risk is very 
low, suggesting that if the route planner attempts to avoid the high-risk areas, the predicted risk 
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values will be very close to the actual risk values. It should also be noted that both routes have a 
maximum risk value less than the acceptable risk level of 10-7 fatalities/hour mentioned previously. 

Using the Machine Learning model to quickly generate ground risk maps with the route plan-
ning algorithm to find acceptably safe routes below a target level of safety, further analysis can be 
done on how different UAS operating conditions and different target levels of safety impact the 
route a UAS can take.  The below images in Figure 15 and Figure 16 show two different scenarios 
with the same start and end point, with the only difference being in the UAS operating conditions. 
In both cases, a route was found below a maximum target level of safety of 10-7 fatalities per flight 
hour. This type of analysis can provide more informed decision making on flight parameters and 
vehicle parameters and their expected impact on both expected safety levels and available routes 
to take.  

 
Figure 15: Route Planned for a Low-Risk UAS 
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Figure 16: Route Planned for a High-Risk UAS 

Alternatively, further analysis can be done to observe the impact of changing the target level of 
safety requirement. A more relaxed target level of safety may be justified for more urgent use cases, 
like law enforcement and medical device deliveries. The images below show the resulting routes 
created for the same UAS configuration with different levels of safety required. As expected, the 
route that allows for higher rates of fatality takes the more direct path over the high-risk areas. 

 
Figure 17: Route Planned with Maximum Target Level of Safety of 10-5 Fatalities Per 

Flight Hour 

228https://doi.org/10.52202/075106-0018



 21 

 
Figure 18: Route Planned with Maximum Target Level of Safety of 10-7 Fatalities Per 

Flight Hour 

The objective of combining the risk map with the route planning algorithm was to provide a 
way to assess UAS ground risk and ensure ground risk values do not exceed some acceptable target 
level of safety. Whether it is law enforcement or delivery companies, all UAS users can utilize this 
technology by using it to create safe routes. The key enabler for this is the Machine Learning model 
that allows for quick risk assessment to ensure any route planned does not exceed a maximum level 
of allowable safety without taking significant time to determine expected risk values. 

CONCLUSION 

Like crewed aircraft, UAS require risk assessment to ensure any UAS is operating with some 
acceptable level of risk. Because the UAS has been introduced relatively recently compared to 
crewed aircraft, the UAS do not have the comparable historical flight data that would be required 
for such risk assessment. As a result, modeling and simulation methods have become the next best 
option to approximate UAS risk levels. The state-of-the-art methods for estimating UAS ground 
risk rely on physics-based models to determine the descent trajectory for a UAS given a failure and 
then determine the likelihood of causing a fatality if the UAS were to strike a person. This process 
can become computationally expensive and is not suitable for dynamic environments like cities. 
This work shows that Machine Learning methods can be used to replace the slow physics-based 
methods. Using physics-based methods to generate training data, a Machine Learning model was 
trained with a 16% error on the training data and a 22% error on the validation data. The Machine 
Learning model allows for UAS users to rapidly generate a ground risk map based on their desired 
UAS flight conditions with high-risk areas easily identifiable. With this risk map, it was shown that 
a route planner can be used to find a path that does not exceed some allowable risk value set by the 
user. This solution is presented as a flexible web-based application that can be used by any UAS 
pilot operating in highly populated areas. Future work would include increasing the fidelity of the 
physics-based model by incorporating additional descent trajectories and the effect of wind. Addi-
tionally, more diverse population densities and building layouts should be added to the training to 
increase robustness. 
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