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ABSTRACT

The energy transition is fostering the penetration of renewable energy sources into existing energy 
networks. In this context, Power-to-Gas solutions, which can convert renewable electricity into green 
hydrogen, are becoming prominent, emphasizing the significance of gas and electricity network 
interoperability. During the transitional phase, the gas network can provide flexibility to the energy 
system by absorbing hydrogen, thus preventing the curtailment of electricity. However, leveraging 
existing infrastructures cannot disregard compliance with gas quality standards represented by the 
Wobbe Index, the specific gravity and the Higher Heating Value of the gas. Given the non-negotiable 
nature of constraints regarding user safety and the inherent unpredictability of renewable energy 
availability and user demand, successful integration of energy networks necessitates the deployment of 
intelligent control strategies. This paper presents a novel control strategy based on Model Predictive 
Control, for the optimal management of hydrogen generation through an electrolyzer, and its subsequent 
injection into the existing gas network. The test case represents an integrated energy system that 
comprises renewable energy generation, the electrical grid, an electrolyzer, and the gas network. It was 
designed to mirror real-world conditions by including unexpected disturbances in renewable energy 
generation and user demand. The feasibility of the proposed controller is verified through a Model-in-
the-Loop simulation platform. The results underscore its efficacy in maximizing the usage of renewable 
energy while ensuring gas quality standards, also considering the dynamic operation of the gas network.
The results affirm its practical viability in real-world energy transition scenarios, paving the way for 
further exploration into more complex systems in future research.

1 INTRODUCTION

To address the necessity to reduce carbon dioxide emissions in the energy sector, significant efforts are
being made to foster the penetration of decentralized and non-programmable renewable energy sources 
(RES). These changes are reshaping the structure of existing energy systems, which necessitate 
enhanced flexibility to manage the mismatch between energy generation and consumption. In this 
framework, Power-to-Gas technologies enable the integration of different sectors, such as electricity, 
heating, and transportation, by converting surplus electricity into gaseous energy vectors, e.g. green 
hydrogen or methane. Although global interest in green hydrogen is growing, before it can replace 
traditional fuels, well-developed infrastructures for its transport and utilization need to be established 
(Neumann et al., 2023). In the transitional phase, blending hydrogen into existing infrastructures can 
encourage the development of a market while offering flexibility to the electricity grid (Cristello et al.,
2023). Erdener et al. (2023) showed the advantages and limitations of blending hydrogen into the 
existing natural gas network and highlighted the current regulatory limitations of doing so.
The different properties of natural gas and hydrogen encouraged researchers to develop mathematical 
models capable of tracking gas composition to investigate the quality and fluid-dynamic implications of 
transporting a blend. For instance, Chaczykowski et al. (2018) compared the implicit solution of the 
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advection equation to the batch tracking method showing the effectiveness of both methods. The former
presents numerical instability if there is a sharp variation in boundary conditions, while the latter avoids
numerical instability, but as a drawback the error cumulates as the batch moves forward. Zhang et al.
(2022) proposed and validated a method for determining the maximum discretization length to mitigate 
numerical instability caused by the advection equation when implementing localized hydrogen injection. 
A similar model was presented by Mhanna et al. (2022): the authors integrated the model into a
sequential linear programming algorithm to coordinate the operation of electrical and gas networks in 
case of multiple hydrogen injections, showing improved performance compared to standard algorithms.
Other studies proposed an energy approach method applied to various gas network scenarios. For 
instance, Guandalini et al. (2017) studied a high-pressure pipeline system, Cheli et al. (2021) analyzed 
a fictitious low-pressure distribution network, and Guzzo et al. (2022) examined a real gas distribution 
network encompassing medium- and low-pressure levels. The studies revealed that low hydrogen blends 
exhibit significant effects on velocities while having a minimal or negligible impact on pressure losses.
Besides, when related to its energy content, the compression of a natural gas and hydrogen blend needs 
a larger amount of power (Morini et al., 2009) and its flow in pipes dissipates a larger amount of energy 
(Cadorin et al., 2010). In addition, substantial impacts are noted on the Higher Heating Value (HHV) 
and the Wobbe Index, underscoring the importance of maintaining these values within regulatory limits. 
Cheli et al. (2021) emphasized the necessity for control strategies to address these issues, although no 
specific solutions have been proposed. In this context, Zhou et al. (2022) developed and compared
different control laws for the operation of an integrated system with hydrogen generation from 
renewable energy and its blending into the natural gas network. They included outlet pressure and 
hydrogen concentration as controlled variables, which both need to meet certain requirements at the 
same time. Within the HyDeploy project (Isaac et al., 2019), instead, a mixing loop is used to blend 
hydrogen with natural gas and obtain the desired hydrogen concentration in the blended gas before 
injecting it into natural gas pipelines. Nonetheless, in the context of integrated energy systems that 
include hydrogen generation, multiple energy carriers, and diverse technologies, the focus needs to be 
placed beyond hydrogen blending alone. Smart controllers emerge as key tools to enable the optimal 
management of such integrated energy systems. By using advanced algorithms and real-time data to 
make informed decisions, smart controllers can optimally coordinate the different system components, 
ensuring the achievement of determined objectives.
Among the existing control strategies, Model Predictive Control (MPC) is a model-based control 
strategy that enables optimal control following a certain objective, e.g. cost or energy minimization, by 
making use of an optimization algorithm with an integrated model of the system to control. This strategy 
has proven to be effective across various applications. However, to the best of the authors’ knowledge,
none of the existing studies on hydrogen blended in the natural gas network applies the MPC strategy 
to optimally control the generation of green hydrogen through an electrolyzer and its direct injection 
into the natural gas network. This work aims to fill this gap by developing an innovative control strategy 
based on MPC, capable of optimally managing a system that comprises renewable energy generation, 
hydrogen production, and its injection into the natural gas network, with a given maximum 
concentration. The controller is able to manage the system in real-time and adjust its operation according 
to its actual behavior. The controller is validated in a Model-in-the-Loop (MiL) configuration, using a 
detailed model of the system for emulating the behavior of a real system.

2 METHOD

This section presents the methods employed in this work. First, the mathematical models used for 
developing the simulation platform are described, then the MPC strategy is introduced, and lastly the 
optimization algorithms used for designing the controller are presented.

2.1 Simulation platform
The problem analyzed in this work deals with the smart control of an integrated system, aiming at the 
optimal management of hydrogen generation and injection into the existing gas network. An MiL setup 
was utilized to apply the controller to a model emulating the behavior of a real system. The model is 
presented in the following paragraphs: first, the gas network model is described, second, a brief 
overview of the energy system component models is introduced.
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2.1.1 Gas network model 
In the broader context of the study, a transient gas network model with localized hydrogen injection was 
developed. A set of partial differential equations is formed by the governing equations of the natural gas
and hydrogen (NG-H2) mixture flow through an isothermal pipeline, under the hypothesis of 1-D and 
unidirectional flow. These include the continuity equation (Eq. (1)) and momentum equation (Eq. (2))
for the gas mixture, along with the advection equation for H2 mass concentration (Eq. (3)). It must be 
highlighted that the energy equation was neglected, as a constant temperature in the pipeline was 
assumed. These equations describe how pressure p, density ρ, and mass flow rate change over time 
and space within a pipeline, which is characterized by diameter and cross-sectional area , and they 
can be written as follows

(1)

(2)

(3)

Under commonly used conditions in gas network modeling, Eq. (2) can be simplified by removing the 
term related to gravitational effects, under the assumption of a horizontally oriented pipeline, and 
removing the convective term, under the creeping motion hypothesis. In addition, Darcy friction factor 
f was approximated, under the hypothesis of fully turbulent flow, using the Nikuradse, Prandtl, von
Karman (NPK) explicit formulation (Menon, 2005) expressed as follows

(4)

To account for gas compressibility, the equation of state is used, which establishes the relationship 
between gas pressure , density and temperature . From the real gas law, it can be written as

(5)

where Rg represents the gas constant of the NG-H2 mixture. To describe (dimensionless 
compressibility factor), which accounts for the deviation of the real gas from ideal gas behavior, a 
Soave-modified Redlich-Kwong equation was employed (Soave, 1972).
The governing equations are numerically solved using a fully implicit, finite-difference method that is 
forward in time and centered in space (Eqs. (6) – (8)). Each pipeline of length is discretized into a
number of elements equal to , resulting in a uniform mesh of nodes. Variables are 
stored at the boundary of the i-th volume element and evaluated at its midpoint. For each 
pipeline, the following equations can be written, where and denote time and space discretization.

(6)

(7)

(8)

Nodes are elements of gas networks acting as connection points between various pipelines. At each 
node, a mass balance equation is applied (Eq. (9)), which states that, given a time-step t, the sum of all 
inflow and outflow mass rates of the node equals zero. For each time-step t, the balance is 
mathematically described by the following equation
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(9)

where and represent all the incoming and outgoing pipe mass flow rates in the node, respectively,
while is the required gas mixture demand, the natural gas supplied to the node and the 
hydrogen mass flow rate injected into the node. In addition, considering the presence of localized
hydrogen injection, the mass balance must also be written for the hydrogen gas component, as follows

(10)

with being the hydrogen mass fraction. According to an energy-based approach, to ensure energy 
demand fulfillment at each time-step, when a mixture of NG-H2 replaces only NG, the relationship 
between mass demand and original demand is defined as follows

(11)

By consolidating all equations into a closed algebraic formulation, the discretized system was solved 
using a simultaneous solution approach.

2.1.2 Energy system components
As mentioned above, the novel control strategy is applied in an MiL configuration to a detailed model 
of the system. Besides the model of the gas distribution network, a detailed mathematical model is also 
developed for the other components of the system, namely an electrolyzer and a wind farm. The models 
are implemented in the MATLAB®/Simulink® environment, and they are part of a library of energy 
system components developed in-house (Marzi et al., 2023). The models employed in this work are
summarized in the following paragraphs.
Wind farm: this model is developed as an algebraic model. It calculates the electrical power output of 
the wind farm starting from the geometry of the wind turbines, their position in the wind farm and the 
undisturbed wind velocity module and direction. It takes into consideration the wake effect that the 
wind turbines exert on the nearby turbines by applying the Jensen wake model (Yang et al., 2019).
PEM electrolyzer: this model is developed as an algebraic model. It calculates the amount of hydrogen 
and the thermal power generated by the electrolyzer, with a given electrical power input. It models three 
different operating modes: on, off (i.e. no production, no consumption, cold start-up to switch on) and 
standby (i.e. no production, consumption of small amount of electricity, warm start-up to switch on).
To model the steady-state operation, the relationships were derived by interpolating operating data from 
the literature (see Marzi et al., 2023).

2.2 Model Predictive Control
The MPC strategy is a smart control strategy which has already been demonstrated to be successful in 
many applications. When using this type of controllers, at every time-step the controller receives the 
states of the system and the information regarding the future disturbances influencing its behavior as 
inputs. By using optimization algorithms with an integrated simplified model of the system to control,
the controller enables the prediction and calculation of the optimal trajectory of inputs over the 
prediction horizon. Among these inputs, only those corresponding to the first time-step are actually 
applied to the system. After one time-step has passed, the prediction horizon is moved forward by one 
time-step and the calculation is repeated for the new prediction horizon.
This method enables the optimal control of complex systems and, by updating the parameters at every 
time-step, it allows optimal real-time management. In addition, the uncertain behavior of the 
disturbances can be tackled by updating them at every time-step based on real-time forecasts, or by 
using a stochastic optimization approach in the controller. However, the algorithms used need to be 
fast, in order for the controller to work in real-time. For this application, two optimization algorithms 
are employed to cope with this task. Notably, the problem was divided into two sub-problems, one is 
dedicated to the natural gas network, and the other aims at optimizing the Multi-Energy System (MES)
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in which hydrogen is generated. First, a Nonlinear Programming (NLP) algorithm, which optimizes the 
natural gas network, calculates the maximum amount of hydrogen that can be injected into the network 
during the prediction horizon, in order to meet the maximum concentration constraint. Afterwards, this 
information is read by a Mixed-Integer Linear Programming (MILP) algorithm, which transforms it 
into an upper bound for the electrolyzer operation and calculates the optimal management for the whole 
system. The strong coupling and the dynamic characteristics of integrated energy systems with blending 
of hydrogen make it challenging to set an optimal control for the system, which is able to optimally 
manage the system in real-time. To make it possible, the model used in the optimization algorithms
embedded in the MPC are simplified. In this way, the computational time needed to find the optimal 
solution is suitable for a real-time control of the system.
For developing the NLP algorithm, the equations describing gas motion (Eqs. (1) and (2)) were further 
simplified, according to common operating conditions. Particularly, the time derivative term in Eq. (2)
was omitted, having a negligible effect on the solution under common flow conditions (Correa-Posada 
et al., 2014). Assuming a unidirectional flow, the resulting equations are the following

(12)

(13)

where and represent the average mass flow rate and pressure in the pipe segment 
, respectively. Eqs. (9) – (11) are used for node balances and to model end-user demand fulfilment.

To track the hydrogen concentration in the pipeline, the batch tracking method was employed
(Chaczykowski et al., 2018). A schematic representation of this method is shown in Figure 1.
At the initial time-step, the system is initialized with a large batch filling the entire pipe. Then, at each 
time-step, a new batch enters the injection point. It is assumed that a single batch of constant H2

mass fraction equal to enters the injection point at every time-step, and its 
position in the pipe is tracked over time. The initial position of the batch is calculated as

(14)

where represents the time-step in which the batch enters the pipe and the total mass of component 
entered during the time-step length. Then, the batch position is tracked by using the following equation

(15)

where denotes the position of the batch injected during the time-step after batch , is the 
initial batch pressure while is the average pressure of the grid cell in which is located. The 
algorithm decision variables are the mass flow rates and pressures of the network, and it aims at
minimizing or maximizing the implemented cost function. 
The second algorithm embedded in the controller is an MILP algorithm. It was already tested and 
validated as an optimization tool in an MPC for different applications in Marzi et al. (2023) and Marzi
et al. (2024), and it proved to be effective in optimizing MES management, if properly tailored to the 
case study. It computes the optimal energy flows in the system over the prediction horizon considered,
minimizing a certain objective function. The algorithm tackles the dynamics of the system by modeling 
energy exchanges with end-users and external networks, renewable generation, when available, and 

Figure 1: Schematic representation of batch positions and composition (the different colors 
represent the different gas composition in each batch); and are the grid points.

batches

76https://doi.org/10.52202/077185-0007



Paper ID: 093, Page 6

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

conversion unit operation, using piecewise linearization for modeling variations in efficiency with the 
load and different operating modes for each of them.

3 APPLICATION

This section presents the case study analyzed in this work, how the MPC strategy was applied to it and
its implementation in the MiL configuration. 

3.1 Case study description
The case study is schematically represented in Figure 2. It comprises a 25-km natural gas distribution 
network with three nodes: node 1 (N1) is an NG supply node (5 bar), node 2 (N2) allows the injection 
of hydrogen, while node 3 (N3) represents the user node, with a fuel demand profile associated to it.
The diameter of the pipeline is set equal to , while the relative roughness is assumed equal 
to . The ambient temperature is considered constant and equal to 15 °C.
The case study also comprises a wind farm, with peak power of 8000 kW, for renewable electricity 
generation, and a PEM electrolyzer, with nominal power equal to 3750 kW, which allows the 
conversion of the renewable energy into hydrogen, for injection into the natural gas network in N2. In 
addition, the system is connected to the electrical grid, with which it can exchange electricity by buying 
or selling it, and it has an electrical end-user. It is assumed that the natural gas entering N1 corresponds 
to the Nord European gas, as identified by Guzzo et al. (2022). Therefore, to fulfil the gas quality 
parameter limits imposed by the Italian regulation, which constrains the Wobbe Index, specific gravity 
and Higher Heating Value of the gas, a maximum molar concentration of hydrogen in the gas equal to 
9.7 % is allowed. This corresponds to a maximum allowable mass fraction of 1.23 %, according to

(16)

3.2 Implementation
The MPC was implemented in an MiL configuration. At every time-step, the controller (i) receives
information regarding the state of the system from the model; (ii) performs the optimization procedure;
and (iii) returns the optimal inputs for the next time-step to the system. This procedure is schematically 
represented in Figure 3. The controller takes as inputs the node pressures, the electrolyzer state, and the 
amount of hydrogen and natural gas that entered N2 during the past time-step. In this way, it can 
compute the actual average concentration of the batch that entered pipe 2 during the previous time-step. 
This information is used as the initial state for the optimization. When the controller is called, the 
following steps are executed: (i) the NLP algorithm is run and computes the maximum amount of 
hydrogen that can be injected over the prediction horizon; (ii) it communicates this information to the 
MILP algorithm, which uses it as an upper bound for the electrolyzer operation over the prediction 
horizon; (iii) the MILP optimization is performed; and (iv) the set-point for the electrolyzer is 
communicated to the system model, which uses it for the next time-step.
As mentioned above, the NLP model aims at maximizing the amount of hydrogen injected into the 
network, and therefore at keeping the concentration of the mixture at the user node at the maximum 
value allowed, i.e. .

Figure 2: Schematic representation of the case study considered.
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Figure 3: Diagram of Model-in-the-Loop implementation of the controller (SP = set-point).

To this end, at every time-step the controller computes the concentration of the gas entered during the 
past time-step, by using actual data from the system, and it uses this information for decision-making.
As the controller uses a simplified model of the system and a forecast of disturbances that may be 
different from those that actually occur, the concentration of the previous batch may be higher than the 
set limit. In such circumstances, the controller compensates this error by lowering the maximum 
concentration of the next batch. In particular, it sets as a constraint in the NLP optimization

, (17)

where represents the concentration limit, is the concentration of the batch entering the 
pipe at the next time-step and is the measured concentration of the batch that entered the pipe 
during the past time-step. This imposes the average concentration of the two batches to be equal to the 
limit , and therefore to lower the concentration of the next batch in order to compensate for the 
inaccuracy occurred in the previous time-step. Indeed, even though no mixing among batches is 
assumed with the batch approach, the compensation works in real gas mixtures, when gas mixing
actually occurs to some extent.
The simulations were carried out over a period of one day. The controller is set with a prediction horizon 
of 12 hours and a time-step of 30 minutes. The disturbances given to it are the forecasts of the end-
users’ electrical and thermal needs and of the renewable energy generation. They are represented in 
Figure 4 for the simulated day. It was assumed that the renewable energy generated by the wind farm 
is associated with an electrical end-user and that the surplus renewable energy can be injected into a 
distribution natural gas network, which supplies the gas to a larger neighborhood. It is worth mentioning 
that the forecasts given to the MPC controller are different from the disturbances applied to the 
Simulink® model. Indeed, the latter depict the actual disturbances, and they are generated by introducing 
random deviations to the ideal disturbances provided to the controller. This approach enables the 
assessment of the response of the predictive controller to unexpected disturbances, mirroring real-world 
scenarios. The gas network model presented in Paragraph 2.1.1 was set with a time discretization of 
300 s and a space discretization of 1000 m. In order to reduce the number of variables, the MPC instead 
works with a time-step of 30 minutes and the space discretization for the gas network is set to 5000 m. 
Indeed, from preliminary simulations it was found that longer time-steps do not allow a proper real-
time control of the system.
As the controller operates with two optimization algorithms, two objectives are implemented. The 
objective of the NLP algorithm is the maximization of the amount of hydrogen injected over the
prediction horizon, and it is represented by the following equation

(18)
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Figure 4: Forecast of disturbances given to the MPC controller.

where is the average hydrogen mass flow rate injected into N2 during time-step and is the 
total number of time-steps of the prediction horizon.
The objective function of the MILP algorithm instead consists of the minimization of electricity 
exchanges with the electricity grid, i.e. the maximization of electricity used by the system. Indeed, when 
considering the integration of distributed RES within the grid, the injection of high amount of electricity
can cause grid instability issues. The objective function is expressed by the following equation

(19)

where and are the average amount of electricity bought and sold to the network during time-
step , respectively, and is the time-step length.

4 RESULTS AND DISCUSSION

To test the novel control on the model of the system using the architecture presented in the previous 
section, two simulations have been carried out. In the first simulation, the system is tested considering 
an unlimited availability of renewable energy (Renewable Energy Unconstrained – REU simulation),
while for the second simulation, the disturbances shown in Figure 4 are used for wind energy generation
(Renewable Energy Constrained – REC simulation).
Figure 5 displays the pressure at the nodes and the total mass flow rate exiting the three nodes during 
the simulated day in the REU simulation. In Figure 6, the hydrogen injected over the simulated day and 
the resulting hydrogen concentration at node N3 is depicted. It can be seen that, as expected, at every 
time-step the maximum allowed amount of hydrogen is injected, and the concentration is maintained as 
close as possible to the set limit. Thanks to the use of the novel controller, it is possible to manage the 
electrolyzer in such a way that the concentration is maintained under the set limit. Indeed, as discussed 
in Paragraph 3.2, the controller is able to adjust its operation based on feedback from the system and 
vary the injection of hydrogen according to that.
The results of the REC simulation are showed in Figure 7 and 8. Figure 7 shows how the electricity is 
managed within the system during the simulated day: it displays the energy balance among production, 
usage and energy exchange with the grid. It can be noted that, as the objective of the controller is to 
minimize energy exchanges with the electricity grid, when the renewable energy is not in surplus, the 
electrolyzer is switched off and the renewable energy is used to fulfill the electrical needs. 
As a result, as depicted in Figure 8, when the electrolyzer is switched off, the hydrogen concentration 
in the pipes drops to zero. Nevertheless, the controller is able to handle variations in hydrogen 
concentration, and restore the concentration as soon as the renewable energy is available.
When looking at cumulative results over the simulated day, it is obtained that in the REU simulation, 
without a limit on renewable energy production, the CO2 emissions associated with end-user fuel 
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Figure 5: Pressure at the nodes and total mass flow rate exiting the nodes during the simulated day in 
the REU simulation.

Figure 6: Hydrogen injected and hydrogen molar concentration during the simulated day in the REU 
simulation.

demand are reduced by 2.9 %, if compared to the case in which the fuel needs are fulfilled only by using 
natural gas. This number drops to 1.8 % of the reduction in CO2 emissions in the REC simulation, as 
the electrolyzer is switched off during part of the day, due to limited renewable energy availability.
The case study analyzed presents a straightforward scenario, ideal for initial testing of the developed 
MPC control strategy. In such system, employing a PID controller to regulate hydrogen injection might 
also be feasible, with the aim of keeping hydrogen concentration constant by monitoring hydrogen and 
natural gas flows. Nonetheless, when more complex networks are analyzed, e.g. with multiple injection 
or mixing points and diverse end-users, the ability of the controller to have a holistic view of the system 
is of crucial importance to ensure compliance with concentration and pressure limits in the network. In 
such configurations, the novel MPC could be integrated with lower-level conventional controllers and 
communicate the operational set-points to them.

80https://doi.org/10.52202/077185-0007



Paper ID: 093, Page 10

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE

Figure 7: Electricity balance in the system during the simulated day in the REC simulation.

Figure 8: Hydrogen injected and hydrogen molar concentration during the simulated day in the REC 
simulation.

5 CONCLUSIONS

Many efforts are being made to foster the integration in the current energy systems of novel technologies
to enable the decarbonization of various sectors. In this context, Power-to-Gas solutions allow sector 
integration and the production of green fuels such as green hydrogen from surplus renewable electricity.
Nonetheless, the use of existing infrastructures is crucial to accelerate the transition toward a fully 
decarbonized system. In this framework, hydrogen injection into the existing natural gas network can 
foster the production and use of green hydrogen for decarbonizing many hard-to-electrify sectors.
Nevertheless, for the safe operation of the network and user appliances, limits on hydrogen 
concentration in the gas mixture need to be set. To optimally manage the production and injection of 
hydrogen into the network, a control for the system is needed, which can tackle the dynamics of the 
entire energy system and ensure compliance with regulatory limits on hydrogen concentration.
In this work, an innovative control strategy based on Model Predictive Control is developed for 
optimally managing the generation of green hydrogen through an electrolyzer and its direct injection 
into the natural gas network. Notably, the controller was tested in a Model-in-the-Loop configuration
for the optimal management of an electrolyzer and the direct injection of hydrogen into the gas network.
The controller is able to manage the electrolyzer in real-time, relying on a simplified model of the 
system to control and using data on the actual behavior of the system at every time-step to adjust its 
operation. The results show that the developed control strategy enables the optimal injection of 
hydrogen, keeping the gas concentration under the set limit, and to maximize the usage of renewable 
energy, when available, reducing carbon dioxide emissions. Future studies will investigate various
systems, which can include many end-users, multiple hydrogen injection points and hydrogen storage
units, to analyze whether the controller can be adapted to more complex systems.
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NOMENCLATURE

A Pipe area (m2)
H2 mass fraction (–)
H2 molar fraction (–)

D Pipe diameter (m)
Objective function

f Friction factor (–)
g Gravitational acceleration (m/s2)
HHV Higher Heating Value (MJ/kg)
J Set of pipe segments
L Pipe length (m)

Mass (kg)
Mass flow rate (kg/s)

MES Multi-Energy Systems
MiL Model-in-the-Loop
MILP Mixed-Integer Linear Programming
MPC Model Predictive Control
NLP Nonlinear Programming
NG Natural Gas

Number of time-steps 
P Power (MW)
p Pressure (Pa)
PEM Proton Exchange Membrane
Rg Gas constant (J /(kg K))
REC Renewable Energy Constrained
RES Renewable Energy Source 
REU Renewable Energy Unconstrained
SP Set-point
T Temperature (K)
Z Compressibility factor (–)

Pipe roughness (m)
Density (kg/m3)
Batch position in the pipeline (m)
Pipe inclination angle (deg)
Time discretization length (s)
Space discretization length (m)

Subscripts and superscripts
b batch
bo bought
dmd demand
el electricity
g gas
i i-th pipe incoming flow in a node
inj injected
j j-th pipe outgoing flow in a node
k index for batch
lim limit
s supplied
so sold
std standard
t index for time discretization
x index for spatial discretization
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