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ABSTRACT 
 
The utilization of underground thermal energy storage (UTES) systems, such as borehole thermal 
energy storage (BTES) systems plays a crucial role in the decarbonization of district heating. To ensure 
high performance and operation efficiency under the condition of a robust system operation, heat supply 
systems require advanced control and operation strategies including the operation of the thermal storage 
systems. The focus of our operational optimization lies on the heat production side, comprising a BTES 
and diverse heat sources, buffer storage systems and heat pumps. We utilize a nonlinear model of the 
heating network that explicitly integrates mass flows and temperatures instead of solely relying on heat 
flow considerations. The advantage of this more detailed consideration is that realistic constraints on 
temperatures and mass flows can be easily incorporated into the model. A major challenge in such 
realistic modeling is the correct representation of the temperature dynamics of thermal storage 
components, especially when the storage parameters are unknown and only limited input-output data 
are available. In this work, we propose a novel method leading to a reduced surrogate model of the 
BTES temperature dynamics that can be directly included in the optimization or control algorithms. 
The resulting data-based surrogate model captures the fundamental dynamics while being deployable 
to operational optimization and system control algorithms. In particular, we employ a Python-based 
operational optimization process of a theoretical system setup using Pyomo. In conclusion, the 
presented storage modeling approach is a first step towards a broad variety of system configurations 
including different UTES types.  
 

1 INTRODUCTION 
 
The EU's climate strategy aims for complete net decarbonization by 2050 (European Union, 2020). A 
key element in this context is the decarbonization of the heating sector, which is currently largely based 
on fossil energy generation (77.1%) (Eurostat, 2022). In a decarbonized energy system, various volatile 
generation technologies (industrial waste heat, solar thermal energy) are coupled with consumers 
(district heating consumers) via short- and long-term storage devices, with sector coupling taking place 
via the use of heat pumps. In such an integrated energy system, the optimization of coupled system 
operation can make an important contribution to the efficient use of resources by reducing peak energy 
generation and maximizing the exploitation of available renewable energy potentials. 
 
Seasonal thermal energy storage systems are a central component for implementing the transformation 
to renewable heat generation by counteracting the mismatch between renewable energy potentials and 
heat demand as shown by Victoria et al. (2019) and Abdur Rehman et al. (2021). 
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In this paper, we focus on the thermal management of several heat sources on the production side, such 
as waste and solar thermal heat, which are, in combination with geothermal storage systems the most 
common renewable heat sources. A schematic of the system setup is presented in Figure 1. The goal of 
the control strategy is to match a given heat demand by adjusting the mass flows and to operate the 
Power-to-Heat units, e.g., such that the operational costs are minimized. We will refer to this 
methodology as energy operational optimization. Here, we consider a heat pump and an electric heater, 
whose electricity consumption is minimized, leading to the minimization of the deployment of rare and 
expensive peak load energy. 
 
In this paper, we formulate a model for the heat production system that integrates mass flows and 
temperatures. In contrast to operational optimization models solely reliant on heat flow considerations, 
our approach furnishes a more precise representation of the actual behavior of the system. 
 
The most challenging part is to accurately model the UTES. In the context of simulations, the use of 
finite-element models (FEMs) is quite popular and there are several simulation software packages 
available, such as Feflow or Spring. Although these software packages provide accurate models for 
simulation, such packages typically do not include optimization frameworks and therefore the 
combination with another software is needed to perform the operational optimization. Hence, the second 
significant contribution lies in introducing a novel method for constructing a reduced-order surrogate 
data-based models for BTES, effectively encapsulating their temperature dynamics. This model is based 
on a parametrized BTES model from Fiorentini et al. (2023), whose system coefficients are assumed to 
depend explicitly on the mass flow rates. The unknown system parameters are then recovered from the 
simulation data that are obtained for fixed mass-flow rates. For fixed mass flow rates, we derive linear 
system dynamics, enabling the application of a conventional system identification technique known as 
the Kalman-Ho algorithm or the eigensystem realization algorithm, see e.g. De Schutter (2000). The 
resulting identified data-based surrogate model can be directly integrated into an optimization 
framework, such as the Python toolbox Pyomo, see Bynum et al. (2021) and Hart et al. (2011).  
 
The concept of developing surrogate models for UTES is not novel. A comparable methodology was 
previously employed in a study by Fiorentini et al. (2023) for design optimization of a BTES within a 
heating network. Other approaches that include simplified models of UTES in the context of optimizing 
the system operation have been used in Fiorentini and Baldini (2021) and Saloux and Candanedo 
(2019), where an RC-type model was developed, and in Gabrieli et al. (2020), where the g-function was 
utilized. Furthermore, reduced order models of borehole heat exchangers were derived in Verhelst and 
Helsen (2011). Although these models can provide accurate models for the temperature dynamics, this 
often requires a time-demanding adaptation of a large number of model parameters accounting for site-
specific geological conditions and might also involve restrictive assumptions on the geometry of the 
BTES. In our methodology, we streamline the process by generating the surrogate model in a single 
step. This is achieved by applying our algorithm directly to simulation data, resulting in the creation of 
data-based surrogate models. These models can subsequently be seamlessly integrated as constraints in 
the energy operational optimization problem. 
 
Summarizing, the main contributions of this paper are the following: 
 

1. we derive a mass-flow and temperature-based model of the multiple-sources heat production 
system; 

2. we provide a method for constructing a reduced order surrogate model of a BTES based on 
simulation data; 

3. we integrate our BTES model in a Python-based energy operational optimization of the overall 
multiple-sources heat production system using Pyomo. 

The article is structured as follows: Section 2 describes the topology of the heating network and the 
components considered. Section 3 explains our approach for creating black-box models from input-
output data. This method is used in Section 4 to derive the data-based surrogate model. Section 5 
demonstrates the method using an example system comprising a BTES on the heat generator side 
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connected to the heat demand side via a heat pump. First, we derive a data-based surrogate model for 
the BTES and then integrate it as a constraint in the optimization problem, which aims to minimize the 
total annual electricity consumption. 
 

2 MODELING OF MULTIPLE SOURCES HEATING NETWORKS  
 
The overall heating network can be viewed as a graph, whose edges model the transmission pipes or 
heat sources allowing for heat exchange and whose vertices represent either pipe junctions or heat 
storage systems as Figure 1 illustrates graphically. The heat exchange is established via the edges, where 
each edge has a mass flow , as well as ingoing and outgoing temperatures  and , 
respectively. Hence, the heat flow  that is exchanged via the considered edge is given by 

 (1) 

where  is the specific heat of water. To allow for optimal operation and control 
of the thermal system, we need to consider dynamic models for the change of temperature in each of 
the multiple heat sources. The interconnection of some exemplary heat sources is shown in Figure 1. 
Note that while this sketch and the following network description serve as a blueprint for the integration 
of several underground storage systems, in this article we consider the specific integration of a BTES.  
 

Figure 1: Schematic of the considered heating network including the mass flows  between the units 
and the electrical power  and  used by the heat pump and the peak unit. STTS denotes a short-

term thermal energy storage. 
 
The system operation on the production side can be described as follows: The water stored in the UTES 
with temperature  is pumped via mass flows  and  towards the solar thermal and the 
waste heat source, respectively. The heated water then enters the short-term buffer storage STTS. The 
mass flow exiting the STTS is then split up into  and  where  is directly 
pumped into the UTES and  is used as a heating source for the heat pump. Besides this, there is 
an additional feed  to the buffer storage from the UTES. 
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On the production side, we consider waste heat and solar thermal heat sources. We assume that there is 
an internal controller at both components that regulates the output temperature, such that a given 
constant temperature increase  is achieved. This means that according to (1) the solar thermal power 
and the waste heat power at time instance  satisfy 

   and   . (2) 

Consequently, if the produced heat powers  and  are known, we can determine the mass 
flows  and  from (2). 
 
On the demand side, the model includes a peak load unit and the heat demand. The heat demand is 
modeled as a sequence of hourly requested heat flows, organized into variable supply and return 
temperatures and mass flows, which are based on the demand curves of a realistic district heating 
network. A heat pump is placed between the production side and the demand side. The heat pump is 
described by the following set of equations, see Petrecca (1993)  

  (3) 

  (4) 

   and    (5) 

where  represents the theoretical maximum coefficient of performance. Losses that occur in 
reality are summarized in the grade of quality , for which we assume  according to Arpagaus 
et al. (2018). The actual  is calculated as the product of the and . Furthermore,  is 
the electric power consumed by the heat pump,  is the fluid temperature on the secondary side of 
the heat pump, and  is the temperature on the primary side.  is bounded by the return 
temperature and supply temperature of the heat demand. There is an additional electric heater on the 
demand side to cover potential peak demands that can be described by  

 (6) 

where  is the produced heat flow,  (Münnich et al., 2022) is the assumed efficiency of the 
heater and  is the consumed electrical power. 
 
On the primary side, we assume a given heat demand , which must be met by the heat generated 
by the peak load unit and the heat pump, i.e., 

 (7) 

Furthermore, the considered heating network has two storage units: an underground thermal energy 
storage (UTES), as well as a buffer storage (STTS) between the multiple heat sources and the secondary 
side of the heat pump. The time evolution of the water temperature  in the buffer storage is based 
on Machado et al. (2022) and can be described by 

 (8) 

where  is the density of water in ,  is the storage volume in ,  is the discretization 
step size in seconds ,  is a parameter that characterizes the heat loss relative to the ambient 
temperature , and  and  are the thermal input and output powers in Watt , respectively. The 
parameter  was selected such that it corresponds to a heat loss of 1.7% per week, see Danish Energy 
Agency (2023). To maintain the constant storage volume  in (8), we require the following balance 
of mass flow rates to hold:  
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 (9) 

Next, replacing the thermal power using (1) results in 

(10) 

Note, that after this replacement of  and  it becomes obvious that (8) models a nonlinear 
dynamic relationship between the storage temperature and the incoming mass flows and their 
temperatures. 
 
For the UTEs, we analogously begin with a linear dynamic relationship of the storage temperature and 
the incoming and outgoing heat flows and obtain the full nonlinear dynamics after factoring the heat 
flows into their corresponding mass flows and temperatures. Based on the STTS model (8), we will use 
the following dynamic black-box model that will be obtained from data, cf. Section 3, 

 (11) 

where , , , and  are unknown system matrices,  is 
an unknown system state,  is the output,  is the control input, and  is 
an unknown disturbance, which models e.g. the influence of the ambient temperature. Since we 
construct the black-box model from input-output data generated by a simulation model of the UTES, 
we can choose the inputs and outputs to be  

   and    (12) 

where  and are the mass flows leaving and entering the UTES, respectively, 
and  is the input temperature into the UTES that is given by the perfect mixing model 

 (13) 
 

 
3 CONTROL-ORIENTED BLACK-BOX MODELS FOR SYSTEM COMPONENTS 
 
In this section, we describe a general approach to obtain control-oriented black-box models based on 
simulation data. This approach will be applied in Section 4 to simulation data from a BTES system to 
derive our data-based surrogate model. By a control-oriented model we mean a linear time-invariant 
system with matrix coefficients  of the form (11). 
 
We describe a method for obtaining the unknown matrices  in (11) that fit to the simulated 
system input-output data .  
 
First, note that the solution of (11) is given by 

, (14) 

from which the output  can be easily obtained using the last equation in (11). Hence, if we consider 
two sets of simulation data  and  that were obtained using the 
same initial value  and disturbance values , then taking the difference of the solutions results in 
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 (15) 

which does neither depend on the initial value  nor the disturbance variables . Therefore, it is 
sufficient to focus on the case  and . For simplicity, we restrict ourselves to the one-
dimensional case , i.e. . Note, however, that the following construction can 
be easily extended to arbitrary dimensions of the inputs and outputs vectors, i.e. , by 
considering the entries of the input and output vectors separately. 
 
After choosing the input as , we obtain the following  

 
(16) 

 
More generally, this leads to 

 (17) 

which defines the so-called Markov parameters of the system. The black-box model  can be 
recovered using the Hankel matrix and the shifted Hankel matrix, i.e., 

. 

 

(18) 

In the following we state the Kalman-Ho algorithm, see e.g. Section 3.3 in De Schutter (2000) that 
allows us to recover the matrices by performing the following steps: 
 

1. Select  large enough and determine . 
2. Find nonsingular , such that the following holds 

 (19) 

where is the identity matrix. 
3. Using  define the system matrices as follows: 

 (20) 

Note that we consider the rank of the matrix in step 1, i.e. the number of linearly independent rows (and 
columns). A standard method to achieve the decomposition in step 2 is the singular value decomposition 
for which the matrices  are orthogonal, i.e.  holds.  
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4 DERIVATION OF A DATA-BASED SURROGATE BTES MODEL 
 
In this section we derive a data-based model for given input-output data of a BTES. To this end we start 
with a simplified BTES model with linear temperature dynamics from Fiorentini et al. (2023) of the 
following form  

 (21) 

with the averaged BTES temperature , density of the ground , the specific heat of the ground , 
the BTES volume , the BTES depth , the  value, the thermal conductivity of the ground , the 
ambient temperature , the temperature of the ground the discretization step size , and the 
heat flow  that is exchanged with the primary side. 
 
The input of this model is the heat flow into the storage and the output is considered to be

. We assume that the parameter values of the system dynamics are unknown and the aim is to 
determine these parameters from the input-output data using the method described in Section 3. To this 
end, the terms are resorted to obtain a linear system 

 (22) 

with 

 (23) 

Next, the heat flow that is exchanged with the network is replaced using the expression (1) which 
includes the input mass flow and the temperatures 

 (24) 

However, this results in a nonlinear system model, or more precisely, a linear parameter varying model, 

 (25) 

such that the identification method from Section 3 cannot be applied directly. In fact, the yet unknown 
parameters in (21) can be identified by restricting the mass flows to be constant, i.e.  
and by considering only the input temperature  as a control input. This results in a linear 
system, to which the identification method from Section 3 can be applied to determine the coefficients 
A and B in (22). Subsequently, by replacing in equation (22) with (24), we obtain a BTES 
model with time-varying mass flows that can then be used as optimization variables in the operational 
optimization of the system shown in Figure 1.  
 
To determine the unknown coefficients A and B in (22), we generate two sets of simulation data 

 and  for the considered fixed mass flow and for two choices 
of input temperature sequences  which is the constant sequence and 

 for user defined values of  and . Hence, using the method described 
in Section 3 can be applied and leads to approximate values of the system coefficients  

. (26) 

From these, the values for  and  can easily be determined. From the given references  or  
one can then determine the disturbance . Finally, (21) can be included as an additional equation in 
the optimization constraints to describe the temperature dynamics of the BTES.  
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In the previous considerations, we assumed that the temperature dynamic of the BTES can be described 
by a single temperature . Due to the rather large BTES volume, the modeling equation (21) can be 
viewed as an average temperature which might lead to imprecisions. A more accurate modeling is 
provided by finite element methods, where the BTES and ground volume is divided into several user-
defined sub-volumes of different temperatures. Hence it is expected that also the number of states of 
the identified system will increase, as the number of considered volumes increases. 
 
Therefore, we describe in following the identification of the BTES temperature in this more general 
setting. Motivated by (21), we consider the following bilinear system class 

 (27) 

for matrices . Hence, (27) for two fixed mass flows 
 and  is linear and we can identify the LTIs  and . 

Therefore, the system matrices can be obtained in the following way 

 (28) 

and analogously for  and  In a second step, we assume now a constant disturbance 
 with the aim to identify values for d and the initial value  that fit to the given data sets. 

This can be achieved by applying a least squares fitting of the computed  using the determined 
system matrices with the given reference signals. 
 

5 CASE STUDY OF ENERGY OPERATIONAL OPTIMIZATION FOR A BTES 
SYSTEM 

 
In this section, we consider the heating network shown in Figure 1 and aim for operating the system at 
minimum electricity costs with respect to the constraints listed in Section 2. Here we optimize over one 
year, starting on the first day in January with a resolution of one hour for each time step. This leads to 

 time steps using the following objective function 

 (29) 

where  and  are the electricity costs to run the electric heater and the heat pump, respectively. 
For simplicity, we restrict ourselves in the case study to  for all . However, within 
the flexibility of a heating network, variable electricity prices are an important aspect to further reduce 
the costs and will be considered in future work. 
 
The system identification is applied to simulation data generated from the simplified model (21), where 
the system parameters are fixed but assumed to be unknown. In the simulation, we consider a fixed 
mass flow  and set , , yielding the input sequences 

, and  for the simulation setup. The identified 
system (11) was of order  and we determined its system matrices in (22) as  
and  with constant . For the case study, we consider the 
parameters mentioned in Section 2 and the storage volume  The considered heat 
demand is taken from rescaled data of a medium sized real district heating network and we 
use a site specific solar thermal heat flow . 
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Figure 2: The storage temperatures in the STTS (red) and the BTES (blue) during the optimal 
operation which minimizes the used electrical power. 

Figure 3: The annual heat demand (blue) is covered by the heat provided by the heat pump (green) 
and the peak load unit (red). 

 
For the optimization, we used the Python optimization toolbox Pyomo with the solver IPOPT. The 
optimized storage temperatures in the STTS and BTES are shown in Figure 2. We observe high daily 
temperature fluctuations in the STTS and rather slow dynamics within the BTES. Also, the temperature 
levels are different. In the optimization, we set the lowest possible BTES temperature at 6 °C, which is 
also assumed to be the initial temperature of the BTES. This BTES temperature is almost maintained 
during January until beginning of May. During the summer, the BTES is charged and the temperature 
stays below 30 °C such that the storage could e.g. be used for cooling a data center throughout the year. 
Furthermore, the BTES is discharged at beginning of October when the heating period starts. 
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Figure 3 shows the heat demand covered by the heat pump and the peak load unit. Here we used a 
rescaled typical heat profile with high demands during the beginning and the end of the year and a 
comparably small demand in the middle of the year. We observe a rather high usage of the peak load 
unit during January until April, which is due to the fact that the BTES is not charged yet. Once the 
storage is charged the demand can be covered from October until mid of December only by using the 
heat pump. 
 

6 CONCLUSION AND DISCUSSION 
 
In this paper, we presented a dynamic model for a heat supply system, which incorporates the mass 
flows and temperatures. We used a method to obtain a control-oriented surrogate model from simulation 
data that can be incorporated easily within a dynamic optimization model aimed at minimizing the 
operating costs of a heating network by adjusting the electrical power used. The results were illustrated 
in a small numerical case study for a heat supply system that contains a BTES system.  
 
Although the current method is promising, it also has its limitations. These limitations are addressed in 
the following discussion. 
 
Regarding the modeling of the heat supply system, we do not include pipe models, since the pipe lengths 
on the production side are rather short. However, for district heating networks, the flow speed of water 
of 1-3 m/s is rather slow compared to the network length of several hundred meters up to a few 
kilometers. This introduces severe time delay effects on the heat dynamics between producers and 
consumers which need to be considered in the control of the system as well. Also, to further minimize 
exergy losses, it might be necessary to separate the hydraulics of a higher and a lower temperature level, 
which might require the modeling of a second heat pump operating in a lower temperature range.  
 
Currently, the validation of the data-based surrogate modeling method relies on simulation data, 
especially simulations generated by the model (18) with unknown parameters, rather than FEM 
simulation data. To close this gap in validation, future efforts should prioritize the validation of the 
method using FEM simulation data. In addition, the choice of identification method should be 
considered and nonlinear system identification methods will be investigated to improve the robustness 
of the overall approach. 
 
Regarding the particular demonstration site in Bochum, we plan to create digital FEM models of the 
Mine storage (MTES) using the Spring software system. Once the model is ready, the methodology 
presented here will be applied to generate the data-based surrogate models for the optimization. Based 
on the optimization, we will identify scenarios that are economically attractive for underground storage 
systems. Due to the rather fast computation of the optimal solution, it is possible to include an outer 
loop for design and sizing optimization of the heat supply system. 
 
Regarding the optimization, we assume a perfect forecast. Since future data are not given for real 
systems, it is planned to apply a model predictive control, which incorporates a weather forecast for the 
next few days only and which might incorporate uncertainties. On the other hand, also the optimization 
horizon needs to be extended to several years to evaluate the performance of the storage.  
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