2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS 2024)

Jersey City, New Jersey, USA 23-26 July 2024

Pages 1-737

IEEE Catalog Number: CFP24040-POD **ISBN:**

979-8-3503-8606-6

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP24040-POD 979-8-3503-8606-6 979-8-3503-8605-9 1063-6927

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS) **ICDCS 2024**

Table of Contents

Message from the General Chairs	xxvi
Message from the Program Chairs	xxviii
Organizing Committee	xxx
Program Committee	xxxi

Track: AI and Distributed

Quart: Latency-Aware FaaS System for Pipelining Large Model Inference
EdgeVPR: Transformer-based Real-Time Video Person Re-Identification at the Edge
AdapCC: Making Collective Communication in Distributed Machine Learning Adaptive
 TrimCaching: Parameter-sharing AI Model Caching in Wireless Edge Networks

An ML-Accelerated Framework for Large-Scale Constrained Traffic Engineering	7
 Portus: Efficient DNN Checkpointing to Persistent Memory with Zero-Copy	9
MEGA: More Efficient Graph Attention for GNNs	1
When the Edge Meets Transformers: Distributed Inference with Transformer Models	2
Power Profile Monitoring and Tracking Evolution of System-Wide HPC Workloads	3
 Bridging the Data Gap in Federated Preference Learning with AIGC	5
 Robust Decentralized Online Optimization against Malicious Agents	7
Track: Algorithms	
Fault-tolerant Consensus in Anonymous Dynamic Network	8
Partition Detection in Byzantine Networks	9
The Impact of Asynchrony on Stability of MAC	1

A Lock-free Binary Trie Jeremy Ko (University Of Toronto, Canada)	163
Learning Minimum Linear Arrangement of Cliques and Lines Julien Dallot (Technische Universitat Berlin, Germany), Maciej Pacut (Technische Universitat Berlin, Germany), Marcin Bienkowski (University of Wroclaw, Poland), Darya Melnyk (Technische Universitat Berlin, Germany), and Stefan Schmid (Technische Universitat Berlin, Germany)	175
SensorBFT: Fault-Tolerant Target Localization using Voronoi Diagrams and Approximate Agreement Akhil Bandarupalli (Purdue University), Adithya Bhat (Visa Research), Somali Chaterji (Purdue University), Michael Reiter (Duke University; Chainlink Labs), Aniket Kate (Purdue University; Supra Research), and Saurabh Bagchi (Purdue University)	186
Distributed Pooled Data Intrusion Detection: Lessons Learned from Quantitative Group Testing Max Hahn-Klimroth (Goethe University Frankfurt, Germany), Dominik Kaaser (TU Hamburg, Germany), and Malin Rau (Universität Hamburg, Germany)	198
Large-Scale Causal Data Replication for Stateful Edge Applications	209
Knowledge Connectivity Requirements for Solving BFT Consensus with Unknown Participants and Fault Threshold	221

Track: Application

Reducing First-Frame Delay of Live Streaming by Simultaneously Initializing Window and Rate Bo Wu (Tencent), Tong Li (Renmin University of China), Cheng Luo (Tencent), Xu Yan (Renmin University of China), Fuyu Wang (Tencent), Changkui Ouyang (Tencent), Lingfeng Guo (Tencent), Haiyang Wang (University of Minnesota at Duluth), and Ke Xu (Tsinghua University)	232
MuSAC: Mutualistic Sensing and Communication for Mobile Crowdsensing Sijie Ji (The University of Hong Kong), Lixiang Lian (ShanghaiTech University), Yuanqing Zheng (The Hong Kong Polytechnic University), and Chenshu Wu (The University of Hong Kong)	243
Debuglet: Programmable and Verifiable Inter-domain Network Telemetry Seyedali Tabaeiaghdaei (ETH Zürich), Filippo Costa (Switch), Jonghoon Kwon (ETH Zürich), Patrick Bamert (Zürcher Kantonalbank), Yih-Chun Hu (University of Illinois Urbana-Champaign), and Adrian Perrig (ETH Zürich)	255

Multi-user Entanglement Routing Design over Quantum Internets	
Yiming Zeng (Stony Brook University, USA), Jiarui Zhang (Stony Brook	
University, USA), Xiaojun Shang (University of Texas at Arlington,	
USA), Ji Liu (Stony Brook University, USA), Zhenhua Liu (Stony Brook	
University, USA), and Yuanyuan Yang (Stony Brook University, USA)	

Track: Big Data

 Learning From The History: Accurately and Efficiently Aggregating Geospatial Data under Local Differential Privacy	:77
Robust Categorical Data Clustering Guided by Multi-Granular Competitive Learning	.88
Efficient Pretraining and Finetuning of Quantized LLMs with Low-rank Structure	00

Track: Blockchain

AcBF: A Revocable Blockchain-based Identity Management Enabling Low-Latency Authentication 312 Jianan Hong (Shanghai Jiao Tong University, China), Jiayue Zhou (Shanghai Jiao Tong University, China), Yuqing Li (Wuhan University, China), Jia Cheng (Shanghai Jiao Tong University, China), and Cunqing Hua (Shanghai Jiao Tong University, China)

Orbit: A Dynamic Account Allocation Mechanism In Sharding Blockchain System	
CubeChain: Generalized Query Framework for Intra- and Cross-Chain Scenarios	
 Enabling High-Performance EOV Blockchains via Transaction Ordering Exploration	
 SecSCS: A User-Centric Secure Smart Camera System Based on Blockchain	
USSC: Universal and Storage-efficient Sidechains	
 Hammer: A General Blockchain Evaluation Framework	
 SG-FCB: A Stackelberg Game-Driven Fair Committee-based Blockchain Consensus Protocol 403 Ningbin Yang (Guangzhou University, China), Chunming Tang (Guangzhou University, China), Zehui Xiong (Singapore University of Technology and Design, Singapore), Qian Chen (Xidian University, China), Jiawen Kang (Guangdong University of Technology, China), and Debiao He (Wuhan University, China) 	
 Universal and Trustless Large-Value Payments in Cryptocurrencies	

Track: Cloud

D^2T: Dynamic Dual Threshold Policy of Shared-Memory in Data Center Switches
 Understanding the IO Performance Gap between OS-level and VM-level Containers in High-Density Deployment
Optimal Wide Stripe Generation in Locally Repairable Codes via Staged Stripe Merging
NPV: Fast Network Policy Verification for Cloud-Native Networking
Latency-guaranteed Co-location of Inference and Training for Reducing Data Center Expenses 473 Guoyu Chen (The Ohio State University, USA), Srinivasan Subramaniyan (The Ohio State University, USA), and Xiaorui Wang (The Ohio State University, USA)
Aquilas: Adaptive QoS-oriented Multipath Packet Scheduler with Hierarchical Intelligence for QUIC

HardWhale: A Hardware-isolated Network Security Enforcement System for Cloud Environments 496

Myoungsung You (KAIST), Jaehyun Nam (Dankook University), Hyunmin Seo (KAIST), Minjae Seo (KAIST), Jaehan Kim (KAIST), Dongmin Choi (KAIST), and Seungwon Shin (KAIST)	
P4CE: Consensus over RDMA at Line Speed	508
FARM: Comprehensive Data Center Network Monitoring and Management Jérôme Graf (Università della Svizzera italiana; SAP SE), Pavel Chuprikov (Università della Svizzera italiana), Patrick Eugster (Università della Svizzera italiana), and Patrick Jahnke (SAP SE)	520
Interleaved Function Stream Execution Model for Cache-Aware High-Speed Stateful Packet Processing	531
LinuxFP: Transparently Accelerating Linux Networking	543

Track: Edge

Group-Centric Scheduling for Industrial Edge Computing Networks with Incomplete	
Information	555
Iongxin Zhu (Southeast University), Ouming Zou (Southeast University),	
Xiaolin Fang (Southeast University), Junzhou Luo (Southeast	
University), Yingshu Li (Georgia State University), and Zhipeng Cai	
(Georgia State University)	
Fine-Grained Service Lifetime Optimization for Energy-Constrained Edge-Edge Collaboration	565

Haodong Zou (BNU-HKBU United International College, China; Hong Kong Baptist University, China), Jianxiong Guo (Beijing Normal University, China), Jiandian Zeng (Beijing Normal University, China), Yupeng Li (Hong Kong Baptist University, China), Jiannong Cao (The Hong Kong Polytechnic University, China), and Tian Wang (BNU-HKBU United International College, China; Beijing Normal University, China)

 FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning Communications 577 <i>Grant Wilkins (Argonne National Laboratory, USA; University of</i> <i>Cambridge, UK), Sheng Di (Argonne National Laboratory, USA), Jon</i> <i>Cameron Calhoun (Clemson University, USA), Zilinghan Li (Argonne</i> <i>National Laboratory, USA; University of Illinois at Urbana-Champaign,</i> <i>USA), Kibaek Kim (Argonne National Laboratory, USA), Robert Underwood</i> <i>(Argonne National Laboratory, USA), Richard Mortier (University of</i> <i>Cambridge, UK), and Franck Cappello (Argonne National Laboratory, USA)</i>
EdgStr: Automating Client-Cloud to Client-Edge-Cloud Transformation
Edge Cache on WiFi Access Points: Millisecond-Level App Latency Almost for Free601 Zhengquan Li (University of Michigan at Dearborn), Summit Shrestha (University of Michigan at Dearborn), Zheng Song (University of Michigan at Dearborn), and Eli Tilevich (Virginia Tech)
 Anole: Adapting Diverse Compressed Models for Cross-scene Prediction on Mobile Devices 613 Yunzhe Li (Shanghai Jiao Tong University, China), Hongzi Zhu (Shanghai Jiao Tong University, China), Zhuohong Deng (Shanghai Jiao Tong University, China), Yunlong Cheng (Shanghai Jiao Tong University, China), Liang Zhang (Shanghai Jiao Tong University, China), Shan Chang (Donghua University, China), and Minyi Guo (Shanghai Jiao Tong University, China)
OffloaDNN: Shaping DNNs for Scalable Offloading of Computer Vision Tasks at the Edge
DNN Partitioning and Assignment for Distributed Inference in SGX Empowered Edge Cloud 635 Yuepeng Li (China University of Geosciences, China), Deze Zeng (China University of Geosciences, China; Engineering Research Center of Natural Resource Information Management and Digital Twin Engineering Software, Ministry of Education, China), Lin Gu (Huazhong University of Science and Technology, China), Song Guo (The Hong Kong Polytechnic University, Hong Kong), and Albert Zomaya (The University of Sydney, Australia)
Tangram: High-resolution Video Analytics on Serverless Platform with SLO-aware Batching 645 Haosong Peng (Beijing Institute of Technology, China), Yufeng Zhan (Beijing Institute of Technology, China), Peng Li (The University of Aizu, Japan), and Yuanqing Xia (Beijing Institute of Technology, China)
 Mobility-aware Device Sampling for Statistical Heterogeneity in Hierarchical Federated Learning

Dynamic Time-of-use Pricing for Serverless Edge Computing with Generalized Hidden Parameter Markov Decision Processes
Communication-Efficient Training Workload Balancing for Decentralized Multi-Agent Learning 680 Seyed Mahmoud Sajjadi Mohammadabadi (University of Nevada, USA), Lei Yang (University of Nevada, USA), Feng Yan (University of Houston, USA), and Junshan Zhang (University of California, USA)
Accelerating and Securing Federated Learning with Stateless In-network Aggregation at the Edge
Nona: A Framework for Elastic Stream Provenance
Edge-Assisted Relevance-Aware Perception Dissemination in Vehicular Networks
A Performance Analysis Modeling Framework for Extended Reality Applications in Edge-Assisted Wireless Networks

Track: Fault Tolerance

шı	1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -
	Piao Hu (Shanghai Jiao Tong University, China), Huangzhen Xue
	(Shanghai Jiao Tong University, China), Chentao Wu (Shanghai Jiao Tong
	University, China; Yancheng Blockchain Research Institute, China),
	Minyi Guo (Shanghai Jiao Tong University, China), Jie Li (Shanghai
	Jiao Tong University, China; Yancheng Blockchain Research Institute,
	China; AI Institute, Shanghai Jiao Tong University, China), Xiangyu
	Chen (Huawei Technologies Co., Ltd., China), Shaoteng Liu (Huawei
	Technologies Co., Ltd., China), Liyang Zhou (Huawei Technologies Co.,
	Ltd., China), and Shenghong Xie (Shanghai Jiao Tong University, China)

Track: Federated Learning

 Ensuring Fairness in Federated Learning Services: Innovative Approaches to Client Selection, Scheduling, and Rewards
On Federated Multi-Armed Bandits for Mobile Social Networks
 Mitigating Demographic Bias of Federated Learning Models via Robust-Fair Domain Smoothing: A Domain-Shifting Approach
Libra: A Fairness-guaranteed Framework for Semi-asynchronous Federated Learning
Can Federated Learning Clients be Lightweight? A Plug-and-Play Symmetric Conversion Module. 809 Jialiang Liu (Sun Yat-Sen University, China), Huawei Huang (Sun Yat-Sen University, China), Chun Wang (Sun Yat-Sen University, China), Ruixin Li (Sun Yat-Sen University, China), Ting Cai (Hubei University of Technology, China), Qinglin Yang (Sun Yat-Sen University, China), and Zibin Zheng (Sun Yat-Sen University, China)

 FedMark: Large-Capacity and Robust Watermarking in Federated Learning
Mitigation of Gradient Inversion Attacks in Federated Learning with Private Adaptive Optimization 833 Cody Lewis (The University of Newcastle, Australia), Vijay 833 Varadharajan (The University of Newcastle, Australia), Nasimul Noman 834 (The University of Newcastle, Australia), Uday Tupakula (The 90 University of Newcastle, Australia; University of New England, 90 Australia), and Nan Li (University of Wollongong, Australia) 90
Incentivizing Participation in SplitFed Learning: Convergence Analysis and Model Versioning
Federated SGD with Local Asynchrony
Toward Free-riding Attack on Cross-Silo Federated Learning Through Evolutionary Game
Byzantine Robust Aggregation in Federated Distillation with Adversaries
Calibre: Towards Fair and Accurate Personalized Federated Learning with Self-Supervised Learning
Tackling System-Induced Bias in Federated Learning: A Pricing-based Incentive Mechanism 902 Shuo Wang (Southern University of Science and Technology, China), Bing Luo (Data Science Research Center, Duke Kunshan University, China), and Ming Tang (Southern University of Science and Technology, China)

and Ming Tang (Southern University of Science and Technology, China)

Track: Industry

MLPing: Real-time Proactive Fault Detection and Alarm for Large-scale Distributed IDC Network	3
Towards Integrated Energy-Communication-Transportation Hub: A Base-Station-Centric Design 925 in 5G and Beyond 925 Linfeng Shen (Simon Fraser University), Guanzhen Wu (Simon Fraser 925 University), Cong Zhang (The University of Hong Kong; Jiangxing 1 Intelligence Inc.), Xiaoyi Fan (The Hong Kong University of Science and Technology; Jiangxing Intelligence Inc.), and Jiangchuan Liu (Simon Fraser University; Jiangxing Intelligence Inc.) 926	5
 Dissecting the Applicability of HTTP/3 in Content Delivery Networks	6
 The SPATIAL Architecture: Design and Development Experiences from Gauging and Monitoring the AI Inference Capabilities of Modern Applications	7

 Enhancing AI-Generated Content Efficiency through Adaptive Multi-Edge Collaboration
 ERS: Faster LiDAR Point Cloud Registration for Connected Vehicles
 Fed-MS: Fault Tolerant Federated Edge Learning with Multiple Byzantine Servers
BCLB: A Scalable and Cooperative Layer-4 Load Balancer for Data Centers
OASIS: Offsetting Active Reconstruction Attacks in Federated Learning
 BB-Align: A Lightweight Pose Recovery Framework for Vehicle-to-Vehicle Cooperative Perception

Track: IoT

Resolve Cross-channel Interference for LoRa	1027
Fu Yu (Beijing University of Posts and Telecommunications, P. R.	
China), Xiaolong Zheng (Beijing University of Posts and	
Telecommunications, P. R. China), Yuhao Ma (Beijing University of	
Posts and Telecommunications, P. R. China), Liang Liu (Beijing	
University of Posts and Telecommunications, P. R. China), and Huadong	
Ma (Beijing University of Posts and Telecommunications, P. R. China)	

RideGuard: Micro-Mobility Steering Maneuver Prediction with Smartphones Zengyi Han (Dalian Maritime University, China), Xuefu Dong (The University of Tokyo, Japan), Liqiang Xu (The University of Tokyo, Japan), Zhen Zhu (The University of Tokyo, Japan), En Wang (Jilin University, China), Yuuki Nishiyama (The University of Tokyo, Japan), and Kaoru Sezaki (The University of Tokyo, Japan)	1039
A Battery Lifespan-Aware Protocol for LPWAN Sezana Fahmida (Wayne State University), Akshar Chavan (The Ohio State University), Venkata Prashant Modekurthy (University of Nevada), Abusayeed Saifullah (Wayne State University), and Marco Brocanelli (The Ohio State University)	1050
 mmHand: 3D Hand Pose Estimation Leveraging mmWave Signals	1062
GesturePrint: Enabling User Identification for mmWave-based Gesture Recognition Systems T Lilin Xu (Zhejiang University, China), Keyi Wang (University of California, United States), Chaojie Gu (Zhejiang University, China), Xiuzhen Guo (Zhejiang University, China), Shibo He (Zhejiang University, China), and Jiming Chen (Zhejiang University, China)	1074
CoCFL: A Lightweight Blockchain-based Federated Learning Framework in IoT Context	1086
LED Can Backscatter: Multi-Modal based 3D Localization via LED-tag	1097

Track: Mobile

 Approximation Algorithm for Connected Submodular Function Maximization Problems
CSS: Built-in Channel State Scrambling for Secure Wi-Fi based Sensing
Optimized Live 4K Video Multicast Streaming on Commodity WiGig Devices
Leveraging CAVs to Improve Traffic Efficiency: An MARL-based Approach
Joint AI Task Allocation and Virtual Object Quality Manipulation for Improved MAR App Performance
Coreset-sharing based Collaborative Model Training among Peer Vehicles
Counterfactual Reward Estimation for Credit Assignment in Multi-agent Deep Reinforcement Learning over Wireless Video Transmission

Track: Quantum

EPS Placement and Lightweight Entanglement Routing for Quantum Data Networks	1190
Adaptive User-Centric Entanglement Routing in Quantum Data Networks	1202
Network Topology Design for Distributed Quantum Computing	1213
Dynamic Routing and Post-processing Strategies for Hybrid Quantum Key Distribution Networks	1224
Omar Amer (Global Technology Applied Research, JPMorgan Chase Bank, United States), Walter Krawec (University of Connecticut, United States), Md. Zakir Hossain (University of Connecticut, United States), Victoria Manfredi (Wesleyan University, United States), and Bing Wang (University of Connecticut, United States)	
Quantum Network Routing based on Surface Code Error Correction	1236

Track: Security

GameTE: A Game-Theoretic Distributed Traffic Engineering in Trustless Multi-Domain SDN 1248 Yangyang Liu (Nanjing University, China), Jingyu Hua (Nanjing University, China), Yuan Zhang (Nanjing University, China), and Sheng Zhong (Nanjing University, China)
 HiddenTor: Toward a User-Centric and Private Query System for Tor BridgeDB
Physical Layer Secret Key Generation Leveraging Proactive Pilot Contamination

EarPass: Unlock When Wearing Your Earphones
 VehiGAN: Generative Adversarial Networks for Adversarially Robust V2X Misbehavior Detection Systems
PrivRE: Regular Expression Matching for Encrypted Packet Inspection
 SPOT: Structure Patching and Overlap Tweaking for Effective Pipelining in Privacy-Preserving MLaaS with Tiny Clients
OpenAuth: Human Body-based User Authentication using mmWave Signals in Open-World Scenarios 1330 Junlin Yang (Shanghai Jiao Tong University, China), Jiadi Yu (Shanghai Jiao Tong University, China), Linghe Kong (Shanghai Jiao Tong University, China), Yanmin Zhu (Shanghai Jiao Tong University, China), and Hong-Ning Dai (Hong Kong Baptist University, China)
 WaveKey: Secure Mobile Ad Hoc Access to RFID-Protected Systems
Dual Study of Canvas Fingerprinting based Authentication: A Novel Spoofing Attack and the Countermeasure
PIPO: Privacy-Preserving Convolutional Neural Network Inference with Plaintext Operations 1365 Tian Zhou (University of Massachusetts Amherst, USA) and Lixin Gao (University of Massachusetts Amherst, USA)

HammerHead: Leader Reputation for Dynamic Scheduling	1377
Giorgos Tsimos (Mysten Labs, University of Maryland), Anastasios	
Kichidis (Mysten Labs), Alberto Sonnino (Mysten Labs, University	
College London), and Lefteris Kokoris-Kogias (Mysten Labs, Austria)	
WIRE:Web3 Integrated Reputation Engine	1388
Suraj Shamsundar Jain (Texas A&M University, Success Lab), Huancheng	
Zhou (Texas A&M University, Success Lab), and Guofei Gu (Texas A&M	
University, Success Lab)	

Track: Poster and Demos

Demo: Blockchain Shield - Advanced Threat Detection & Forensic Analysis Platform
Demo: SCDRL: Scalable and Customized Distributed Reinforcement Learning System
Demo: Metamorphosis - A Consensus Protocol for Distributed Message Brokers
Demo: Specy Network - Trusted Multichain Automation With Verifiable Specifications
Demo: Highlighting the Limits of Federated Learning in Intrusion Detection
Timed Data Release using Smart Contracts
URCD: Unsupervised Root Cause Detection in Microservices Architecture with HGAN

 SPATIAL: Practical AI Trustworthiness with Human Oversight	
Demo: Visualizing the Shadows: Unveiling Data Poisoning Behaviors in Federated Learning 1431 Xueqing Zhang (Fordham University), Junkai Zhang (Columbia University), Ka-Ho Chow (the University of Hong Kong), Juntao Chen (Fordham University), Ying Mao (Fordham University), Mohamed Rahouti (Fordham University), Xiang Li (Fordham University), Yuchen Liu (North Carolina State University), and Wenqi Wei (Fordham University)	
Demo: Orchflow: Orchestration and Management of IoT-Centric Distributed Workflows	
Towards Rational Consensus in Honest Majority1439Varul Srivastava (International Institute of Information Technology,1439India) and Sujit Gujar (International Institute of Information1439Technology, India)1439	
Poster: Load Balancing for In-Memory Key-Value Data Stores	•
Poster: Service Polymorphism: Enhancing Web Service Performance by Serving Clients Dissimilarly	:

Poster: Optimal Variance-Reduced Client Sampling for Multiple Models Federated Learning 1446 Haoran Zhang (Carnegie Mellon University, USA), Zekai Li (Carnegie Mellon University, USA), Zejun Gong (Carnegie Mellon University, USA), Marie Siew (Singapore University of Technology and Design, Singapore), Carlee Joe-Wong (Carnegie Mellon University, USA), and Rachid El-Azouzi (Carnegie Mellon University, USA; University of Avignon, France)
Poster: Benchmarking of Code Generative LLMs
Poster: CrystalBall – Attack Graphs Using Large Language Models and RAGs
Poster: Selection of Optimal Neural Model using Spiking Neural Network for Edge Computing 1452 Sanaullah Sanaullah (University of Applied Sciences and Arts, Germany), Kaushik Roy (North Carolina A&T State University, USA), Ulrich Ruckert (Universität Bielefeld, Germany), and Thorsten Jungeblut (University of APplied Sciences and Arts, Germany)
Poster: Exploring Explainability Techniques for Large Language Model Classification Predictions
Poster: Secure Data Sharing with Decentralised Data Ring Fencing

Track: PhD Symposium

Yuzhu Liang (Beijing Normal University, China), Fengyi Huang (BNU-HKBU United International College, China), Yaxin Mei (Beijing Normal University, China), Guangxue Zhang (Beijing Normal University, China), Jiandian Zeng (Beijing Normal University, China), and Tian Wang (Beijing Normal University, China)
Augment Decentralized Online Convex Optimization with Arbitrarily Bad Machine-Learned Predictions
Dacheng Wen (Hong Kong Baptist University, Hong Kong; The University of Hong Kong, Hong Kong), Yupeng Li (Hong Kong Baptist University, Hong Kong), and Francis C.M. Lau (The University of Hong Kong, Hong Kong)
Unveiling DRAM Failures across Different CPU Architectures in Large-Scale Datacenters
Digital Twin Assisted Cross-Layer Resource Scheduling in ORAN System

Dynamic Mapping of Mixed-Criticality Applications onto a Mixed-Criticality Runtime System with Probabilistic Guarantees
Namcheol Lee (Seoul National University, Republic of Korea), Seongsoo Hong (Seoul National University, Republic of Korea), and Saehwa Kim (Hankuk-University of Foreign Studies, Republic of Korea)
Privacy-preserving Finger Movement Tracking Using Acoustic Sensing Enhanced by Smartphone Case Mini-structures
Partitioning Deep Neural Networks for Optimally Pipelined Inference on Heterogeneous IoT Devices with Low Latency Networks
Palm-based User Authentication through mmWave
 Enhancing Data Processing Throughput in IoT-Edge-Cloud Systems using Optimized Task Placement
An Enhancing VBF Protocol for AUVs: Integrating Uncertainty Management and Energy Efficiency
An Ad-hoc Communication Based Distributed Particle Swarm Optimization Scheme for Cooperative AUVs Underwater Search Task

Author Index