
  
Paper ID: 406, Page 1 

 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE 

 
 
BALANCING THE RELIABILITY AND COST OF ENERGY SYSTEMS 
UNDER GRID AND COMPONENT FAILURES THROUGH PARETO-

OPTIMAL STORAGE OPERATION 
 

 Benedict Brosius1, Dustin Frings1, Benedikt Nilges1, Niklas von der Assen1* 
 

1 Institute of Technical Thermodynamics, RWTH Aachen University, Aachen, Germany 
 

*Corresponding Author: niklas.vonderassen@ltt.rwth-aachen.de 
 

ABSTRACT 
 
In distributed multi-energy systems, the reliability of energy supply is threatened by unplanned failures 
of grid utilities and energy system components. To improve reliability, thermal energy storages can be 
integrated. In addition to improving reliability, thermal energy storages reduce operating costs, e.g., by 
capitalizing on electricity price fluctuations. However, existing storage operation methods neglect the 
inherent trade-off between reliability and costs. In contrast, our study presents a method to balance both 
objectives. Our method extends a cost-optimization problem with an approximation of the Expected 
Energy Not Served, a widely used reliability metric. To solve the resulting bi-objective problem, we 
employ a self-adjusting weighted sum algorithm that generates Pareto-optimal operating schedules. 
Finally, we validate the reliability of these operating schedules in a Monte Carlo reliability assessment. 
In an industrial case study, we benchmark our method against a state-of-the-art operation method. In 
comparison, our method reduces undersupply by  and operating costs by . Consequently, 
our method can improve both the reliability and costs of distributed multi-energy systems with storages.
 

1 INTRODUCTION 
 
Thermal energy storages are frequently integrated into distributed multi-energy systems (DMES) to 
improve both the reliability of energy supply and operating costs. Reliability is threatened by failures 
of grid utilities such as electricity, and energy system components such as heat pumps. Storages not 
only mitigate the undersupply caused by these failures, but also reduce operating costs, e.g., by 
exploiting time-varying electricity prices. However, reliability and costs are partially conflicting 
objectives: Maximizing reliability requires retention of storage reserves while minimizing costs results 
in frequent charging and discharging cycles. As both objectives are crucial for stakeholders, DMES 
operators must carefully balance this trade-off.  
 
Currently, there are limited optimization methods available to consider both reliability and cost when 
operating storages in DMES. Methods typically neglect component failures (Pazouki et al. 2014) or 
assume that storages can operate with perfect foresight of the exact timing of these failures (Guo und 
Zhao 2018). However, perfect foresight of failures is infeasible in practice. Ren et al. (2022) propose 
an operating method which avoids perfect foresight while considering failures of the electricity and gas 
grids. For each time step within the operation horizon, their method determines the minimum storage 
levels required to meet critical demands if a failure occurs at that time step. Subsequently, they constrain 
these minimum storage levels in a cost-optimization problem to generate highly reliable operating 
schedules. However, they disregard that reducing reliability could improve cost.  
 
In this work, we propose a method to balance the reliability and cost of DMES with thermal storages 
under grid and component failures. The method quantifies reliability with the Expected Energy Not 
Served (EENS), a widely used metric for energy system reliability. First, we approximate the EENS as 
a function of the storage levels at each time step. Then, we incorporate this EENS approximation into 
a bi-objective optimization model to generate Pareto-optimal operating schedules. Finally, we 
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reevaluate the EENS of these schedules in a Monte Carlo reliability assessment (MCA). The MCA 
simulates random grid and component failures and optimizes the reaction of the energy system to these 
failures. Unlike existing MCAs (Ren et al. 2022), the proposed MCA avoids perfect foresight of future 
failures. 
 
The paper is structured as follows. Section 2 introduces an energy system optimization model for the 
cost-optimal operation of DMES, on which we base our method. Furthermore, Section 2 presents a 
state-of-the-art method to increase the reliability of energy supply. Section 3 proposes our method to 
balance reliability and cost. Section 4 presents an industrial case study, where we compare the proposed 
method to the state-of-the-art method. Finally, we draw conclusions in Section 5.  
 

2 OPERATIONAL OPTIMIZATION OF ENERGY SYSTEMS 
 
2.1 Operational cost-optimization model  
In this section, we describe the cost-optimization model, on which our proposed method is based. We 
refer to this cost-optimization model as the base model. Similar optimization models are frequently used 
to operate energy systems. For readability, we write optimization parameters in regular font and 
optimization variables in bold font. The objective of the base model is as follows: Given exogenous 
heating, cooling, and electricity demands, capacities of energy system components, grid import costs 
and component operating costs, minimize the energy system operating costs (OPEX):  
 

 (1) 

 
The OPEX consists of grid import costs, and operating costs of production components. At every time 
step  within the yearly operating horizon , the grid import cost of a product  is calculated with 
the grid import flows , and the import cost . The operating cost of production component 

 is based on the production flow  of the component’s reference product , and 
the component operating cost . Both  and  include penalties for greenhouse 
gas emissions.  denotes the time step duration. 
 
The base model decides on the energy system operation while satisfying the product balance constraints:  
 

 (2) 

 
 denotes the production flows to and from production components.  and  represent 

the storage inflows and outflows, respectively, and  are the product demands. Each product is 
associated with a storage, denoted as .  
 
We constrain the production limits of production components as well as their conversion efficiencies. 
Eq. (3) limits the reference product flow  to the installed process capacity  times the 
weather-dependent capacity factor . Eq. (4) models the part-load efficiency of production 
components with piecewise linear functions. For each segment  of a piecewise function, Eq. (5) 
models the relation between the segment’s product flows  and the segment’s reference product 
flow  with the coefficients  and . The binary  indicates, whether segment  is 
active. Eqs. (6) and (7) ensure that a segment  is only active if  is between the segment’s 
lower limit  and upper limit . At most one segment can be simultaneously active (Eq. (8)). 
 

  (3) 
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 (4) 

 (5) 
 (6) 

 (7) 

 (8) 

 
Furthermore, we constrain the storage operation. Eq. (9) couples the storage levels of consecutive time 
steps  and , while modeling charging efficiencies , discharging efficiencies , relative 
self-discharge efficiencies , and static self-discharges . Eqs. (10) and (11) limit the minimum 
and maximum storage levels, where  is the installed storage capacity. Eqs. (12) and (13) limit the 
maximum charging ( ) and discharging flows ( ). The binary charging  and 
discharging  decisions in Eq. (14) prohibit simultaneous charging and discharging. 
 

 (9) 
 (10) 

 (11) 
 (12) 
 (13) 

. (14) 
 
2.2 State-of-the-art-method to increase reliability with storage reserves 
The base model presented in (Section 2.1) typically leads to operating schedules that frequently cycle 
storages to minimize operating cost. However, if storage levels are low, grid and component failures 
threaten the reliability of energy supply. To increase reliability, DMES operators can constrain storage 
reserves , which need to be maintained during failure-free operation:  
 

 

s.t.: Eqs. (2) to (14), (16) 
(15) 

. (16) 
 
In case of failures, the storage reserves serve as backup storage (Mitra 2010). In general, higher storage 
reserves improve reliability. However, maintaining high storage reserves during failure-free operation 
is not always feasible, because serving peak demands requires discharging storages. To maintain 
feasibility of the optimization problem stated in Eq. (15), we introduce a slack variable  in Eq. 
(16), which allows undercutting the storage reserves at a large penalty cost .   
 
3 PARETO-OPTIMAL OPERATION CONSIDERING RELIABILITY AND COST 

 
In this section, we propose a method to generate Pareto-optimal operating schedules regarding 
reliability and cost under grid and components failures. The method extends the base model for cost-
optimization (Section 2.1) by three steps (Figure 1). Instead of constraining storage reserves (Section 
2.2), we improve reliability by integrating an EENS approximation (Section 3.1) into the objective 
function of the base model. We solve the resulting bi-objective optimization model with a self-adjusting 
weighted sum algorithm (Section 3.2) that yields a set of Pareto-optimal operating schedules. However, 
the EENS approximation may be inaccurate. Therefore, Section 3.3 introduces a Monte Carlo reliability 
assessment (MCA), to provide DMES operators with an accurate EENS.  
 

18801868https://doi.org/10.52202/077185-0160



 
Paper ID: 406, Page 4 

 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE 

 
Figure 1: Overview of the proposed method to generate Pareto-optimal operating schedules regarding 

reliability and cost under grid and components failures. 
 
3.1 EENS approximation 
The EENS is a widely used energy system reliability metric describing the expected annual undersupply 
of energy demands. However, quantifying the EENS within an operational optimization model is 
challenging, because failures of grid utilities and components can occur at any time, and simultaneous 
failures are possible. Due to the combinatorial complexity and rarity of simultaneous failures, our EENS 
approximation focuses on non-simultaneous failures, i.e., N-1 failures (Hollermann et al. 2019). We 
approximate the EENS as: 
 

 (17) 

 
 denotes the set of failure types, consisting of all grid utilities and production components with a non-

zero failure probability . During a failure of type , the respective grid or production component is 
unavailable.  quantifies the total undersupply of product  caused by a failure of type at failure 
time .  considers undersupply on all time steps  between the failure time 

 and the repair time , where  is a predefined deterministic repair duration. However, 
our approach can be extended to consider multiple repair durations with individual probabilities for a 
given failure type.  
 
Typically, the total undersupply  decreases with increasing storage levels at failure time . 
We approximate this dependency with a univariate function :  
 

 (18) 
 
While the univariate function  results in low model complexity, it neglects that in sector-coupled 
energy systems, other storages apart from storage  can reduce the total undersupply of a product . 
For example, during an electricity grid failure, stored electricity may not only reduce the total electricity 
undersupply but also the total cooling undersupply by powering compression chillers. 

We motivate the definition of the function  with an exemplary energy system (Figure 2a) 
consisting of a cooling demand, two compression chillers, and a cold water storage. If one compression 
chiller fails, the potential supply  of the remaining compression chiller is unable to meet the demand 

 (Figure 2b). Thus, undersupply  occurs. The total undersupply  tends to decrease with an 
increasing storage level at failure time . However, due to storage capacity limits, a minimum 
total undersupply  is unavoidable (Figure 2c). We define the storage level required to reach this 
minimum total undersupply as . If  is lower than , the total undersupply  
increases at most by a factor of the discharging efficiency  (Figure 2d). We constrain this 
dependency with Eqs. (19) and (20): 
 

 (19) 
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. (20) 
 

 
Figure 2: Exemplary illustration of the dependency of the total undersupply  on the storage 
level at failure time . A compression chiller fails at  (a). During the failure, the potential 

supply  of the remaining compression chiller is insufficient to meet the demand  (b). Thus, the 
failure causes undersupply (c). While the total undersupply  decreases with the storage level at 

failure time , a minimum total undersupply  is unavoidable due to storage capacity 
limits (d).  denotes the storage level that is required for the minimum total undersupply.  

 
Approximating the  requires determining the parameters  and  for all failure 
times , failure types , and products . To determine these parameters, we propose a 
heuristic approach, following the example in Figure 2. For a given failure time , failure type , and 
product , we first determine the potential product supply  that 
could be provided by the available production components (Figure 2b). Then, we employ a backward 
iteration algorithm, which requires a predefined storage level at repair time . The backward 
iteration algorithm computes the storage levels  and undersupply  to 
determine  and  (Figure 2c).  
 
In the following, we elaborate the details of our heuristic approach for energy systems with a single 
energy demand . We first determine a suitable storage level at repair time , which is required 
to start the backward iteration (Section 3.1.1). Then, we discuss the potential product supply  
(Section 3.1.2) and the backward iteration algorithm (Section 3.1.3). Finally, we extend the heuristic 
approach to energy systems with multiple demands (Section 3.1.4).  
 
3.1.1 Storage levels at repair time: The backward iteration requires a predefined storage level at repair 
time . While the backward iteration algorithm only considers undersupply during the failure, a 
low storage level  can cause undersupply after the repair due to upcoming peak-demands. To 
avoid undersupply after the repair, we set  to the storage level  determined by solving the 
optimization problem stated in Eq. (21): 
 

 (21) 
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s.t.: Eqs. (2) to (14).  
 
Because Eq. (21) models the failure-free operation and prohibits undersupply, the resulting storage 
levels  are guaranteed to avoid undersupply after a repair. 
 
3.1.2 Potential product supply: We determine the potential product supply  for each failure time 

, failure type , and time step during the failure . For energy systems with a single 
demand,  is the maximum supply of product  that can be provided by all available production 
processes. Storages do not contribute to the potential product supply . Notably,  considers 
shortages of educts that are required to operate production components. For example, if the electricity 
grid fails in the exemplary energy system shown in Figure 2a, the potential supply of both compression 
chillers is zero.  
 
3.1.3 Backward iteration algorithm: For each failure time  and failure type , we conduct a 
backward iteration over all time steps , starting with time step . For each time step , 
given the storage level , we determine the minimum storage level  required to 
minimize the undersupply  at the current time step. After iterating over all time steps , we 
calculate  and  with Eqs. (22) and (23): 
 

 (22) 

 (23) 

 
We calculate the minimum undersupply  and storage level  required for this minimum 
undersupply by comparing the potential product supply  to the demand . If the demand  
exceeds the potential product supply , minimizing the undersupply requires discharging the storage. 
With a predefined , we calculate  as: 
 

 (24) 

 
Undersupply  at the current time step  may be unavoidable because the storage level  is 
limited to . If the potential product supply  exceeds the demand , the undersupply  is 
zero and the storage can be charged: 
 

 (25) 

 
For simplicity, Eqs. (24) and (25) neglect storage charging and discharging limits. If the storage 
charging limits are low, this negligence can result in an underestimation of the undersupply.   
 
3.1.4 Extensions for energy systems with multiple demands: In energy systems with multiple demands, 
our heuristic faces an allocation problem for the potential product supply  of a product :  can 
either serve the demand of product , or can serve the demands of other products by supplying 
production components. For example, during a failure of the electricity grid, locally generated 
electricity can either supply electricity demands or provide cooling via compression chillers. 
 
The allocation problem is solved by a demand hierarchy that needs to be predefined by DMES operators. 
For the product  with the highest priority in the demand hierarchy, we calculate  and  
as previously described. We then proceed with the next product  in the demand hierarchy. However, 
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the potential supply of production components that convert  to  may diminish, because  is 
partially used to serve the demand . Thus, the potential product supply  reduces. For example, 
during a failure of the electricity grid, the potential cooling supply of compression chillers may reduce, 
if electricity demands are prioritized over cooling demands.  
 
In summary, the presented heuristic approach determines the parameters  and  required 
to approximate the EENS within an operational optimization model.  
 
3.2 Self-adjusting weighted sum algorithm 
We integrate the EENS approximation into the objective function of the base model (Section 2.1). Then, 
we solve the resulting bi-objective optimization problem with a weighted sum method to generate 
multiple Pareto-optimal solutions. We choose the weighted sum method because it is compatible with 
the rolling horizon approach, which solves operational optimization problems with reduced 
computational time (Marquant et al. 2015). In this work, the weighted sum method solves the problem: 
 

 
s.t.: Eqs. (2) to (14), (17), (19), (20).  (26) 

 
The objective weight  is updated in each iteration , typically based on a user-defined set of weights. 
With a poorly defined set of objective weights, however, the weighted sum method is known to generate 
solutions, which are unevenly spaced in terms of the Euclidean distance between the normalized 
objective values of neighboring solutions (Marler und Arora 2010).  
 
To generate evenly distributed solutions to the bi-objective problem (Eq. 26), we propose the self-
adjusting weighted sum algorithm. In the first two iterations, it conducts single objective optimizations, 
setting the objective weight to  and , respectively. At the start of subsequent iterations, 
we identify the neighboring solutions  and  with the largest Euclidean distance between their 
normalized objective values. With the objective values  and of these neighboring 
solutions, we update the objective weight for the next iteration: 
 

 (27) 

The self-adjusting weighted sum algorithm repeatedly updates the objective weight  and solves the 
optimization problem in Eq. (26) until reaching the desired number of Pareto-optimal solutions.  

 
3.3 Monte Carlo reliability assessment 

After determining Pareto-optimal operating schedules, we conduct Monte Carlo reliability assessments 
(MCAs) to evaluate the reliability of the operating schedules. In contrast to the EENS approximation 
presented in Section 2.2, the MCA considers simultaneous failures of multiple grid utilities or 
components. Furthermore, it employs optimization instead of heuristics to operate the DMES during 
failures. Thus, compared to the EENS approximation, the MCA evaluates the EENS of operating 
schedules with higher accuracy. While existing MCAs (Ren et al. 2022) assume that storages can be 
operated with perfect foresight of future failures, our proposed MCA avoids this prior knowledge to 
match real-world operation. 

The proposed MCA generates a predefined number of failure scenarios with random failures 
according to the failure probabilities  and repair durations . A failure scenario  has a yearly time 
horizon, in which multiple and simultaneous failures can occur. After scenario generation, the MCA 
iterates through all failure scenarios  to calculate the  as the average undersupply over 
all scenarios. 
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To determine the undersupply during a failure scenario , we iterate over each failure within the 
scenario in chronological order. We optimize each failure reaction to minimize the undersupply : 

 
 

s.t.: Eqs. (3) to (14), (29)  
(28) 

 (29) 

To reduce the computational time required to optimize a failure reaction, we consider the reduced 
optimization horizon  with fixed storage levels at the failure time  and 
transition time  (Figure 3). The fixed storage level at  ensures non-anticipativity on the failure. The 
transition time step  denotes a time step after the repair time , at which the failure reaction needs to 
match the planned operating schedule. A short transition period between the repair time  and the 
transition time  can lead to unnecessary undersupply. Thus, we set the transition period to the longest 
time required to charge all storages from their minimal to maximal storage level. 

After optimizing a failure reaction, we update the planned operating schedule of the current failure 
scenario with the failure reaction. Since we chronologically iterate through all failures within a failure 
scenario , the proposed MCA can consider subsequent and simultaneous failures. 

 
Figure 3: Exemplary illustration of a failure reaction optimized within the MCA to quantify the 

undersupply caused by a failure. Instead of the original time horizon , the MCA considers a reduced 
horizon  to reduce computational times. During , the failure reaction is optimized to minimize 
undersupply. When optimizing the failure reaction, the storage levels at  and  are bound to the 
planned operating schedule. After optimization, the MCA updates the planned operating schedule 

with the failure reaction to consider subsequent failures. 
 

4 CASE STUDY AND DISCUSSION 
 
We apply the proposed method for the Pareto-optimal energy system operation under grid and 
component failures to a case study of an industrial energy system. Section 4.1 describes the case study. 
In Section 4.2, we compare the operating schedules generated by the proposed method to those 
generated by the state-of-the-art method. Section 4.3 analyzes the accuracy of the EENS approximation 
used within the proposed method. 
   
4.1 Description of the industrial energy system model 
The case study represents a partially decarbonized industrial energy system in 2030 with electricity, 
heating, and cooling demands (Figure 4). Reinert et al. (2023) describe the energy system model in 
detail. Electricity and natural gas prices average to  and , respectively 
(Baumgärtner et al. 2019). The cost of greenhouse gas emissions is  (IEA 2023)  
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Figure 4: Overview of the considered industrial energy system. 

Table 1 presents the installed capacities, failure probabilities, and repair durations of installed 
production components and the electricity grid. Due to limited data availability, we choose failure data 
for the heat pump and compression chillers that correspond to the failure data reported for absorption 
chillers (Jiang et al. 2018). The failure data of the electricity grid corresponds to many European 
countries (IEA 2023). We neglect failures of the natural gas grid due to their rarity (CEER 2023). Both 
heating and cooling storages have a capacity of  each, with charging and discharging limited 
to . 
 

Table 1: Installed capacities, failure probabilities, and repair durations 

Grid utility / Component  in   in   in  Source 
Electricity grid -   CEER (2023) 

Combined heat and power 3.04 (heating)   Jiang et al. (2018) 
Heat pump 4.89   Own assumption 

Compression chiller 1 4.46   Own assumption 
Compression chiller 2 4.46   Own assumption 

Wind turbine 19.46 - - - 
 
4.2 Comparison of the Pareto-optimal to state-of-the-art operating schedules  
 
In this section, we compare the Pareto-optimal operating schedules generated with the proposed method 
(M1-schedules, Section 3) with the operating schedules generated with the state-of-the-art method (M0-
schedules, Section 2.2). We generate all schedules with a rolling horizon operational optimization, 
choosing an interval length of  and a step size of , based on the parameter study of Marquant 
et al. (2015). We generate eleven M0-schedules, increasing the storage reserves  from  to 

 in steps of  while minimizing the OPEX. We generate ten M1-schedules with the 
self-adjusting weighed sum algorithm, simultaneously optimizing the EENS and OPEX. When 
approximating the EENS, we prioritize electricity supply over cooling supply over heating supply. To 
evaluate the reliability of all operating schedules, the MCA considers 2000 failure scenarios. 2000 
failure scenarios lead to coefficients of variations below , which is a commonly used stopping 
criterion for Monte Carlo methods (Billinton und Li 1994; Da Silva et al. 2010). We solve all 
optimization models with Gurobi 10 (Gurobi Optimization 2023) to an optimality gap of .  
 
The results show a significant trade-off between reliability and costs (Figure 5). Both the M0- and M1-
schedules reach the minimum OPEX of € . The M1-schedules achieve this minimum OPEX 
with an EENS of , improving the M0-schedule by 14 . Starting from high EENS 
levels, reducing the EENS has a small impact on the OPEX. However, at lower EENS levels, further 
reducing the EENS considerably increases the OPEX. The minimum EENS is achieved when using M0 
and setting the storage reserves to the storage capacities. This reduces the EENS by  compared 
to the M1-schedule with minimum OPEX while increasing the OPEX by . 
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The M1-schedules fall short of the minimum EENS by  because the underlying EENS 
approximation neglects simultaneous failures: The EENS approximation does not value charging 
storages above the storage levels required to cover N-1 failures. However, charging storages above this 
storage level further reduces undersupply in case of simultaneous failures. Because reducing the EENS 
progressively increases operating costs, falling short of the minimum EENS is only relevant, if 
undersupply causes high interruption cost. With the maximum interruption cost of €  
reported for industrial consumers (Wang et al. 2009), DMES operators would choose the marked 
operating schedules (Figure 6). Both the chosen M0- and the M1-schedule exceed the minimum EENS 
to reduce operating costs. Compared to the selected M0-schedule, the selected M1-schedule reduces the 
OPEX by  and the EENS by . 

 
Figure 5: Comparison between the operating schedules generated with the state-of-the-art method 

(M0, Section 2.2) and the proposed method (M1, Section 3). The dotted lines provide visual guidance. 
While the M0-schedules rely on increasing storage reserves  to reduce the EENS, the M1-

schedules were generated by simultaneously optimizing the EENS and OPEX within operational 
optimization. The M1-schedules generated in the first two iterations are not shown because they are 

dominated by solutions generated in subsequent iterations. With an interruption cost of €  
(Wang et al. 2009), DMES operators would choose the marked operating schedules.  

 
4.3 Accuracy of the EENS approximation 
To evaluate the accuracy of the EENS approximation by comparing it to the EENS evaluated with the 
MCA. We consider the M1-schedules discussed in Section 4.2. In the present case study, the EENS 
approximation consistently underestimates the EENS between  to . Two 
opposing effects lead to this inaccuracy: While the EENS approximation overestimates the undersupply 
caused by N-1 failures, simultaneous failures of multiple grid utilities and components result in the 
overall underestimation. The error in the EENS approximation suggests that by refining this 
approximation, the trade-off between reliability and cost can be further improved. Furthermore, the 
error indicates that the MCA improves decision-making of DMES operators by providing more accurate 
reliability metrics.  
 

5 CONCLUSION 
 
The global transition towards volatile renewable energy supply requires significant energy storage 
capacities to synchronize energy demand and supply. However, integrating storages in distributed 
multi-energy systems (DMES) poses operational challenges, as operators need to carefully balance 
reliability and cost. Therefore, we propose a method for the Pareto-optimal operation of DMES 
including storages under grid and component failures. The method extends an operational cost-
optimization model with an approximation of the Expected Energy Not Served, resulting in a bi-
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objective problem. We solve the bi-objective problem with a self-adjusting weighted sum method 
before reevaluating the resulting operating schedules in a Monte Carlo reliability assessment. 
 
In a case study of an industrial energy system, the proposed method reveals a significant trade-off 
between reliability and costs. The proposed method enables simultaneous cost and reliability 
improvements compared to maintaining predefined storage reserves. Thus, our work contributes to the 
economic and reliable storage operation. To further improve the trade-off between reliability and costs, 
future work should aim at refining the EENS approximation. The EENS approximation should value 
charging storages not only to prepare for N-1 failures but also for simultaneous failures. Furthermore, 
besides failures, DMES operators need to consider additional operation uncertainties, e.g., in energy 
demands or renewable availability. To consider these uncertainties, our method could be combined with 
stochastic operational optimization methods.  
 
 

NOMENCLATURE 
 

 Linear function coefficients ,  
 Weather-dependent capacity factor  

 Demand  
  Approximated Expected Energy Not Served  

 Gird import flows  
,  Component operating cost, import cost of grid utilities  

,  Lower and upper segment limits  
 Yearly operational expenditure  

 Production flows  
 Segment production flows  

 Nominal production capacity  
 ,  Storage inflows / outflows  

,  Charging / discharging limit  
 Storage level  

 Slack variable   
 Required storage level for minimum total undersupply  

 Static storage losses  
,  Storage capacity, storage reserve  

 Undersupply  
 Total undersupply during repair time  
 Minimum total undersupply caused by a failure  

,  Discharging / charging binary  
 Segment binary  

 Repair duration  
 Time step duration  

, ,  Storage efficiencies  
 Failure probability  
 Objective weight  

 
Subscripts 

 Product  Production component 
 Piecewise linear segment  Storage 

 Failure scenario  Time slice 
 Failure type   
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