2024 IEEE 24th International Conference on Software Quality, Reliability and Security (QRS 2024)

Cambridge, United Kingdom 1-5 July 2024

IEEE Catalog Number: CFP24C33-POD **ISBN:**

979-8-3503-6564-1

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24C33-POD
ISBN (Print-On-Demand):	979-8-3503-6564-1
ISBN (Online):	979-8-3503-6563-4
ISSN:	2693-9185

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 24th International Conference on Software Quality, Reliability and Security (QRS) **QRS 2024**

Table of Contents

Message from the QRS 2024 Chairs	xvi
QRS 2024 Steering Committee	xviii
QRS 2024 Advisory Committee	xix
QRS 2024 Organizing Committee	xx
QRS 2024 Program Committee	xxi
QRS 2024 Keynotes	xxv

Software Testing I

(University of Milano-Bicocca, Italy)

EATS Efficient Adaptive Test Case Selection for Deep Neural Networks
DeepWeak Weak Mutation Testing for Deep Learning Systems
 Multimodal Multi-Objective Test Data Generation Method Based on Particle Swarm Optimization

Software Testing II

PADRAIG Precise Android Automated Input Generation	'2
OTCP-ISVM: Online Test Case Prioritization Based on Incremental Support Vector Machine	4
Test Case Generation for Access Control Based on UML Activity Diagram	5
Triggering Adaptation via Contextual Metamorphic Relations	15
Detecting Faults vs. Revealing Failures Exploring the Missing Link	.5

The ACPATH Structural Complexity Metric	127
Roberto Bagnara (University of Parma, Italy; BUGSENG, Italy), Abramo	
Bagnara (BUGSENG, Italy), Alessandro Benedetti (Formerly at University	
of Parma, Italy), and Patricia M. Hill (BUGSENG, Italy)	

Reliability Modeling and Prediction

Ensuring the Reliability of AI Systems Through Methodological Processes
 Enhancing Software Reliability Growth Modeling: A Comprehensive Analysis of Historical Datasets and Optimal Model Selections
Online Reliability Prediction for Web Applications: An Adaptive Approach with AdaRel

Large Language Models and Applications I

A Software Bug Fixing Approach Based on Knowledge-Enhanced Large Language Models
Empirical Evaluation of Large Language Models for Novice Program Fault Localization
 Exploring Large Language Models for Method Name Prediction
Learning from Failures Translation of Natural Language Requirements Into Linear Temporal Logic with Large Language Models

Large Language Models and Applications II

Symbolic Execution with Test Cases Generated by Large Language Models	228
 Evaluating OpenAI Large Language Models for Generating Logical Abstractions of Technical Requirements Documents	238
 Weaknesses in LLM-Generated Code for Embedded Systems Networking	250
 A Traffic Domain Classification Method Based on Large Model Multiple Optimization Strategies Neural Network	262

Bug Analysis and Detection

Beyond Memory Safety: An Empirical Study on Bugs and Fixes of Rust Programs	272
Towards Understanding Bugs in Go Programming Language	284
An Empirical Study on Bugs in Rust Programming Language	296

Fault Prediction and Localization

Investigating Reproducibility in Deep Learning-Based Software Fault Prediction Adil Mukhtar (Graz University of Technology, Austria), Dietmar Jannach (University of Klagenfurt, Austria), and Franz Wotawa (Graz University of Technology, Austria)	306
Employing CNN with Spatial Pyramid Pooling for Predicting Software Defects through Image Analysis	318
Zong-Yi Chen (National Tsing Hua University, Taiwan), Chin-Yu Huang (National Tsing Hua University, Taiwan), Jing-Rong Lin (National Tsing Hua University, Taiwan), Chih-Chiang Fang (National Tsing Hua University, Taiwan), and William Cheng-chung Chu (Tunghai University, Taiwan)	
TWAO Time-Weight-Aware Oversampling Method for Just-in-Time Software Defect Prediction Qi Xue (Soochow University, China), Weiyuan Zhuang (Soochow University, China), Lei Zhao (Soochow University, China), and Xiaofang Zhang (Soochow University, China)	328
Query Quality Prediction for Text Retrieval-Based Bug Localization Wenjie Liu (Nanjing University of Aeronautics and Astronautics, China), Weiqin Zou (Nanjing University of Aeronautics and Astronautics, China), Bingting Chen (Nanjing University of Aeronautics and Astronautics, China), Biyu Cai (Nanjing University of Aeronautics and Astronautics, China), and Jingxuan Zhang (Nanjing University of Aeronautics and Astronautics, China)	340

Cyber-Physical and Industry Control Systems

Assets Criticality Assessment of Industrial Control Systems: A Wind Farm Case Study Shwetha Gowdanakatte (Colorado State University, Fort Collins, USA), Mahmoud Abdelgawad (Colorado State University, Fort Collins, USA), and Indrakshi Ray (Colorado State University, Fort Collins, USA)	. 352
Application Scenario Modeling and Verification for Unmanned Aerial Vehicle Swarm	364
Manqing Zhang (Northwestern Polytechnical University, China), Renliang	
Wu (Northwestern Polytechnical University, China), Kang Su	
(Northwestern Polytechnical University, China), Yunwei Dong	
(Northwestern Polytechnical University, China), and Tao Zhang (Macau	
University of Science and Technology, China)	

Cybersecurity and Network Attack

Requirements for Applying SCIA: A Structured Cyberattack Impact Analysis Approach for ICS 388 Alvi Jawad (Carleton University, Canada), Zoe Arnott (Carleton University, Canada), and Jason Jaskolka (Carleton University, Canada)

Artificial Neural Networks

Designing Deep Neural Net Controller for Quadrotor Attitude Stabilization
cf-TDFM A Framework for Limiting Fault Infusion Attacks on Deep Neural Networks
Neural Network-Based Functional Degradation for Cyber-Physical Systems
Enhanced Privacy Protection in Graph Neural Networks Using Local Differential Privacy
Machine/Deep Learning and Applications I

Multi-Modal Feature Fistillation Emotion Recognition Method for Social Media Xue Zhang (Key Laboratory for Key Technologies of IoT Terminals, Harbin Institute of Technology, China), Mingjiang Wang (Key Laboratory for Key Technologies of IoT Terminals, Harbin Institute of Technology, China), and Xiao Zeng (Key Laboratory for Key Technologies of IoT Terminals, Harbin Institute of Technology, China)	445
Enhancing Data Retrieval with Custom Embedding Models and ChatGPT Jens Christian Toftdahl (Jens Christian Toftdahl, Denmark), Kamrul Islam Shahin (Kamrul Islam Shahin, Denmark), and Thomas Hylle (Thomas Hylle, City, Denmark)	455
Portable Intelligent ECG Monitoring System Based on End-Edge-Cloud Architecture	462

Transferrable DP-Adapter Tuning: A Privacy-Preserving Multimodal Parameter-Efficient	
Fine-Tuning Framework	471
Lixia Ji (Zhengzhou University, China; Sichuan University, China),	
Shijie Xiao (Zhengzhou University, China), Bingzhi Xu (Zhengzhou	
University, China), and Han Zhang (Zhengzhou University, China)	

Machine/Deep Learning and Applications II

Automated Machine Learning for Enhanced Software Reliability Growth Modeling: A Comparative Analysis with Traditional SRGMs	483
Taehyoun Kim (Agency for Defense Development, Republic of Korea), Duksan Ryu (Jeonbuk National University, Republic of Korea), and Jongmoon Baik (Korea Advanced Institute of Science and Technology, Republic of Korea)	100
An Improved Adaptive Angle Weakly Supervised Learning Object Detection Yantong Chen (Dalian Maritime University, China), Yuxin Shi (Dalian Maritime University, China), Jianzhao Ren (Dalian Maritime University, China), and Jiabao Li (Dalian Maritime University, China)	494
An Empirical Study on Python Library Dependency and Conflict Issues	504

Fuzzing Systems and Techniques

 Fuzzing Command-Line Interface by Edge Coverage Guided Combinatorial Testing and Input Clustering Han-Lin Lu (National Yang Ming Chiao Tung University, Taiwan), Zong-Yuan Wu (National Yang Ming Chiao Tung University, Taiwan), Chien-Hsing Wu (National Yang Ming Chiao Tung University, Taiwan), Guan-Zhong Wang (National Yang Ming Chiao Tung University, Taiwan), and Shih-Kun Huang (National Yang Ming Chiao Tung University, Taiwan) 	. 516
RumFuzz Coverage-Guided Greybox Fuzzing with Reasonable Use of Memory Jiangyun Xu (University of Chinese Academy of Sciences, China; Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China), Jinbo Wang (Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China), Yunyun Ma (Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China), Lu Li (Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China), and Chang Jia (Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China)	.526

Fuzzy Safety and Liveness Properties in Linear-Time
Fan Shi (College of Computer Science and Technology/College of
Software, Nanjing University of Aeronautics and Astronautics, China;
Key Laboratory for Safety-critical Software Development and
Verification, Ministry of Industry and Information Technology, China),
Zhiqiu Huang (College of Computer Science and Technology/College of
Software, Nanjing University of Aeronautics and Astronautics, China;
Key Laboratory for Safety-critical Software Development and
Verification, Ministry of Industry and Information Technology, China),
Haiyu Pan (School of Computer and Information Security/School of
Software, Guilin University of Electronic Technology, China), Yuting
Chang (Nokis Solutions and Networks System Technology (Beijing) Co.,
Ltd., China), and Heng Xu (College of Computer Science and
Technology/College of Software, Nanjing University of Aeronautics and
Astronautics, China; Key Laboratory for Safety-critical Software
Development and Verification, Ministry of Industry and Information
Technology, China)

FMUZZ A Novel Greybox Fuzzing Approach Based on Mutation Strategy Optimization with Byte

	5		0,	-	2
Scheduling					
Jinfu Chen (Jiangsi	u University, (China), Fei Yan (Jiangsu University,			
Zhenjiang, China),	Saihua Cai (J	iangsu University, Zhenjiang, China),			
Shengran Wang (Ji	iangsu Univer	sity, Zhenjiang, China), and Jingyi Ch	en		
(Jiangsu Universit	y, Žhenjiang, (China)			

System Security and Dependability

Building Secure Software for Smart Aging Care Systems: An Agile Approach Nilesh Chakraborty (Queen's University, Canada), Shahrear Iqbal (National Research Council, Canada), and Mohammad Zulkernine (Queen's University, Canada)	. 562
Impact of Prior Beliefs on Dependability Prediction for a Changed System Using Pre-Change	
Operational Evidence	. 572
Robab Aghazadeh Chakherlou (University of London, United Kingdom) and	
Lorenzo Strigini (University of London, United Kingdom)	
The PIT-Cerberus Framework Preventing Device Tampering During Transit	. 584
Rakesh Podder (Colorado State University, Fort Collins, USA), Jack	
Sovereign (Colorado State University, Fort Collins, USA), Indrajit Ray	
(Colorado State University, Fort Collins, USA), Madhan B. Santharam	
(AMI US Holdings Inc., USA), and Stefano Righi (AMI US Holdings Inc.,	
USA)	

Code Analysis and Generation

GNN-Based Transfer Learning and Tuning for Detecting Code Vulnerabilities across Different	
Programming Languages	596
Irfan Ali Khan (University of Missouri-Kansas City, USA), Yu Luo	
(University of Missouri-Kansas City, USA), Weifeng Xu (The University	
of Baltimore, USA), and Dianxiang Xu (University of Missouri-Kansas	
Čity, USA)	

 Which API is Faster Mining Fine-Grained Performance Opinion from Online Discussions
Graph-Based Salient Class Classification in Commits
FMCS Improving Code Search by Multi-Modal Representation Fusion and Momentum Contrastive Learning

Log Analysis and Fault Detection

Semantic Log Partitioning: Towards Automated Root Cause Analysis	639
Event-Level Anomaly Detection on Software Logs Role of Algorithm, Threshold, and Window Size	649
Speed and Performance of Parserless and Unsupervised Anomaly Detection Methods on Software Logs	657
Log Parsing Using Semantic Filtering Based Prompt Learning	567

Process Management and Optimization

Semi-Automated Refactoring of BPMN Processes
Dynamic Resource Allocation for Executable BPMN Processes Leveraging Predictive Analytics 689 Yliès Falcone (Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, France), Gwen Salaün (Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, France), and Ahang Zuo (Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, France)
Ant Colony Optimization Based Algorithm for Test Path Generation Problem with Negative Constraints
A Novel Approach for Traveling Salesman Problem via Probe Machine
Model-Driven Development of Single-Page Applications using UML State Machines and Maude . 724 Alexander Müller-Lobeck (Hochschule für Technik und Wirtschaft, Germany) and Gefei Zhang (Hochschule für Technik und Wirtschaft, Germany)

Systems Verification, Quality, and Safety

Classification Method of Ethereum Smart Contracts Based on Statistical Model Checking733 Miaoer Li (Jiangsu Normal University, China), Yi Zhu (Jiangsu Normal University, China; Key Laboratory of Safety-Critical Software (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, China), Yali Liu (Jiangsu Normal University, China), and Chan Yin (Jiangsu Normal University, China)	3
 Efficient Verification of Multi-Agent Systems Through Parallel	5
SIAF Systematic Interference Analysis Framework for Household Microprocessor Services	7
A Distributed Service Function Chain Orchestration Approach with VNF Reuse to Balance Latency and Resource Efficiency	9