2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024)

Knoxville, Tennessee, USA 1-3 July 2024

IEEE Catalog Number: CFP24179-POD ISBN:

979-8-3503-5412-6

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24179-POD

 ISBN (Print-On-Demand):
 979-8-3503-5412-6

 ISBN (Online):
 979-8-3503-5411-9

ISSN: 2159-3469

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

ISVLSI 2024

Table of Contents

Message from the General Chairs	xxvi
Message from the Technical Program Chairs	
Message from the Quantum Computing Workshop Chairs	
Steering Committee	xxxi
Organizing Committee	xxxii
Program Committee	xxxiii
Keynotes	xxxix
INVITED TALK	
Secure Energy-Efficient Implementation of CNN on FPGAs for Accuracy Dependent Re	eal Time
Task Processing Krishnendu Guha (University College Cork, Ireland) and Amlan Chakrabarti (University of Calcutta, India)	
STCO: Driving the More than Moore era	7
Dwaipayan Biswas (imec, Belgium), James Myers (imec, Belgium), Julien	
Ryckaert (imec, Belgium), and Srikanth B. Samavedam (imec, Belgium)	
TECHNICAL SESSION 1A: CIRCUITS, RELIABILITY, AND	LAIIT
TOLERANCE	/ FAUL 1-
IOLERANCE	
An 8-bit 1 MS/s Low-Power SAR ADC with an Enhanced EPC for Implantable Medical Deepika Kumaradasan (NIT Rourkela, India), Sougata Kumar Kar (NIT Rourkela, India), and Santanu Sarkar (NIT Rourkela, India)	Devices 9
Generating Storage-Aware Test Sets Targeting Several Fault Models	15
Hari Addepalli (Purdue University, USA), Irith Pomeranz (Purdue	13
University, USA), Enamul Amyeen (Intel Corporation, USA),	
Suriyaprakash Natarajan (Intel Corporation, USA), Arani Sinha (Intel	
Corporation, USA), and Srikanth Venkataraman (Intel Corporation, USA)	
·	
Sub-Micron Binary HyperPixel Sensor Circuit: In-Pixel Binarization with Variable	21
Thresholding	21
Md Rahatul Islam Udoy (University of Tennessee, USA), Md Mazharul Islam (University of Tennessee, USA), Akhilesh Jaiswal (University of	
Islam (University of Tennessee, USA), Akhilesh Jaiswal (University of Wisconsin-Madison, USA), and Ahmedullah Aziz (University of Tennessee,	
USA)	
uon)	

Ultra-Small Area, Highly Linear, Modified All Mosfet Digital-To-Analog Converters with Novel Real Time Digital Calibration Algorithm
TECHNICAL SESSION 1B: COMPUTER-AIDED DESIGN AND VERIFICATION
Thermal Analysis of 3D Stacking and BEOL Technologies with Functional Partitioning of Many-Core RISC-V SoC
Automated Deep Neural Network Inference Partitioning for Distributed Embedded Systems 39 Fabian Kreß (Karlsruhe Institute of Technology, Germany), El Mahdi El Annabi (Karlsruhe Institute of Technology, Germany), Tim Hotfilter (Karlsruhe Institute of Technology, Germany), Julian Hoefer (Karlsruhe Institute of Technology, Germany), Tanja Harbaum (Karlsruhe Institute of Technology, Germany), and Juergen Becker (Karlsruhe Institute of Technology, Germany)
Thermal Implications in Scaling High-Performance Server 3D Chiplet-Based 2.5D SoC from FinFET to Nanosheet
Energy-Aware Incremental OTA Update for Flash-Based Batteryless IoT Devices
TECHNICAL SESSION 2A: DIGITAL CIRCUITS AND FPGA-BASED DESIGNS I
Design of Multiplier Circuit Based on Signed-Digit Hybrid Stochastic Computing
Energy-Efficient Design of Approximate VVC Interpolation Filters Units

Adaptive and Offloaded CNNs for IoT-Edge FPGAs	. 69
HIERA: High-Quality and High-Throughput Dehazing Hardware Accelerator with Reconfigurable Computing Unit	
TECHNICAL SESSION 2B: EMERGING AND POST-CMOS TECHNOLOGIES I	
Area-Efficient Digital Design using RRAM-CMOS Standard Cells Markus Fritscher (IHP Microelectronics, Germany; BTU Cottbus-Senftenberg, Germany), Max Uhlmann (IHP Microelectronics, Germany), Philip Ostrovskyy (IHP Microelectronics, Germany), Daniel Reiser (University of Rostock, Germany), Junchao Chen (IHP Microelectronics, Germany), Andreas Schubert (IHP Microelectronics, Germany), Carsten Schulze (IHP Microelectronics, Germany), Gerhard Kahmen (IHP Microelectronics, Germany; BTU Cottbus-Senftenberg, Germany), Dietmar Fey (FAU Erlangen-Nürnberg, Germany), Marc Reichenbach (University of Rostock, Germany), Milos Kristic (IHP Microelectronics, Germany; University of Potsdam, Germany), and Christian Wenger (IHP Microelectronics, Germany; BTU Cottbus-Senftenberg, Germany)	. 81
DeepApprox: Rapid Deep Learning Based Design Space Exploration of Approximate Circuits via Check-Pointing	. 88
A High-Accuracy Time-Efficient Error Metric Model for Approximate Computing Circuits	. 94
Random Microfluidic Chip Design with Diagonal Channels using K-Means Clustering for Fluid Dilutions Ankita Agrawal (Indian Institute of Technology Roorkee, India) and Sudip Roy (Indian Institute of Technology Roorkee, India)	100

TECHNICAL SESSION 3A: VLSI FOR APPLIED AND FUTURE COMPUTING I

Most Significant Digit First Multiply-and-Accumulate Unit for Neural Networks	106
Exploring a Hybrid SRAM-RRAM Computing-In-Memory Architecture for DNNs Model Inference 112	
Yu-Guang Chen (National Central University, Taiwan), Zhi-Wei Liu (National Central University, Taiwan), and Ying-Jing Tsai (National Central University, Taiwan)	
Accelerating Large Language Model Training with in-Package Optical Links for Scale-out	110
Systems Aakash Patel (Imec, Belgium), Dwaipayan Biswas (Imec, Belgium), Joyjit Kundu (Imec, Belgium), Yoojin Ban (Imec, Belgium), Nicolas Pantano (Imec, Belgium), Arindam Mallik (Imec, Belgium), Julien Ryckaert (Imec, Belgium), and James Myers (Imec, Belgium)	110
BafSP: Co-Design of Compute SRAM and Bit-Aware Data Flip Mitigation with In-Memory	124
Sparsity Detection for SpMM Xiaojie Li (Sun Yat-sen University, China), Mingyu Wang (Sun Yat-sen University, China), Yangzhan Mai (Sun Yat-sen University, China), Yicong Zhang (Sun Yat-sen University, China), Baiqing Zhong (Sun Yat-sen University, China), and Zhiyi Yu (Sun Yat-sen University, China)	124
SHIFFT: A Scalable Hybrid In-Memory Computing FFT Accelerator Pragnya Sudershan Nalla (University of Minnesota Twin Cities), Zhenyu Wang (Arizona State University), Sapan Agarwal (Sandia National Laboratories), T. Patrick Xiao (Sandia National Laboratories), Christopher H. Bennett (Sandia National Laboratories), Matthew J. Marinella (Arizona State University), Jae-sun Seo (Cornell Tech), and Yu Cao (University of Minnesota Twin Cities)	130
TECHNICAL SESSION 4A: SYSTEM DESIGN AND SECURITY I	
RFET-Based Dynamic Differential Logic Cells Against Power Side-Channel Attacks Nima Kavand (TU Dresden, Germany), Armin Darjani (TU Dresden, Germany), Garvit Chhabra (TU Dresden, Germany), and Akash Kumar (Ruhr University Bochum, Germany)	136
Enhancing Graph Execution for Performance and Energy Efficiency on NUMA Machines	143

Towards Quantum-Resistant Security: Pre-Silicon Power Side-Channel Leakage Analysis of CRYSTALS-Kyber
Efficient Federated Learning through Distributed Model Pruning
TECHNICAL SESSION 5A: SYSTEM DESIGN AND SECURITY II
DAW-DMR: Divergence-Aware Warped DMR with Full Error Detection for GPGPUs
Embedding Power Signature Generation into Low Dropout Voltage Regulators for Enhancing IoT
Security
A Fine-Grained Dynamic Partitioning Against Cache-Based Timing Attacks via Cache Locking 173 Nicolas Gaudin (UMR 6285, Lab-STICC, Université Bretagne-Sud, France), Pascal Cotret (UMR 6285, Lab-STICC, ENSTA Bretagne, France), Guy Gogniat (UMR 6285, Lab-STICC, Université Bretagne-Sud, France), and Vianney Lapôtre (UMR 6285, Lab-STICC, Université Bretagne-Sud, France)
Defending the Citadel: Fault Injection Attacks Against Dynamic Information Flow Tracking and Related Countermeasures
TECHNICAL SESSION 5B: VLSI FOR APPLIED AND FUTURE COMPUTING II
Energy-Efficient and Low-Latency Computation of Transcendental Functions in a Precision-Tunable PIM Architecture
In-Sensor Motion Recognition with Memristive System and Light Sensing Surfaces

SNN-ANN Hybrid Networks for Embedded Multimodal Monocular Depth Estimation
DBFS: Dynamic Bitwidth-Frequency Scaling for Efficient Software-Defined SIMD
TECHNICAL SESSION 6A: DIGITAL CIRCUITS AND FPGA-BASED DESIGNS II
Optimizing LU Decomposition with RISC-V Based Hardware Acceleration
Unfolded SiBM BCH Decoders for High-Throughput Low-Latency Applications
Boosting Multiple Multipliers Packing on FPGA DSP Blocks via Truncation and Compensation-Based Approximation
High Energy Efficiency Radix-4 Booth Multiplier with Zero Encoding Skipping Mechanism
TECHNICAL SESSION 6B: VLSI FOR APPLIED AND FUTURE COMPUTING II
Dynamic Exit Selection for Comprehensive and Energy Efficient Gait-Based User Authentication on IoT Devices

Compressed Latent Replays for Lightweight Continual Learning on Spiking Neural Network Alberto Dequino (Università di Bologna; Politecnico di Torino), Alessio Carpegna (Politecnico di Torino), Davide Nadalini (Università di Bologna; Politecnico di Torino), Alessandro Savino (Politecnico di Torino), Luca Benini (Università di Bologna; ETH Zurich), Stefano Di Carlo (Politecnico di Torino), and Francesco Conti (Università di Bologna)	
Machine Learning Based Decoding of Heavy Hexagonal QECC for Asymmetric Quantum Noise Debasmita Bhoumik (Advanced Computing and Microelectronics Unit, Indian Statistical Institute, India), Ritajit Majumdar (IBM Quantum, IBM India Research Lab), Dhiraj Madan (IBM Quantum, IBM India Research Lab), and Susmita Sur-Kolay (Advanced Computing and Microelectronics Unit, Indian Statistical Institute, India)	246
HO-FPIA: High-Order Field-Programmable Ising Arrays with In-Memory Computing	. 252
TECHNICAL SESSION 7A: EMERGING AND POST-CMOS TECHNOLOGIES II	
Towards Thermally Reliable Photonic Links for Multicore Processors Yuxiang Fu (The Hong Kong University of Science and Technology), Xuanqi Chen (The Hong Kong University of Science and Technology), Jiaxu Zhang (The Hong Kong University of Science and Technology), Shixi Chen (The Hong Kong University of Science and Technology), and Jiang Xu (Microelectronics Thrust, The Hong Kong University of Science and Technology)	. 260
An Efficient and Scalable Clocking Assignment Algorithm for Multi-Threaded Multi-Phase Single Flux Quantum Circuits	. 266
Technology Mapping for Cryogenic CMOS Circuits Benjamin Hien (Technical University of Munich, Germany), Marcel Walter (Technical University of Munich, Germany; University of Bremen, Germany), Victor M. van Santen (Technical University of Munich, Germany), Florian Klemme (University of Stuttgart, Germany), Shivendra Singh Parihar (University of Stuttgart, Germany; IIT Kanpur, India), Girish Pahwa (University of California, USA), Yogesh S. Chauhan (IIT Kanpur, India), Hussam Amrouc (Technical University of Munich, Germany; Munich Institute of Robotics and Machine Intelligence, Germany), and Robert Wille (Technical University of Munich, Germany; Software Competence Center Hagenberg GmbH, Austria)	. 272

Automatic Validation and Design of Microfluidic Devices Following the ISO 22916 Standard 278 Philipp Ebner (Johannes Kepler University Linz, Austria) and Robert Wille (Technical University of Munich, Germany; Software Competence Center Hagenberg GmbH, Austria)
SPECIAL SESSION 1: HARNESSING THE POWER OF TRUSTED AI IN IOT EDGE/CLOUD SYSTEM
Embracing Privacy, Robustness, and Efficiency with Trustworthy Federated Learning on Edge Devices
Approximate Ternary Matrix Multiplication for Image Processing and Neural Networks
An Intelligent Memory Framework for Resource Constrained IoT Systems
Predicting Stress in Older Adults with RNN and LSTM from Time Series Sensor Data and Cortisol
SPECIAL SESSION 2: ASSURED AND TRUSTED SEMICONDUCTOR MICROELECTRONICS INTEGRATED CIRCUITS (ICS)
Side-Channel and Fault Resistant ASCON Implementation: A Detailed Hardware Evaluation 307 Aneesh Kandi (Indian Institute of Technology Madras, India), Anubhab Baksi (Nanyang Technological University, Singapore), Peizhou Gan (Nanyang Technological University, Singapore), Sylvain Guilley (Telecom Paris, Paris, France; Secure-IC, Cesson-Sevigne, France), Tomas Gerlich (Brno University of Technology, Czechia), Jakub Brier (TTControl GmbH, Austria), Anupam Chattopadhyay (Nanyang Technological University, Singapore), Ritu Ranjan Shrivastwa (Telecom Paris, Paris, France; Secure-IC, Cesson-Sevigne, France), Zdenek Martinasek (Brno University of Technology, Czechia), and Shivam Bhasin (Nanyang Technological University, Singapore)
Adversarial Attack Resilient ML-Assisted Hardware Trojan Detection Technique
1-D Robust Chaotic Maps Through Systematic Shifting and Halfway Shifted Product

Splitting the Secrets: A Cooperative Trust Model for System-on-Chip Designs with Untrusted
IPs
SPECIAL SESSION 3: NEUROMORPHIC AND EDGE COMPUTING
Energy-Efficient Near-Sensor Event Detector Based on Multilevel Ga_2O_3 RRAM
Evaluation of Neuron Parameters on the Performance of Spiking Neural Networks and
Neuromorphic Hardware
Multi-Objective Neural Architecture Search for In-Memory Computing
ResSen: Imager Privacy Enhancement Through Residue Arithmetic Processing in Sensors
SPECIAL SESSION 4: HARMONIZING HARDWARE SECURITY WITH EMERGING TECHNOLOGIES
HELP: Highly Efficient and Low-Latency Hardware Accelerator for Integer Polynomial Multiplication
Exploring Security Solutions and Vulnerabilities for Embedded Non-Volatile Memories

Attacking Multi-Tenant FPGAs Without Manual Placement and Routing	367
A Survey of Side-Channel Attacks in Superconducting Quantum Computers	373
SPECIAL SESSION 5: EMERGING TOPICS IN HARDWARE SECURITY: FROM LLM TO HETEROGENEOUS INTEGRATION	
HI-SST: Safeguarding SiP Authenticity through Secure Split-Test in Heterogeneous Integration Paul E. Calzada (University of Florida, USA), Md Sami Ul Islam Sami (University of Florida, USA), Jingbo Zhou (University of Florida, USA), Kimia Zamiri Azar (University of Florida, USA), Farimah Farahmandi (University of Florida, USA), and Mark Tehranipoor (University of Florida, USA)	. 379
LLMs and the Future of Chip Design: Unveiling Security Risks and Building Trust	385
Self-HWDebug: Automation of LLM Self-Instructing for Hardware Security Verification	391
IP Security in Structured ASIC: Challenges and Prospects Rasheed Almawzan (University of Florida), Sudipta Paria (University of Florida), Aritra Dasgupta (University of Florida), Kostas Amberiadis (National Institute of Standards and Technology), and Swarup Bhunia (University of Florida)	.397
SPECIAL SESSION 6: EMERGING DEVICES IN MACHINE LEARNING ACCELERATION	
PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud	. 403

Scaling Analog Photonic Accelerators for Byte-Size, Integer General Matrix Multiply (GEMM) Kernels
Oluwaseun Adewunmi Alo (University of Kentucky, USA), Sairam Sri Vatsavai (University of Kentucky, USA), and Ishan Thakkar (University of Kentucky, USA)
A Memristive Reconfigurable Neuromorphic Array for Neuro-Inspired Dynamic Architectures 415 Hritom Das (The University of Tennessee, USA), Nishith N. Chakraborty (The University of Tennessee, USA), Manu Rathore (The University of Tennessee, USA), Sk Hasibul Alam (The University of Tennessee, USA), Catherine D. Schuman (The University of Tennessee, USA), and Garrett S. Rose (The University of Tennessee, USA)
SegmentAI: A Neural Net Framework For Optimized Multiclass Image Segmentation Via FPGA 421 <i>Uchechukwu Leo Udeji (University of Massachusetts Lowell, USA) and Martin Margala (University of Louisiana at Lafayette, USA)</i>
SPECIAL SESSION 7: EMERGING FRONTIERS IN CPS AND IOT SECURITY
CONFUSE: Confusion-Based Federated Unlearning with Salience Exploration
DT-IoMT: A Digital Twin Reference Model for Secure Internet of Medical Things
Low-Power and Computing-Free Privacy Design for IoT Systems
Exploring the Correlation Between DRAM Latencies and Rowhammer Attacks

SPECIAL SESSION 8: EMERGING SENSING, COMPUTING, AND TELEMETRY FOR IOT EDGE DEVICES

Long-Term Predictive Analytics of Continuous Glucose Sensing for Enhanced Glycemic Control... 451 Md Maruf Hossain Shuvo (University of Texas at El Paso, USA), Twisha Titirsha (University of Missouri, USA), Giuseppe Oliva (Magna Græcia University, Italy), Salvatore A. Pullano (Magna Græcia University, Italy), and Syed Kamrul Islam (University of Missouri, USA)

Machine Learning Intervened RIS-Based RF Interference Management For IoT
A Low-Cost Minimally-Processed Inkjet-Printed Nonlinear Element for Reservoir Computing 463 Shahrin Akter (University of Missouri, USA) and Mohammad Rafiqul Haider (University of Missouri, USA)
SPECIAL SESSION 9: ROBUSTNESS OF EDGE COMPUTING ENVIRONMENT
Energy-Efficient Power Analysis Attack Resilient Adiabatic MTJ-Based Nonvolatile CLB
Hardware-Efficient ECC Processor Design using Non-Homogeneous Split Hybrid Karatsuba Multiplier
Optimal Application Allocation and Wireless User Association for Robust Edge Computing 481 Terry N. Guo (Tennessee Technological University, USA)
A Survey of Edge Computing Privacy and Security Threats and Their Countermeasures
SPECIAL SESSION 10: SUSTAINABLE COMPUTING FROM EDGE TO DATA CENTER
System Support for Environmentally Sustainable Computing in Data Centers
SCARIF: Towards Carbon Modeling of Cloud Servers with Accelerators

Improving the Sustainability of Solid-State Drives by Prolonging Lifetime	2
Resource-Efficient Adaptive-Network Inference Framework with Knowledge Distillation-Based Unified Learning	8
Water-Wise Computing: Addressing Data Center Water Consumption for a Sustainable Future 51 Mohammad A. Islam (University of Texas at Arlington)	4
Carbon-Aware Design of DNN Accelerators: Bridging Performance and Sustainability	5
SPECIAL SESSION 11: SMART CYBER-PHYSICAL SYSTEMS	
TinyML for ECG Biometrics on Resource Constrained Devices	1
WAFER: Wearable, Ambient-Aware Adversarial Fall Event Detection System using a RISC-V SoC Architecture	7
Design Approaches and Consideration for a Reliable and Efficient Monolithic 3D Integration 53. Madhava Sarma Vemuri (North Dakota State University, USA) and Umamaheswara Rao Tida (North Dakota State University, USA)	3
Pasteables: A Flexible, Stick-and-Peel Smart Sensing Platform for Edge Applications	9
Quantum Machine Learning for Anomaly Detection in Consumer Electronics	4
Integration of Memristive Encoders for On-Device Automation of Low-Power Wearable Energy Management Systems	1

SPECIAL SESSION 12: FRONTIERS OF COMPUTING ARCHITECTURE AND SYSTEM DESIGN WITH BEYOND MOORE DEVICES

Multi-GHz Zeptojoule Computing using Emerging Adiabatic Superconductor Circuits Christopher Ayala (Yokohama National University, Japan), Nobuyuki Yoshikawa (Yokohama National University, Japan), Yu Hoshika (Yokohama National University, Japan), and Yuto Omori (Yokohama National University, Japan)	. 557
Scalable Superconducor Ising Machine for Combinatorial Optimization Problems Beyza Zeynep Ucpinar (University of Southern California, USA), Sasan Razmkhah (University of Southern California, USA), Mehdi Kamal (University of Southern California, USA), and Massoud Pedram (University of Southern California, USA)	. 565
EMspice 2.0: Multiphysics Electromigration Analysis Tool for Beyond Moore ICs	571
Skyrmion-Based Multi-Valued CPU Design Korinna Frangias (University of California, USA), Mi-Young Im (Lawrence Berkeley National Laboratory, USA), Hee-Sung Han (Lawrence Berkeley National Laboratory, USA), and Dilip Vasudevan (Lawrence Berkeley National Laboratory, USA)	. 577
Harnessing Approximate Computing for Machine Learning	. 585
From Device to Application - Integrating RRAM Accelerator Blocks into Large AI Systems	. 592
QUANTUM WORKSHOP 1	
Extended Abstract: Quantum-Accelerated Transient Stability Assessment for Power Systems Jianing Chen (The Pennsylvania State University, USA) and Yan Li (The Pennsylvania State University, USA)	. 593
Residue Number System (RNS) Based Distributed Quantum Addition	.595
Design Automation Challenges and Benefits of Dynamic Quantum Circuit in Present NISQ Era and Beyond	. 601

Can ML-Based Reliability Models Span Quantum Hardware Boundaries? 607 Georgios Ioannou (City College of New York, City University of New York, USA), Gopika Kizhuvettil (City College of New York, City University of New York, USA), Mohammad Walid Charrwi (City College of New York, City University of New York, USA), and Samah Mohamed Saeed (City College of New York, City University of New York, USA)
Visual Analytics of Performance of Quantum Computing Systems and Circuit Optimization 613 Junghoon Chae (Oak Ridge National Laboratory, USA), Chad Steed (Oak Ridge National Laboratory, USA), and Travis Humble (Oak Ridge National Laboratory, USA)
QUANTUM WORKSHOP 2
Anomaly Detection for Real-World Cyber-Physical Security using Quantum Hybrid Support Vector Machines
Two Exact Quantum Signal Processing Results
Efficacious Qubit Mappings for Quantum Simulations of the ^12C Rotational Band
A Novel Quantum Generalized Neighbor Interpolation Design For Image Transformations 632 Israel Koiku (University of North Texas, USA) and Edgard Muñoz-Coreas (University of North Texas, USA)
QUANTUM WORKSHOP 3
Transfer Learning Based Hybrid Quantum Neural Network Model for Surface Anomaly Detection 634
Sounak Bhowmik (University of Tennessee, USA) and Himanshu Thapliyal (University of Tennessee, USA)
Mathematical Model for SWAP Gate Minimization on NISQ Hardware

Trojan Taxonomy in Quantum Computing
Qubit and T-Count Optimized Quantum Circuit Design for Fixed Precision Square Root
POSTER SESSION 1: VLSI FOR APPLIED AND FUTURE COMPUTING
ICE TEA: Insertion of Custom Early Exits for Time-, Energy- & Anomaly-Aware Neural Networks
Matthias Stammler (Karlsruhe Institute of Technology (KIT), Germany), Julian Höfer (Karlsruhe Institute of Technology (KIT), Germany), Patrick Schmidt (Karlsruhe Institute of Technology (KIT), Germany), Tanja Harbaum (Karlsruhe Institute of Technology (KIT), Germany), and Jürgen Becker (Karlsruhe Institute of Technology (KIT), Germany)
Exploration of Unary Arithmetic-Based Matrix Multiply Units for Low Precision DL Accelerators
Accelerators
(Carnegie Mellon University)
Hardware-Application Co-Design to Evaluate the Performance of an STDP-Based Reservoir Computer
Hritom Das (The University of Tennessee, USA), Karan P. Patel (The University of Tennessee, USA), Shelah O. Ameli (The University of Tennessee, USA), Nishith N. Chakraborty (The University of Tennessee, USA), Nishith N. Chakraborty (The University of Tennessee, USA), Catherine D. Schuman (The University of Tennessee, USA), and Garrett S. Rose (The University of Tennessee, USA)
Maximizing Efficiency of SNN-Based Reservoir Computing via NoC-Assisted Dimensionality Reduction
Meta-Heuristic Optimization of CNNs with Approximate Error Distributed Multipliers
POSTER SESSION 1: COMPUTER-AIDED DESIGN AND VERIFICATION
ChIRAAG: ChatGPT Informed Rapid and Automated Assertion Generation

Event-Based Power Analysis Integrated with Timing Characterization and Logic Simulation 684 Katayoon Basharkhah (University of Tehran, Iran) and Zainalabedin Navabi (University of Tehran, Iran)
PACE: MLP-Based Fast and Accurate Per-Cycle Chip Power Modelling
POSTER SESSION 1: CIRCUITS, RELIABILITY, AND FAULT-TOLERANCE
Soft Error Assessment of UAV Control Algorithms Running in Resource-Constrained Microprocessors
A 1.7 GHz Tuning Range LC-VCO with Varactor Array and Switched Cross-Coupled Core 699 Raphael R. N Souza (Eldorado - Unicamp, Brazil), Agord M. Pinto (Eldorado - Unicamp, Brazil), Roberto L. de Orio (TU Wien, Austria), Leandro T. Manêra (University of Campinas, Brazil), and Eduardo R. de Lima (Eldorado Institute, Brazil)
Design and Analysis of an Electronically Tunable VDTA-Based Quadrature Oscillator
A 3-Segment Interpolating String DAC with Low-Cost Built-In-Self-Test Capabilities
Unveiling Proactive Recovery's Preventative Impact on NAND Flash Wearout
Parametric Fault Diagnosis of Analog Circuits using Adaptive Boosting
Structural Testing in MEDA Based Biochips: A New Technique using Diagonal Route

POSTER SESSION 1: EMERGING AND POST-CMOS TECHNOLOGIES AND SPECIAL SESSIONS

Compact 6T-SRAM using Bottom-Gate Transistor in FD-SOI Process for Monolithic-3D Integration	725
Quantum Anomalous Hall Effect Ternary Content Addressable Memory Madison Ashbach (North Dakota State University, USA), Md Mazharul Islam (University of Tennessee, USA), Shamiul Alam (University of Tennessee, USA), Ahmedullah Aziz (University of Tennessee, USA), and Sumitha George (North Dakota State University, USA)	730
Compact Multiplexer Design with Multi-Threshold Ferroelectric FETs	735
An Inkjet-Printed Flexible Memristor Device for Echo State Networks Tasnim Zaman Adry (University of Missouri, USA), Shahrin Akter (University of Missouri, USA), Sazia Eliza (University of Missouri, USA), Steven D. Gardner (University of Alabama at Birmingham, USA), and Mohammad Rafiqul Haider (University of Missouri, USA)	740
Reliability Analysis of Phase Change Memory-Based Neuromorphic Circuits	745
POSTER SESSION 2: DIGITAL CIRCUITS AND FPGA-BASED DESIGNS	
MOHSKM Meta-Heuristic Optimization Driven Hardware-Efficient Heterogeneous-Split Karats Multipliers for Large-Bit Operations	suba 749
Hybrid Stochastic Computing of Linear Time O(N) and Its In-Memory Computing for High Performances Yuhao Chen (Beihang University, China), Hongge Li (Beihang University, China), Yinjie Song (Beihang University, China), and Xinyu Zhu (Beihang University, China)	753

POSTER SESSION 2: SYSTEM DESIGN AND SECURITY

QA-NoCs: Quantitative Analysis for Trojan Detection in Network-on-Chips
Microplumber: Finding Hidden Sources of Power-Based SCL in Microcontrollers
POSTER SESSION 2: LATE BREAKING RESEARCH
An Experimental Study of Dynamic Task Graph Parallelism for Large-Scale Circuit Analysis Workloads
Incremental Critical Path Generation for Dynamic Graphs
Natural Language Processing Meets Hardware Trojan Detection: Automating Security of FPGAs 775 Vaishnavi More (California State University Fullerton, USA), Aaditya Chaudhari (California State University Fullerton, USA), Barnaboss Puli (California State University Fullerton, USA), Vasavi Vuppala (California State University Fullerton, USA), Jaya Dofe (California State University Fullerton, USA), and Wafi Danesh (The State University of New York at New Paltz, NY, USA)
Investigate the Effects of Laser Attack on Intelligence of the AV Perception
A Variation-Aware and Energy-Efficient Spintronic True Random Number Generator
Navigating the Challenges of Statistical Fault Injection in SRAM-FPGA
BatchSim: Parallel RTL Simulation using Inter-Cycle Batching and Task Graph Parallelism

POSTER SESSION 2: STUDENT RESEARCH FORUM

Low-Precision Vectorized Arithmetic Unit Designs for Deep Learning	794
FPGA-Based Intruder Detection Systems for Aerial Robots Maliha Kabir (The University of Texas at Tyler, USA), Roberto Gomez Gonzalez (The University of Texas at Tyler, USA), Troy Pulaski (The University of Texas at Tyler, USA), Parker Wilmoth (The University of Texas at Tyler, USA), and Prabha Sundaravadivel (The University of Texas at Tyler, USA)	798
Embedding Environmental Intelligence in Low-Cost Drones Roberto Gomez Gonzalez (The University of Texas at Tyler, USA), Miguel Gomez Gonzalez (The University of Texas at Tyler, USA), Luis Trevino (The University of Texas at Tyler, USA), and Prabha Sundaravadivel (The University of Texas at Tyler, USA)	802
POSTER SESSION 2: SPECIAL SESSIONS	
Advancing PUF Security: Machine Learning-Assisted Modeling Attacks Niraj Prasad Bhatta (Wright State University, USA) and Fathi Amsaad (Wright State University, USA)	805
Automated Generation of Dual Rail Adiabatic Gates from Binary Decision Diagrams	. 809
Enhancing Supply Chain Security: Machine Learning for Manufacturer Identification of SRAM PUFs	812
Harshdeep Singh (Wright State University) and Fathi Amsaad (Wright State University)	
Physically Unclonable and Reconfigurable Circuits for IP Protection: Opportunities and Challenges	817
Mrittika Chowdhury (University of Mississippi), Mahmudul Hasan (University of Kansas), Tamzidul Hoque (University of Kansas), and Md Sakib Hasan (University of Mississippi)	
Federated Learning: A Paradigm Shift in Cybersecurity for Smart Grids	821
Advancing IoT Security Through Run-Time Monitoring & Post-Execution Verification	825
Author Index	. 831