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ABSTRACT 
 
As modern district heating networks integrate buildings with multiple energy sources, fault detection 
has become increasingly relevant and critical. This study investigates the effectiveness of an 
unsupervised data-driven fault detection approach to identify stuck valve and faulty thermostatic 
radiator valve scenarios in the baseboard radiators of an office building. A baseline model for a typical 
Swedish office building was developed, featuring a ground-source heat pump, solar photovoltaic-
thermal panel, water-based radiators, and a connection to the district heating system to support its 
heating demand. Multiple fault scenarios were considered in the model, involving partially stuck valves 
and thermostatic radiator valves that deviated from their intended setpoints. Synthetic noise was added 
to generate faulty scenarios. The model performed well in detecting severe stuck valve faults but 
showed lower performance on less severe faults and faulty thermostatic radiator valves. The insights 
gained from this research emphasize the importance of fault monitoring in the context of evolving 
buildings connected to district heating networks. 
 

1 INTRODUCTION 
 
District heating (DH) systems have emerged as a pivotal element in the transition towards a sustainable 
energy future, particularly in the context of energy systems based on renewable energy sources 
(Connolly, et al. 2014). One of the key advantages of these systems is their ability to utilize heat that 
would otherwise be wasted from various sources, such as industrial processes, power stations, and waste 
incineration plants. Another important aspect of DH systems is their capacity to integrate low-cost 
energy storage solutions. This feature allows for better balancing of supply and demand, as well as 
enhancing the overall efficiency of the system. The incorporation of energy storage helps optimize the 
use of available heat sources and ensures a more stable and reliable heat supply to connected buildings. 
DH systems also enable flexible interplay between the electricity and heating sectors using combined 
heat and power (CHP) units, electric boilers, and heat pumps. This synergy further supports the role of 
DH systems in the energy landscape (Ebrahimi 2020). 
 
A key limitation of third-generation district heating systems is their constrained ability to integrate 
renewable energy sources such as solar thermal energy. The high distribution temperatures and system 
design make the incorporation of these technologies challenging. Additionally, these systems often lack 
the flexibility to adapt to fluctuations in heat demand or supply (Lund, et al. 2018). Fourth-generation 
district heating (4GDH) systems have been proposed to address these limitations. These systems are 
characterized by lower distribution temperatures, resulting in reduced thermal losses and improved 
energy efficiency. This approach enables the integration of renewable energy sources, such as solar 
power, which helps decrease reliance on fossil fuels. These systems are flexible and can adapt to 
changing heat demands by incorporating emerging technologies (Sorknæs, et al. 2020). 
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The incorporation of emerging energy technologies poses a range of modeling difficulties and 
integration complexities. Predicting the performance of heat pumps and solar photovoltaics under 
diverse real-world conditions is hampered by the limited availability of operational data (Majidi, et al. 
2019). Additional modeling complexity arises from the dynamic interactions between multiple 
interconnected energy-conversion technologies, which can exhibit transient behaviors. Human behavior 
and acceptance of new technologies, as well as the implementation of control strategies, introduce 
further variables that are difficult to quantify. 
 
The integration of distributed energy resources into modern district heating grids results in complex 
systems, where it is crucial to ensure that all components function properly (Månsson, et al. 2018). Fault 
management is a valuable tool for identifying vulnerabilities and predicting potential failures. In the 
context of heating, ventilation, and air conditioning (HVAC) systems, a fault or failure occurs when a 
system, equipment, or component performs in a way that negatively impacts the thermal comfort or 
energy efficiency of a building (Li and O'Neill 2019). These faults can be gradual or abrupt and can 
result in increased energy consumption and decreased thermal comfort. Similar fault management 
principles can be applied to buildings. HVAC faults, such as sensor errors and equipment failures, are 
prevalent in commercial buildings; these faults degrade system performance and account for 15-30% 
of lost energy in buildings (Katipamula and Brambley 2005, Qin and Wang 2005). In a survey with 
Swedish district heating utilities, Månsson, et al. (2019) investigated the most common faults in 
customer installations causing high return temperatures and the strategies employed by successful 
utilities to address these issues. It was found that gaining access to customer installations and 
proactively identifying and fixing faults, particularly leakages and problems in customers' internal 
heating systems, were key to maintaining low return temperatures across the system. Neumayer, et al. 
(2023) conducted a literature review of fault and anomaly detection techniques for district heating 
substations. This study discussed the prevalence of both conventional methods, such as thresholds and 
visualization, as well as machine learning approaches. Unsupervised learning is more widely applied in 
this domain owing to the lack of labeled training data. 
 
As energy systems in buildings become more interconnected, managing the resulting complexity 
requires sophisticated fault detection methods to maintain optimal performance. Machine learning is 
gaining popularity for building system fault detection and diagnostics owing to its ability to handle large 
amounts of sensor data and produce more accurate and reliable results compared to traditional rule-
based methods (Nelson and Culp 2022). Bode, et al. (2020) developed a machine-learning fault 
detection algorithm and investigated its transferability from experimental data to real-world 
applications. The algorithm was trained on an experimental dataset containing data for typical heat 
pump failures measured on an outfitted air-water heat pump. Although it performed well in controlled 
experiments, its effectiveness diminished significantly when applied to real-world data. This 
underscores the difficulties in adapting machine learning models to different systems with varying data 
quality and labeling standards. Data-driven fault detection and diagnostics (FDD) methods have been 
extensively applied to various HVAC components, with air handling units (AHUs), variable air volume 
(VAV) terminal units, and chillers being the most studied (Chen, et al. 2023). These components are 
critical to building performance and are prone to faults, such as sensor issues, damper problems, and 
fouling. Yan, et al. (2016) investigated sensor fault detection in air handling units (AHUs) within HVAC 
systems, an area critical for maintaining energy efficiency and indoor comfort in commercial buildings. 
Recognizing the limitations of previous fault detection and diagnosis (FDD) strategies, the authors 
identified two main issues. Traditional methods often depend on substantial training data and struggle 
to generalize across varying operational conditions. To address these challenges, an unsupervised 
learning-based strategy was employed. Their research distinguished itself by effectively pinpointing 
both individual and multiple sensor faults without the need for extensive user-defined input parameters, 
thus addressing a prevailing challenge in clustering-based FDD methodologies. 
 
The use of extensive sensor networks can be expensive and complex, particularly in older buildings. 
Sensors can also have issues such as failures, calibration needs, and communication disruptions, leading 
to unreliable data. In addition, some faults may not be directly detected by sensors, such as gradual 
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performance decay or complex interactions between system components. When direct sensor 
measurements are insufficient or unavailable, a fault model aims to generate simulated faulty data by 
modeling the faulty behavior of a component or system under different possible failure conditions (Li 
and O’Neill 2018). Lu, et al. (2021) conducted an extensive fault impact analysis to assess the 
robustness of high-performance control sequences recommended in ASHRAE Guideline 36. A virtual 
testbed of a medium-sized office building was created, incorporating both airside and plant-side 
sequences of operation. A total of 359 common fault scenarios across various categories, including 
sensors, ducts/pipes, dampers/valves, HVAC equipment, controls, schedules, and design/construction 
aspects, were simulated under diverse seasonal conditions and fault intensities. Key performance 
indicators related to energy use, indoor environment, control performance, and power systems were 
chosen to quantify the effects of individual faults.  The implications of this fault simulation dataset are 
multifaceted. This approach not only provides a more extensive and well-structured collection of fault 
symptoms that correspond with Guideline 36 but also enables the recognition of faults that exert the 
most adverse effects on system performance. This prioritization of fault characteristics can guide the 
development of more effective fault-handling strategies, which is crucial for the future advancement of 
reliable automated control systems. 
 
While existing research has explored fault detection in HVAC systems, there is a lack of focus on 
specific radiator faults, particularly in the context of multi-energy source buildings connected to district 
heating networks. This study aims to fill this gap by investigating the effectiveness of an unsupervised 
learning approach for identifying stuck valve faults and faulty thermostatic radiator valves (TRVs). An 
unsupervised data-driven fault detection approach using a one-class support vector machine (OCSVM) 
is proposed, and its performance is evaluated using various metrics. The proposed approach aims to 
address one of the challenges that may arise in modern district heating networks on the consumer side, 
namely, the need for effective fault detection. As these networks become more integrated with various 
energy systems, ensuring that faults can be detected quickly and accurately becomes crucial. 
 

2 MODEL DESCRIPTION 
 
A baseline model is created using a typical Swedish office building, following the guidelines for 
materials and general recommendations. The building under study is a one-floor office building in 
Västerås, Sweden. It is composed of a single thermal zone, representing the area adjacent to the exterior 
walls, and is directly influenced by the outdoor weather conditions, solar radiation, and heat transfer 
through the building envelope. The total floor area of the building is 68  The building envelope 
thermal properties is reported in Table 1. Specifically, the occupancy density per effective area in the 
office building is 0.05, which is derived from the Swedish building standard Sveby, applicable from 
Monday to Friday, between 8am and 17pm (Sveby 2013). For the office building, a metabolic rate of 
1.2 met was used, as specified corresponding to sedentary activity typically found in office 
environments (Ahmed, et al. 2017). In summer, the convective heat gain is 148 W, and the radiative 
heat gain is 130 W. During winter, the convective heat gain is 128 W, and the radiative heat gain is 132 
W. The internal heat gain from electricity usage (lighting and appliances) is set to 50  
according to Sveby’s standard annual value. Infiltration rates vary with wind conditions and outdoor 
temperatures. For simplicity, this model assumes a constant average infiltration rate of 0.1 air changes 
per hour. 

Table 1: Building envelope thermal properties. 

Surface type Surface area (  Heat transfer coefficient 
 

Exterior wall 56.3 0.510 
Interior wall 69 0.508 
Ground floor 67.3 0.039 

Ceiling 67.3 4.153 
Window 11.2 2.89 
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As illustrated in Figure 1, the HVAC system model, which features a comprehensive array of 
components, is developed in TRNSYS Simulation Studio and serves as a dependable solution for 
heating. It includes a ground-source heat pump, solar photovoltaic-thermal (PVT) panels, hydronic 
baseboard radiators, and district heating as the primary heat source. The district heating substation 
supplies hot water, which is circulated through baseboard radiators installed throughout the zone. As a 
supplementary heating system, the building has a ground source heat pump that utilizes a network of 
underground pipes to transfer heat to and from the Earth. The PVT panels on the roof generate additional 
thermal energy for heating. When the stored water temperature reaches a certain point, it supplies the 
heat pump, which extracts thermal energy and distributes it indoors through radiators. The setpoint 
temperature for the zone is programmed differently for weekdays and weekends. On working days, the 
temperature is set to 21°C from 6am to 5pm. Outside of those hours, the setback temperature is 19°C. 
On weekends, when the office is unoccupied, temperature control is set to activate heating once the 
zone temperature drops below 18°C.The integration of various components allows for an effective 
heating solution that aligns with the principles of next-generation district heating systems (Gong, et al. 
2023). The specifications of each component are listed in Table 2.  
 

 
Figure 1: Simulation model in TRNSYS Simulation Studio. 

 
Table 2: Components and parameters of the system. 

TRNSYS source Parameter Value 

Type 560- PV/T collector 

Collector area 65.8  
Absorber plate thickness 0.003  
Thermal conductivity of the absorber 720  
Number of tubes 240 
Tube diameter 0.012  
Bond width 0.012  
Bond thickness 0.003  
Bond thermal conductivity  162  
PV efficiency at reference condition  17 % 

Type 557-Vertical Ground 
Heat Exchanger 

Storage volume 4500  
Borehole depth  100  
Header depth  5  
Number of boreholes  8 
Borehole radius 0.1  
Storage thermal conductivity 4.68  
Storage heat capacity  2016  
Fill thermal conductivity 1.3  
Pipe thermal conductivity 1.5  
Gap thermal conductivity 5.04  
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Gap thickness 0.01  
Heat capacity of layer 2016  
Thickness of layer 1000  

Type 927-Water-to-Water 
heat pump 

Rated cooling capacity per heat pump 2  
Rated cooling power per heat pump 1.6  
Rated heating capacity per heat pump 10  
Rated heating power per heat pump 3.2  

Type 91-Substation heat 
exchanger 

Primary supply temperature 80 ℃ 
Primary flow rate 2400  
Heat exchanger effectiveness 0.9 

Type 1231- Hydronic 
baseboard radiators 

Design capacity 12  
Design surface temperature 55 ℃ 
Number of pipes 4 
Pipe inside diameter 0.015  
Air pressure exponent 0.2 

 
The temperature setpoint triggers the heating system to turn on or off. Additionally, a decision must be 
made regarding the heating source: whether sufficient heat should be provided by the heat pump or 
district heating system. The operation of the heating system is governed by a rule-based controller that 
evaluates the cost of heating for each hour and determines which system to run based on that calculation. 
The running cost of the ground source heat pump was calculated based on the average hourly grid 
electricity consumption of the heat pump compressor. The heat pump compressor can be powered by 
either electricity from the grid or PVT electricity. If PVT electricity is accessible, it is utilized to power 
the compressor first. However, if there is insufficient PV electricity, the compressor operates on grid 
electricity. Several factors were considered when determining the cost of grid electricity, including the 
spot price, cost of electricity certificates, variable network fee, energy tax, value-added tax, and annual 
fixed network fee for maintaining the electricity grid (Monghasemi, et al. 2023). District heating prices 
in Sweden have both fixed and variable components. The fixed component is typically associated with 
administrative and operating costs, whereas the variable component is related to the actual production 
and distribution of heat based on consumption. Customers pay an annual fixed fee to connect to the 
district heating network, which covers administrative costs. They also pay a variable price per kWh of 
heating used. This rate fluctuates seasonally, with higher prices in the winter heating months and lower 
prices in the summer months. The local district heating company sets specific fees and rates (Lygnerud, 
et al. 2023). The rule-based controller then compares the cost of operating the heat pump to the cost of 
operating the district heating system and selects the system with the lowest cost. If the cost of operating 
the heat pump is lower, the heat pump is activated, and the district heating system is deactivated. 
Conversely, if the cost of operating the heat pump is higher, the district heating system is activated, and 
the heat pump is deactivated. 
 

3 FAULT CONSTRUCTION 
 
Fault construction allows faults to be simulated in the model by introducing faults into the simulation. 
It maps parameters to inputs, sets up fault occurrence distributions, and creates performance models 
that represent device or component failures that cause inefficient energy use or discomfort.  Fault 
construction during the simulation of a building's HVAC system involves introducing errors or 
malfunctions into the simulation model to study their effects on system performance (Li and O'Neill 
2019). This study focuses on radiator faults, specifically considering two main fault types: stuck valves 
and TRV faults. Stuck valve faults occur when a valve in the radiator system becomes stuck at a specific 
position: fully open, partially open, or fully closed. This can lead to uneven heat distribution, 
overheating, or underheating. Stuck valve faults can be caused by various factors, such as mechanical 
wear, corrosion, or debris accumulation, and can significantly impact the system's ability to regulate 
heat effectively. TRV faults, on the other hand, involve malfunctions in the thermostatic radiator valves, 
which are designed to control the flow of hot water through the radiators based on the desired room 
temperature. TRV faults can occur owing to various factors, such as sensor failures, calibration issues, 
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or mechanical problems. These issues can lead to inaccurate temperature readings, causing 
malfunctioning in the system. The fault scenarios considered in this study are listed in Table 3. 
 

Table 3: Fault scenarios for radiators. 

Fault type Fault identifier Description 
Stuck valve   SV30-15 Valve 30% closed, occurring for 

15% of simulation time 
SV30-30 Valve 30% closed, occurring for 

30% of simulation time 
SV50-15 Valve 50% closed, occurring for 

15% of simulation time 
SV50-30 Valve 50% closed, occurring for 

30% of simulation time 
Faulty TRVs TV30-15 TRVs 30% deviated, 15% of 

simulation time 
TV30-30 TRVs 30% deviated, 30% of 

simulation time. 
TV50-15 TRVs 50% deviated, 15% of 

simulation time. 
TV50-30 TRVs 50% deviated, 30% of 

simulation time. 
 
Fault detection relies on monitoring a range of variables that can indicate potential system issues. 
However, certain critical data points may not be readily available through standard sensors or may not 
be explicitly modeled in simulation platforms. Table 4 presents the data types monitored in this study 
for fault detection.  
To simulate the impact of faults on the system, the behavior of specific components within the model 
was modified. Stuck valve faults were replicated by adjusting the parameters related to the valve flow 
characteristics, effectively simulating a restriction in flow through the affected radiators. TRV faults, 
on the other hand, were simulated by introducing an offset to the desired room-temperature setpoint 
that the TRV component uses for control. A positive offset represents a TRV that perceives the room 
as colder than it is, leading to potential overheating, whereas a negative offset simulates a TRV that 
senses a warmer room, potentially causing underheating. The timing and duration of fault occurrences 
were defined based on fault tags, which specify the percentage of total simulation time during which 
the fault is active. For each fault scenario, such as "SV30-15" or "TV50-30, " the fault duration was 
defined as a percentage of the total simulation time. In the case of "SV30-15" the stuck valve fault is 
set to occur for 15% of the simulation time, while in "TV50-30" the faulty TRV fault is active for 30% 
of the simulation time. Faults are not necessarily consecutively introduced for the entire specified 
duration. Instead, the faults were introduced intermittently, with the total aggregated duration of the 
fault occurrences equal to the specified percentage. To achieve this intermittent fault behavior, random 
start times were generated within the simulation period for each fault occurrence. The duration of each 
individual fault occurrence was also randomized, ensuring that the total aggregated duration of all fault 
occurrences matched the specified percentage defined in the fault tag. For example, in the "SV30-15" 
fault scenario, the stuck valve fault might occur in three separate intervals of 5% duration, each 
randomly distributed throughout the simulation period. The total aggregated duration of these three 
fault occurrences would then sum to the specified 15% of the total simulation time. 
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Table 4: Monitoring variables to be used as features for fault detection. 

Monitoring variable Unit Description 
  Ambient temperature 

  Indoor air temperature 

  Heating load 
  Inlet water temperature 
  Outlet water temperature 

  Radiator mass flow rate (flow from substation) 
  Radiator mass flow rate (flow from heat pump) 

  Radiator surface temperature 
  Radiator heat transfer rate (flow from substation) 
  Radiator heat transfer rate (flow from heat pump) 

  Heat pump electricity consumption 
  District heating energy consumption 

 - On/off controller 
 - Control signal for heat pump 
 - Control signal for district heating 

  
4 FAULT DETECTION 

 
An OCSVM was employed for fault detection. The data preparation part has already been addressed in 
the fault construction stage. The features were normalized using min–max scaling to ensure that no 
single feature dominated the distance calculations owing to its scale. Once the data were prepared, the 
model was trained using non-faulty data instances. Based on these data, the OCSVM constructed a 
model that delineated the boundary of normal behavior in the feature space, effectively distinguishing 
between regular operation and potential anomalies. To optimize the performance of the OCSVM model, 
hyperparameter tuning using a grid search with 5-fold cross-validation was conducted. The 
hyperparameters tuned included the kernel type, outlier fraction, and kernel coefficient. The best 
hyperparameters were selected by maximizing the average accuracy of the model for predicting the 
normal class. Upon completion of model training, the OCSVM was applied to new datasets in the testing 
phase to evaluate its efficacy in anomaly detection. The role of the model was to assess whether new 
data points resided within the established normal boundary. In this section, the dataset comprises both 
faulty and non-faulty datasets collectively. Data points that fell outside this boundary were flagged as 
anomalies, suggesting possible faults.  
 

5 RESULTS AND DISCUSSION 
 
In this section, the results of applying the fault detection strategy are presented. Several performance 
metrics were analyzed to evaluate the capability of the model to address the faults within the system. 
To assess the performance of the fault detection mechanism, various evaluation metrics were employed.  
 
Figure 2 illustrates the difference between the fault-free and faulty datasets for different severities when 
the stuck valve occurs. This reveals the impact of stuck valve faults on the energy demand in the system. 
The severity of the fault, determined by the percentage the valve is stuck closed, and the duration of the 
fault both contribute to increased energy consumption. As the severity and duration of the fault increase, 
the energy demand increases accordingly. This higher energy demand in faulty situations is attributed 
to the system requiring more energy to achieve the desired set-point temperature of the zone. When a 
valve is partially closed, it restricts the flow of the heat transfer fluid, making it more difficult for the 
system to maintain the target temperature. Consequently, the system must consume more energy to 
compensate for the reduced heat-transfer efficiency caused by the faulty valve.  
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Figure 2: Energy demands in the presence and absence of stuck valve faults. 

Figure 3 shows the energy consumption over time for different TRV fault scenarios. While most faulty 
scenarios exhibit a higher energy demand than the fault-free case, there is no consistent trend correlating 
the severity and duration of TRV faults with energy consumption. This can be attributed to the nature 
of the TRV faults, which involve the malfunctioning of the thermostatic radiator valves responsible for 
regulating the flow of hot water based on the desired room temperature. Unlike stuck valve faults that 
physically restrict flow, TRV faults can lead to inaccurate temperature sensing, causing the system to 
either overheat or underheat the rooms. When a TRV underestimates the required temperature, it may 
cause the system to provide more heat than necessary, leading to increased energy consumption. 
Conversely, when a TRV overestimates the temperature, it may restrict the flow of hot water to the 
radiator, potentially resulting in lower energy consumption compared to the fault-free scenario. There 
are instances where the TV30-30 scenario results in lower energy consumption than the fault-free case. 
This observation suggests that the TRV might have underestimated the required heat during these 
periods, leading to reduced energy consumption. The occurrence of such exceptions, in which faulty 
TRVs can lead to lower energy consumption, highlights the complexity of their impact. This is in 
contrast with the more predictable effects of stuck valve faults, where increased severity and duration 
consistently result in a higher energy demand. 
 

 
Figure 3:  Energy demands in the presence and absence of TRV faults. 

5.1 Performance metrics 
Table 5 lists the key performance metrics of the models. It was observed that the model demonstrated 
varying performances across different fault scenarios in the heating system. For stuck valve faults, the 
model achieved excellent performance in detecting faults with 50% severity, regardless of the fault 
duration. This suggests that the model is effective in identifying more severe stuck valve faults, even if 
they persist for shorter or longer durations. On the other hand, for SV faults with 30% severity, the 
model's recall and F1-score were relatively lower, especially for shorter fault durations. This indicates 
that the model missed some instances of less severe stuck valve faults, particularly when they occurred 
for a brief period.  
 
The recall and F1-score values for TV faults are consistently lower than those for SV faults, suggesting 
that the model may have more difficulty detecting incorrect temperature sensor faults in radiator 
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thermostats. One possible explanation for the lower performance of the model in detecting TRV faults 
could be the nature and characteristics of these faults. TRV faults, which occur when the radiator 
thermostat incorrectly senses the temperature, can have less obvious indications than stuck valve faults. 
The impact of TRV faults on the overall heating system behavior is more gradual, making them harder 
to detect using the model. Another factor to consider is the complexity of the temperature dynamics in 
the heating system. The relationship between the TRV faults and their impact on the system temperature 
may be more intricate and nonlinear compared to the direct impact of stuck valve faults on the flow of 
heat. This complexity could make it more challenging for the model to capture and differentiate faults 
associated with TRV faults. 
 

Table 5: Performance metrics of the OCSVM model for different fault scenarios. 

Fault Accuracy Precision Recall F1-score 
SV30-15 0.94 0.92 0.69 0.79 
SV30-30 0.88 0.95 0.63 0.76 
SV50-15 0.99 0.94 1 0.97 
SV50-30 0.98 0.96 1 0.98 
TV30-15 0.85 0.97 0.51 0.66 
TV30-30 0.79 0.98 0.59 0.74 
TV50-15 0.85 0.97 0.53 0.69 
TV50-30 0.81 0.98 0.62 0.76 

 
5.2 Confusion matrix 
To gain a more comprehensive understanding of the performance of the OCSVM model in detecting 
faults, the confusion matrices for each fault scenario were aggregated based on the fault types. 
Specifically, the confusion matrix for stuck valve faults with different severities (30% and 50%) and 
durations (15 and 30) were summed to create an overall confusion matrix for SV faults. Similarly, 
confusion matrices for thermostatic radiator valve (TRV) faults with different severities and durations 
were aggregated to obtain an overall confusion matrix for TRV faults. By aggregating the confusion 
matrices within each fault category, the model's performance in detecting SV and TRV faults was 
assessed separately. This approach allows for a more focused analysis of the strengths and weaknesses 
of the model in identifying specific types of faults by considering the variations in severity and duration 
within each category. 
Figure 4 presents a confusion matrix for the detection model performance on aggregated stuck valve 
faults, which offers valuable insights into the classification capabilities of the model. The matrix clearly 
demonstrates the capacity of the model to accurately pinpoint defective instances, as indicated by the 
substantial number of correct faulty detections. Similarly, the model shows a strong aptitude for 
precisely categorizing non-faulty or acceptable instances, as evidenced by the considerable number of 
accurate OK detections. The model incorrectly classified 336 non-faulty instances as faulty, which 
could potentially lead to unnecessary maintenance or intervention. Conversely, 90 faulty instances were 
misclassified as non-faulty, indicating missed fault detections that could result in the potential 
performance degradation of the system if left unaddressed. 
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Figure 4: Confusion matrix for aggregated stuck valve faults. 

 
Figure 5 presents a confusion matrix for the performance of the OCSVM model on aggregated TRV 
faults, providing insights into the model's classification capabilities for this fault type. The matrix 
highlights the ability of the model to correctly identify faulty instances, as indicated by the high number 
of true faulty detections. However, it is important to note that the model exhibits a higher number of 
misclassifications compared to stuck valve faults. The model incorrectly classified 1458 normal 
instances as faulty, which could lead to significant false alarms and unnecessary maintenance. This 
higher false positive rate suggests that the model may struggle to differentiate normal operation from 
TRV faults. However, the model correctly classified many normal instances, indicating its accuracy in 
identifying a typical performance. The low false negative rate suggests that the model rarely overlooks 
actual TRV faults, which is crucial for timely detection before further degradation. 
 

 
Figure 5: Confusion matrix for aggregated thermostatic valve faults. 

 
Overall, the OCSVM model demonstrated its ability to detect faults in the heating system, with 
particularly strong performance in identifying severe stuck valve faults.  
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6 CONCLUSIONS 
 
This study developed an unsupervised data-driven approach using a one-class support vector machine 
for fault detection in the radiator system of a commercial building. The results demonstrated that the 
model was effective in identifying severe stuck valve faults, achieving high recall and F1-scores. 
However, its performance was lower in detecting less severe stuck valve and TRV faults. This highlights 
the importance of considering fault characteristics, such as severity, when implementing fault detection 
systems. The confusion matrix analysis provided valuable insights into the model's strengths in correctly 
classifying normal and faulty instances, as well as its weaknesses in misclassifying some instances. The 
proposed approach can help maintenance personnel proactively identify and address faults to improve 
system efficiency and indoor comfort. Incorporating domain knowledge to guide feature selection and 
expand training data through the simulation of additional fault scenarios may help enhance model 
performance.  
 

NOMENCLATURE 
C cost SEK Abbreviations Greek symbols 

 
E electricity 

consumption 
SEK
  

4GDH Fourth-
generation 
district 
heating 

 On/off 
controller 
signal 

G total tilted solar 
radiation 

 AHU Air handling 
unit 

Subscript 
 

M mass flow rate  CHP Combined 
heat and 
power 

amb ambient 

Q heat transfer rate  DH District 
heating 

air indoor air 

T temperature  FDD Fault 
detection and 
diagnostic 

dh district 
heating 

   OCSVM One-class 
support 
vector 
machine 

hp heat pump 

   PVT Photovoltaic 
thermal 

pvt photovoltaic 
thermal 
collector 

   SV Stuck valve rad radiator 
   TRV Thermostatic 

radiator valve 
sens heating load 

   VAV Variable air 
volume 

surf surface 

     in indoor 
     out outlet 
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