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ABSTRACT 

As global energy systems move toward sustainability, the integration of diverse energy sources into 
multi-energy systems is crucial for increasing system flexibility and integrating renewable energy to 
meet energy demands traditionally relied on fossil fuels. Optimizing these systems is essential for 
efficient electricity market participation, storage management, and satisfaction of local demand. While 
traditional linear programming algorithms are widely used, they are limited; more accurate techniques 
such as quadratic, conic, or nonlinear programming are used to handle more complex functions. 
However, these algorithms rely on deterministic input variables and can lead to suboptimal scheduling 
when run one day ahead using uncertain forecasts. This paper aims to quantify the impact of 
uncertainties in electricity price and heat demand and proposes a scenario approach for robust 
optimization of electricity market bidding strategies. The methodology involves running multiple 
deterministic optimizations, solving each unit commitment problem deterministically, and translating 
it into a set of bids for the electricity market. Market clearing is then simulated in each scenario to 
determine the accepted bids and the actual cost of each optimal solution. The best bidding strategy is 
determined based on expected actual costs. As a case study, a plant in the district heating network of 
East Milan is considered. It employs different conversion technologies such as power-to-heat, gas-to-
heat, cogeneration, and thermal storage. The results highlight the intrinsic robustness of the proposed 
bidding methodology in ensuring the resilience of multi-energy systems in the context of dynamic 
markets and evolving energy landscapes. 

1 INTRODUCTION 

In the ongoing transition towards sustainability, the integration of diverse energy carriers by means of 
Multi-Energy Systems (MES) emerges as a pivotal strategy to enhance system flexibility, reliability, 
and resilience. Multi-Energy Systems represent a holistic approach to energy management, where 
various energy carriers such as electricity, heat, and gas are integrated, coordinated, and optimized to 
meet diverse energy demands efficiently [1]. 

The significance of Multi-Energy Systems lies in their ability to address the inherent intermittency and 
variability of renewable energy sources, such as wind and solar power, by leveraging complementary 
energy carriers and storage technologies[2,3]. By intelligently coupling different energy vectors, Multi-
Energy Systems offer a promising pathway toward achieving higher shares of renewable energy 
penetration while ensuring grid stability and energy security [4]. Moreover, the synergy among different 
carriers may support the decarbonization of “hard-to-abate” final uses (as the demand for high-
temperature process heat in industry, and the transport on long distances through maritime and 
aviation)[5]. 

Sector coupling can be implemented by connecting two or more energy carriers through specific 
technologies acting as an energy converter, different technologies can be classified according to the 
involved carriers. Power-to-gas mainly involves electrolysers to split water into oxygen and hydrogen. 
Hydrogen represents an energy carrier itself, but its storage is expensive therefore other chemicals that 
serve as hydrogen carriers must be considered. At least two options can be identified: carbon and 
nitrogen chemistries [6,7]. Electric vehicles represent the coupling between automotive energy 
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consumption, traditionally relying on fossil fuels, and the power sector [8]. Moreover, vehicle-to-grid 
technologies allow supporting the electricity grid with the provision of ancillary services [9]. Power-to-
heat technologies consist of heat pumps (HPs) and electric heaters. Heat is demanded for space heating 
and hot water at low-temperature and from industrial processes up to notable temperatures. However, 
this is a relevant sector since the demand for heat represents almost half of the total final energy 
consumption and 38% of energy-related CO2 [10]. The coupling to the electrical sector offers unique 
opportunities for decarbonization, especially through heat pumps that in many markets are becoming 
competitive for gas boilers replacement [11]. However, high supply temperatures negatively impact 
both efficiency and capital cost and the readiness of this technology beyond 100-120°C is 
controversial [12]. Other key technologies are combined heat and power (CHP) generators, typically 
gas turbines, operating through open cycles or combined cycles, or internal combustion engines. 

The awareness of the strategic importance of heat integration is proven by the investments in relevant 
infrastructure to deliver the heat, centrally generated by coupled technologies, to the final users. District 
heating is today a mature technology and the progressive decrease in supply temperature increases the 
energy efficiency and expand the pool of connectable technologies. The state-of-the-art 4th and 5th 
generations typically include CHP, HPs, renewable heat generators such as biomass boilers and solar 
thermal collectors, recovery of waste heat, and network exploitation both for heating and cooling 
purposes [13]. 

However, the economics and emissions reduction potential of MES rely on accurate scheduling and 
real-time management [14]. Thus, uncertainties inherent in energy markets and local energy demand 
forecasts pose significant challenges [15]. Inaccurate predictions of electricity prices and heat demand 
can lead to suboptimal decisions, resulting in increased operational costs and reduced efficiency. The 
impact of poor forecasting is significant considering that Multi-Energy Systems typically operate in 
liberalized energy markets, where the programs for withdrawals and injections from and into the grid 
(electricity or, more rarely, gas) are defined by spot markets clearing. [16]. Deviations from the defined 
programs are settled a posteriori by the relative grid operators that charge the MES balancing 
responsible party (i.e., that subject representing the MES on the energy markets and responsible for the 
execution of the programs) considerable economic penalties. Bilateral contracts where the energy is 
traded in advance between two operators are possible both for gas and electricity but are much more a 
consolidated practice for trading natural gas. Due to the lower physical inertia of electrical phenomena, 
the balancing of the electrical grid is more severe, resulting in a stricter constraint of compliance with 
the defined program. Consequently, the uncertainty of energy demand (due to the stochasticity of user 
behavior and the local renewable energy production) and the clearing of the electricity market are the 
two main causes of suboptimal strategy implementation when optimizing the scheduling of MESs. 

Traditional methods for Multi-Energy System optimization often rely on deterministic models, based 
on mathematical programming, which overlook uncertainties of real-world energy systems. To address 
these limitations, robust optimization and stochastic programming approaches have gained prominence. 
In the former, knowledge about probability distributions of uncertain parameters is not assumed, unlike 
stochastic programming where it is. Stochastic optimization aims to optimize the expected value of the 
objective function, often using two-stage approaches [15]. While in the absence of probability 
information, robust optimization focuses on minimizing worst-case performance. Adjustable Robust 
Optimization improves economic performance reducing solution conservativeness [17]. However, 
current approaches struggle to translate optimal scheduling into spot market bids effectively. 

The proposed methodology here proposed for MES bidding strategy and scheduling optimization takes 
place in three steps. First, based on the forecasted values a common optimizer is executed; secondly, an 
algorithm is proposed to translate this program into an optimal set of bids; Finally, after the markets 
have been cleared, near real-time redispatch optimization is carried out to minimize costs while meeting 
the actual local energy demand compliantly with the grid program defined by the market. 

Through the case study of a district heating network introduced in Section 2, and the methodology 
presented in Section 3, the impact of forecast uncertainties is assessed for heat demand and electricity 
price in Section 4. Finally, Section 5 demonstrates the applicability and efficacy of the proposed 
stochastic methodology in improving system performance and cost-effectiveness. 
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2 THE CASE STUDY 

This work examines the Canavese plant in the east-Milan District Heating Network as a case study. The 
plant aim is to meet hourly heat demand using two gas boilers, two heat pumps, one electric boiler, 
three gas-fired cogenerative internal combustion engines, and two thermal storages. It operates as a 
multi-energy system since it integrates heat, gas, and electricity. The gas is supplied through the gas 
grid with a long-term bilateral contract, therefore paid at the daily price without any constraint on the 
withdrawal schedule. Electricity, required for the heat pumps and electric boiler, is traded on the day-
ahead spot market or generated by the CHP engines. The net balance between generation and 
consumption determines the grid injection/withdrawal program.  

Electricity price is set by the day-ahead market in the Italian NORD bidding zone with an hourly 
resolution, it is assumed the MES manager has a proprietary tool to predict the price on a 48 h horizon 
with an associated uncertainty. This implies that the MES manager at the day-ahead market closure 
(i.e., 12 p.m. of day-1) can predict the price until 12 p.m. of day+1. The same time resolution and 
forecast term capability are assumed for the heat demand. The gas is paid at the daily national day-
ahead market for natural gas, and at the electricity market gate closure, it is assumed to be certain for 
the following two days. Given this knowledge of future prices and demand, optimizing the bidding 
strategy requires implementing a rolling horizon of 36 h. 

2.1 Technologies model 
Each generator represents a pivotal node of the modelled Multi-Energy Systems. Indeed, the main 
generators feature is to link two energy carriers converting energy. Each conversion process is 
characterized by an efficiency rate that may depend both on the involved device and the operating load. 
To model each technology and allow for an effective optimization the energy consumption relative to 
the generic carrier x is linearized with respect to the thermal output Pth as in Equation (1). 

 (1) 
Conventionally for all the carriers, the power signs are assumed positive when there is output from the 
generator. As a matter of example, when operating a CHP, thermal generation (positive Pth) is reflected 
in an electricity output (positive Pel) and gas consumption (negative Pgas). Gas consumption is expressed 
in MW, i.e., the product of the gas mass flow and the lower heating value. Moreover, every technology 
is associated with a cost of the start-up event and a specific variable O&M cost (including even auxiliary 
energy consumption from all the carriers), fixed O&M costs are not modelled since only variable ones 
impact the decision on the optimal schedule. 

Table 1: Generation technologies main data in input to the optimization algorithm 
Device Abbre- 

viation N Pth max 
[MWth] 

Pth min 
[MWth] 

αel 
[MWel] 

βel 
[MWel/MWth] 

αgas 
[MWgas] 

βgas 
[MWgas/MWth] cSU [€/SU] cO&Mvar 

[€/MWth] 
Gas boiler GB 2 16.1 1 0 0 0.0192 -1.1740 0 [18] 1.17 [18] 

Heat pump 1 HP1 1 14.725 7 -0.7783 -0.3334 0 0 156.53 [18] 1.80 [18] 
Heat pump 2 HP2 1 3 1 -0.1366 -0.2978 0 0 31.89 [18] 2.33 [18] 

Electric boiler EB 1 10 0.3 0 -1.0050 0 0 0 [18] 0.96 [18] 
Gas engine CHP 3 4.4 2.2 0 1.1636 0 -2.4695 0 [18] 6.68 [18] 

Thermal storage STO 2 11 0.44 0 0 0 0 0 [19] 0.70 [19] 

2.1.1 Gas boiler (GB) model: the two gas boilers in the Canavese plant have a maximum thermal power 
output of 16.1 MWth while the minimum load is fixed at 1 MWth. The efficiency is modelled according 
to the approach presented by Baldi et al. accounting for the load (i.e., the ratio between the power output 
and the maximum value) and the return temperature [20] but with updated coefficients provided directly 
by the authors. The return temperature has been assumed 60°C as the typical value of the Milan DHN. 

Figure 1 shows the comparison between the adopted model of efficiency (dashed line) and the model 
originally proposed by Baldi [20] (squared markers). Although for the imposed return temperature there is 
not a great impact of load on efficiency the efficiency increases at lower load, due to the improved heat 
exchange between lower mass flows at fixed surface. The proposed fitting of the gas consumption well 
describes the real trend, even if the efficiency modelling diverges up to 1 percentage point at the minimum 
load, however the very low absolute power makes the error negligible looking at the gas consumption. The 
red vertical line highlights the minimum load limit. According to the Danish Energy Agency technology 
catalogue, the cO&M var and cSU for such a size boiler are assumed respectively 0 €/SU and 1.17 €/MWth [18]. 
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(a) (b)
Figure 1: Gas boiler efficiency and gas consumption modelling. Squared markers and the dashed 

lines identify the model proposed by Baldi et al [20] and that adopted in this work respectively.
2.1.2 Heat pump 1 (HP1) model: HP1 is a geothermal sourced heat pump connected to a groundwater 
wells system that elaborates 1000m3/h. According to the data provided by the Original Equipment 
Manufacturer (OEM) the Coefficient of Performance COP is regressed against supply temperature and 
load as in Equation 2 where the temperature is expressed in Celsius degrees.

(2)

The supply temperature is fixed to the value required by the Milan DHN (i.e., 85°C). In Figure 2 the 
blue squared marker identifies the fitting of the OEM data (Eq. 2), while the dashed line is the linear 
regression of the electrical consumption (i.e., -Pel) against the thermal output. The only original OEM 
datum available for the considered supply temperature is plotted by a red square. The COP varies from 
2.3 at the minimum load (i.e., 50%) up to 2.6 for full-load operations. According to the Danish Energy 
Agency technology catalogue, the cO&M var and cSU for such a size HP are assumed respectively 
156.53 €/SU and 1.8 €/MWth [18].

(a) (b)
Figure 2: Heat pump 1 COP and electric consumption. Blue squared markers and the dashed lines 

identify the fitting of OEM data and the model adopted in this work respectively.

2.1.3 Heat pump 2 (HP2) model: HP2 exploits waste heat as the lower source heat from the second 
stage of the intercooler of each CHP. Thus, it can be operated only if at least one CHP engine is on.
Modelling of HP2 is analogous to HP1, however two datasets were available from the OEM thus both 
of them were used in the fitting procedure shown in Figure 3. According to the Danish Energy Agency 
technology catalogue, the cO&M var and cSU for such a size HP are assumed respectively 156.53 €/SU and 
1.8 €/MWth [18].

2.1.4 Electric boiler (EB) model: The electric boiler is the most recently installed generator in the 
Canavese plant. Its modeling is easier because of its substantial independence of efficiency on the load 
with a constant value of 99.5%. Consequently, αel is zero and the gas consumption is purely proportional 
to the thermal output. Start-up costs are null and cO&M var is equal to 0.96 €/MWth [18].
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(a) (b)
Figure 3: Heat pump 2 COP and electric consumption modeling. Blue squared markers and the 
dashed lines identify the fitting of OEM data and the model adopted in this work respectively.

2.1.5 Gas-fired cogenerative engine (CHP) model: There are three internal combustion engines, fed by 
natural gas, producing both a thermal and electrical output. Therefore, it is necessary to model both the 
electrical and thermal efficiency. Nevertheless, varying load efficiencies are constant at 47.1% and 
40.5% electrical and thermal respectively. It is therefore worth noticing that αel and αgas are both zero, 
while βgas and βel are negative and positive respectively indicating that a thermal output is associated with an 
electrical output and gas consumption. Start-up costs are null and cO&M var is equal to 6.68 €/MWth [18].

2.1.6 Thermal storage (STO) model: Finally, there are two thermal storage consisting of two water tanks 
of 1.000 m3 each that, considering the DHN return (60 °C) and supply (85°C) temperatures, storage 
capacity is about 29 MWhth. The maximum and the minimum power during charging and discharging 
phases are 11 and 0.44 MW respectively. Start-up costs are null and cO&M var is equal to 0.77 €/MWth [19].
Charging and discharging efficiencies, as well as the autodischarge rate over time, are neglected.

3 MES SCHEDULER AND MARKET BIDS OPTIMIZER

As shown in Figure 4, the proposed dispatch optimization procedure occurs in three steps: initial unit 
commitment optimization, determination of electricity market bids, and final redispatch optimization. 
The first step, described in Section 3.1, is based on the gas price, the forecasted heat demand, and the 
electricity price, it minimizes the cost of meeting the heat demand. This initial optimization provides a 
guess of the optimal scheduling of storage and residual load for pure generators. Residual load is then 
allocated to generators based on the procedure described in Subsection 3.2, generating bids for the 
electricity market. The market clearing determines prices and accepted bids, defining the next day's 
injection/withdrawal program. Finally, an optimization is performed in near real-time, similarly to step 
1, but considering the actual heat demand and the constrained injection/withdrawal program.

Figure 4: Three-stage optimization including the definition and submission of an optimal set of bids.

3.1 Preliminary unit commitment optimization
The definition of such a problem represents a standard in the management of Multi-Energy Systems, 
however here it is presented as the first of three stages of the proposed methodology. Moreover, the 
present subsection aims to present the specificities of the problem applied to the considered case study 
of Canavese plant within the East-Milan DHN. Equation 3 defines the optimization problem.

(3)

g j p g
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Where H is the number of time intervals included in the optimization horizon, Nunits is the number of 
generators and storage (10 in the case study presented in Section 2). The objective function is the 
summation of the cost of electricity and gas consumption, the variable O&M costs, and the cost 
associated with any start-up event. Through a set of constraints, reported below, the terms of Equation 3 
are correlated to the optimization variable . 

(4) 
 (5) 

 (6) 
 (7) 

It is worth noticing that can be also negative (i.e., a profit) for those units presenting a negative 
, the three CHP engines in the introduced case study. Finally, the SU costs are the product of the cost 

for each event for the i-th unit and the binary variable that is imposed to be 1 if a start-up event 
subsists trough the following additional constraint. 

 (8) 
 (9) 

 is an array of binary variables indicating if the unit i-th is on at the t-th time interval,  
is the initial status of the i-th unit. is set to 0 at the first day (n=1), then implementing the 
rolling horizon algorithm is set to  retuned by the optimization of day n-1. Moreover, 
the single unit thermal output is constrained by the maximum and the minimum power. 

 (10) 
Equations 10 concerns all the pure generators, therefore excluding the storage for which the thermal 
output  is admitted being negative during the charging phase. To take into account this specificity 
new variables are introduced and that are non-negative real and imposed by the following 
set of equations to represent the positive thermal power of storage charging and discharging respectively 
and constrained by and  

 (11) 
 (12) 

 (13) 
Storages must be also constrained to not exceed the maximum and not fall below the minimum 
(assumed 0 in the presented case study) storage capacity.  

 (14) 

The summation in Equation 14 represents the amount of energy stored between the time interval 1 and 
t adding the initial energy stored it is imposed the compliance with the storage capacity.  is set to 0 
at the first day (n=1), then implementing the rolling horizon algorithm is set as in Equation 15 with the 
output returned by the optimization of day n-1. 

(15) 

It is necessary to consider the specificity of HP2 that can be on only if at the least on CHP engine is on 

(16) 

Finally, the fulfilment of the heat demand is imposed. 

(17) 
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3.2 Optimal electricity market bids generator 
Each generator is characterized by an operating cost that depends on the energy consumption of gas and 
electricity, and so on the efficiencies associated with each carrier and unitary cost. However, 
commodities prices are highly mutable, especially the electricity price varies considerably on an hourly 
basis. Thus, the technology economic merit order (i.e., the rank from the cheapest to the most expensive 
generator) is variable. Assuming the gas price is known, the merit order for the technologies installed 
in Canavese plant depends on the electricity price as described in Table 2. 

Table 2: Generation technologies main data in input to the optimization algorithm 
Scenario Condition #1 #2 #3 #4 #5 
σ=0  HP2 HP1 EB GB CHP 
σ=1  HP2 HP1 EB CHP GB 
σ=2  HP2 HP1 CHP EB GB 
σ=3  HP2 HP1 CHP GB EB 
σ=4  HP2 CHP HP1 GB EB 
σ=5  CHP HP2 HP1 GB EB 
σ=6  CHPmax HP2 HP1 GB EB 
σ=7  CHPmax HP2 GB HP1 EB 
σ=8  CHPmax GB HP2 HP1 EB 

The threshold values mentioned in the second column of Table 2 represent the limits on which one 
technology becomes cheaper than another, except for p6 which represents the threshold beyond which 
it is worth operating the CHP at maximum load to sell electricity on the market independently of the 
heat demand fulfilment. They are assessed on the basis of rough efficiency values (independent of the 
load) as it follows: 

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

 (25) 
Table 2 defines nine scenarios, the algorithm schematized by the flowchart in Figure 5 allocates for 
each scenario σ the residual thermal load (i.e., the heat demand subtracted by the heat output of the 
storage units defined by the preliminary optimization of the unit commitment) to the five generator 
technologies in place in Canavese. 

 
Figure 5: Algorithm for the load allocation to the j-th technology at time interval t and scenario σ 
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Once the residual thermal output is allocated for each time interval and scenario among the 
technologies, it is assessed the electrical output associated through Equation (26) 

 (26) 

Then, market bids must be formulated such that the summation of for each technology is equal to 
the MES injection/withdrawal program for any market clearing price. More in detail, nine bid couples 
with the quantity defined in Eq. (28, 29) should be presented, where it is worth noting that since it is 
considered a market with hourly resolution, the factor converting electric production [MW] to the quantity 
offered [MWh] is 1. The price associated to the bid is defined by Eq. (30, 31); in case of σ=8, is 
set to the market cap price. “OFF” and “BID” define the purposes of sell and buy electricity, 
respectively. 

 (27) 

 (28) 

 (29) 

 (30) 
 (31) 

This strategy allows that the required quantity is allocated in market whatever scenario will 
be defined by the cleared . 

3.3 Redispatch optimization 
The last step happens after the market clearing, that sets up the accepted bids among those presented by 
the MES manager, uniquely defining injection/withdrawal program for any time interval t. 
An optimization problem is solved analogously to that described in Section 3.1. The only differences rely 
in the objective function reformulated as in Eq. (32) without the cost of electricity consumption. Indeed, 
the electricity output is fixed, and this cost cannot be varied acting on the optimization variable. 

 (32) 

Moreover, to guarantee the compliance to this requirement the following constraint is added. 

(33) 

4 THE IMPACT OF UNCERTANTIES 

This section focuses on the uncertainties impact quantification, for this purpose the optimizer described 
in Section 3.1 is executed with a first series of hourly data assumed as forecast for electricity price and 
heat demand. Then a set of bids is defined according to the methodology presented in the Section 3.2, 
these bids are accepted or rejected according to the market clearing price (i.e., a new time series that 
stochastically deviates from the first values). This defines a program of electricity withdrawal/injection 
that must be respected by the MES. Assuming this program, the imposed electricity clearing price, and 
a time series for the actual heat demand (that deviates from the forecasted values analogously to the 
electricity price), the redispatch optimization, as described in Section 3.3 is performed. 
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4.1 Modelling the uncertainty 
To capture electricity price and heat demand uncertainty in forecasts, it is crucial to focus on the 
probable error at each time interval, representing the spread of actual values around predicted ones. 
Common metrics usually adopted in the literature are MAPE, MSE, and MAE [21]. However, for the 
purpose of this paper is preferable to model the probability density function of the forecast error. This 
is done through a normal distribution characterized by the mean, i.e., the forecasted value, and the 
normalized standard deviation , i.e., the ratio of standard deviation to mean and linearly correlates 
with typical error metrics [22], =0.1 corresponds to 7.98 MAPE.  

Finally, it should be considered that the error is usually autocorrelated [23] showing a persistence. 
Indeed, if the error at time t,  is relevant and positive, it is hardly probable that at time t+1 it will 
swing to the opposite lower limit. Instead, there is a tendency for errors to persist in the same direction 
or exhibit gradual changes over time. For this purpose, the persistency p is defined as the maximum 
difference between relative errors at two consecutive time intervals normalize on . 

 (34) 

Henceforth,  and p are used with the subscripts “ZP” and “HD” relative to the electricity zonal price 
and heat demand respectively. For the purpose of this investigation, pZP and pHD are assumed to 0.2. 

4.2 Impact quantification 
This subsection investigates the impact of  and in the range 0 to 1 simulating the preliminary 
unit commitment optimization, the bidding and the redispatch of the modelled MES for one winter 
week. For the forecasted data real-data already employed in [14] are assumed. Figure 6, generated with 
500 samples, shows the boxplot chart of ∆Cost (i.e., the difference between actual cost, after the 
redispatch optimization, and the forecasted cost according to the first attempt unit commitment 
optimization). Figure 6(a) and (b) show the impact of  and  respectively while the other 
parameter is kept to 0. Median and quartiles values are then fitted with quadratic curves. 

  
(a) (b) 

Figure 6: electricity price (a) and heat demand (b) uncertainty impact on actual costs 

It is possible to appreciate that as the input parameter uncertainty increases it is reflected in an actual 
cost uncertainty. It is interesting to observe that the cost may be lower than estimated, indeed an 
electricity price lower than expected lead to a cheaper provision of primary energy reflected in a 
considerable saving. Analogously if the real heat demand is lower than forecasted, alongside an optimal 
redispatch of storages, the usage of gas boilers, that are independent on the electricity carrier constrained 
to the market program, can be reduced, leading to a gas and money saving. 

It is also worth observing that as  goes to zero, the dispersion of costs goes to zero as well, even if the 
absolute value of ∆Cost remains positive: 689 € corresponding to 3.14% of the week costs. This is due 
to an intrinsic approximation of the adopted bids definition. Indeed, in eq. (18-25) rough efficiency 
values are adopted but real values depend on the generators load that it is not known a priori, thus in 
the neighborhood of values p1-8, the bidding strategy may result slightly suboptimal. 
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However, it can generally be appreciated how the expected final cost is quite robust respect to the 
investigated uncertainties. The median values of cost difference distribution represent the most probable 
value and is therefore assumed as the main indicator of the uncertainty cost. Through a 2nd degree 
polynomial function, the tendency of the median ∆Cost versus the combined effect of and has 
been fitted (black line in Figure 6). The impact of its negligible; while the dependency on is 
almost linear showing a growth of approximatively 0.62 percentage point of cost uncertainty for a 0.1 
increment in , it is equivalent to a growth by 0.08% in expected operational cost per heat demand 
forecast MAPE percentage point. These results demonstrate the effectiveness of the proposed algorithm 
for bids definition and the subsequent redispatch optimization.

5 STOCHASTIC APPROACH IMPLEMENTATION

The previous section demonstrated that the methodology proposed is in the Section 3 is robust with 
respect of the electricity price and slightly impacted by the heat demand forecast uncertainty. However, 
the robustness could be further enhanced by adopting stochastic methodologies as well that one
presented in this Section.

The problem consists in minimizing the expected value of a function under the uncertainty of some 
parameters. Figure 7 exemplifies the concept for a problem with only one optimization variable, x, and 
one uncertain parameter k. The assumed case study problem has 360 free optimization variables (the 
hourly thermal output of the ten generators and storages) and 72 uncertain parameters (the hourly 
electricity price and heat demand).

Figure 7: Stochastic methodology to minimize the expected obj value under the uncertainty of k.

The proposed randomized approach involves the stochastic selection of a set of k parameter values from 
the known probability distribution. Then it performs a deterministic optimization, in order to determine 
for each ki an optimal value of x, xi opt. At this point, the objective function is calculated, in xi opt, for all 
other values of k present in the initially sorted set to estimate the probability distribution of the objective 
function. The probability distributions can then be evaluated according to different metrics, that prefer 
minimization at a higher risk or vice versa. The main proposed indicator to evaluate the obtained 
distribution is the median value. So, the xi opt whose associated cost distribution has the lowest median 
value is selected as the optimal robust solution. The example reported in Figure 7 has only four values
in the set of k, to increase the effectiveness of the presented methodology larger sets must be adopted.

Considering the median value as the main indicator, the authors integrated the presented stochastic 
approach in the uncertainty range investigated in the previous section, concluding that the lowest 
expected cost is obtained for the same solution when applying the scenario approach presented in
Section 3. Nevertheless, if the MES operator looks at a more conservative strategy and assesses the 
probability distribution of costs at percentiles beyond 75, the proposed stochastic methodology reduces 
the worst-case cost up by 0.3% if compared to the scenario approach introduced in Section 3.

6 CONCLUSION

This paper addressed the problem of scheduling optimization of a Multi-Energy System under the 
electricity price and local energy demand uncertainty. Two methodologies were introduced, the first
relies in an algorithm to transpose the preliminary scheduling, obtained through standard mathematical 
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programming algorithms, into a set of bids to be submitted in the electricity market. The second 
integrates this procedure into a stochastic iteration. 

A preliminary unit commitment optimization problem is solved to obtain a first attempt guess of the 
best storages scheduling; then the residual load, that must be provided to meet the local energy demand, 
is allocated among the different generators figuring out as many price scenarios as many possible 
generators cost merit order can be listed. The algorithm presented in Section 3.2 defines a set of bids 
each characterized by a quantity and a price so that whatever is the market clearing price it is ensured 
that the MES injection/withdrawal program to/from the electricity grid is such to satisfy the local energy 
demand as close as possible to the lowest cost. Defined the program to which be constrained, a redispatch 
optimization is carried out approaching the real time for a fine tuning of the unit commitment in light 
of short term forecast whose uncertainty is negligible. 

However, the proposed approach performs the storage scheduling guess based on uncertain forecasted 
values, then the residual load is allocated considering fixed rough values of efficiency. So final costs 
may result higher than the minimum possible. Nevertheless, considering the Canavese plant, connected 
to the Milan DHN, the impact of electricity price and heat demand uncertainties is investigated 
concluding that the electricity price forecast error has a negligible impact and even the heat demand has 
a reduced influence. For each MAPE percentage point of the heat demand forecast, over a 48-hour 
horizon, it is observed that the expected cost of operating the MES increases by 0.08 percent. 

Moreover, when this approach is integrated in the stochastic methodology for robust optimization, 
presented in Section 5, no appreciable improvement was observed. This demonstrates the intrinsic 
robustness of the MES when equipped with large storage, able to mitigate the heat demand uncertainty, 
and the effectiveness of the presented bidding methodology to guarantee the supply of the demand, the 
compliance to the grid interaction program defined by the market at a low cost under the uncertainty of 
electricity price forecast. However, the randomized methodology allows to assess the probability 
distribution of operating costs in depth and selecting better operating and bidding strategy according to 
more conservative attitude that wants to minimize costs at the third quartile or in worse cases. 

The presented methodology, even if applied to the case study introduced in the Section 2, has been 
developed generally for MESs under operational parameters uncertainties and can be adopted for further 
investigations considering multiple markets (e.g., intraday electricity markets, spot gas markets), 
sensitivity to storage size, the possible time-shift in parameters, the peaks and the uncertainty of local 
RES generation (e.g., from solar thermal collector) covering a load fraction. 

NOMENCLATURE 

Abbreviations and Acronyms  
CHP Cogenerative gas-fired gas engines 
COP Coefficient of Performance 
DHN District Heating Network 
EB Electric Boiler 
GB Gas Boiler 
HP Heat Pumps  
MES Multi-Energy System 
STO Thermal energy storage 
SU Start-Up 

Variables 
C Cost (€) 
E Energy ((MWh) 
H time intervals in the optimization horizon 
N number (–) 
P power (MW)  
p price (€/MWh), error persistency (-) 
Q bid quantity (MWh) 

y binary variable (-) 
α Carrier x power regressor (MWx) 
β Carrier x power regressor (MWx/MWth) 
η efficiency (-) 
σ market clearing scenario number (#) 

 Error normalized standard deviation (-) 

Subscript 
0 initial 
BID purpose of buying electricity 
ch charge 
disch discharge 
el electrical  
gas natural gas  
HD Heat Demand 
i unit index 
j technology index 
n day of optimization index 
OFF purpose of selling electricity 

2468https://doi.org/10.52202/077185-0212



 
356, Page 2 

 

37th INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND 
ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, 30 JUNE - 4 JULY, 2024, RHODES, GREECE 

s storage index 
t time interval index 
th thermal 

x generic carrier 
ZP Zonal Price
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