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ABSTRACT 
 
Optimized predictive control of complex building energy systems requires accurate load predictions. 
Today, increasing sensor installations and obtainable monitoring data enable exploiting continuous data 
streams and developing data-driven load prediction models. Recent research on load prediction has 
focused on model development while assuming static relationships. However, real-world data streams 
are usually evolving over time mainly due to two types of interactions with the environment. First, 
underlying relationships in energy monitoring data are strongly influenced by user behavior, which is 
only implicitly represented in timeseries data. Second, system changes lead to concept drifts and 
deteriorate the prediction performance of data-driven models. To capture the two underlying types of 
interactions and to increase the prediction accuracy, drift detection methods enable adaptive machine-
learning models. In the present study we trained random forest models on monitoring data on two scales 
of building energy systems representing two types of concept drifts. In particular, we modeled the power 
consumption of a public building to investigate sudden concept drifts according to user behavior and 
the heat load of a district heating system to examine gradual concept drifts according to system changes. 
To analyze passive and active model adaption strategies, we implemented periodical retraining schemes 
and state-of-the-art concept drift detection methods. Comparing static reference models to the proposed 
adaptive machine learning models, we demonstrated model deterioration in connection to concept drifts 
and the potentials for performance enhancements. The results show that model adaption strategies are 
promising solutions to ensure accurate demand predictions for optimized energy management. 
 

1 INTRODUCTION 
 
The ambitious climate targets set by the Paris Agreement underscore the urgent need for a substantial 
reduction in CO2 emissions. Notably, the building sector plays a significant role, accounting for 30 % 
of global energy consumption and 27 % of global operational CO2 emissions (Hamilton et al., 2022). 
Advanced predictive control approaches emerge as promising solutions to contribute to set goals by 
optimizing and efficiently managing building energy system operations. However, the successful 
realization of these approaches requires accurate load prediction models. In recent years data-driven 
load prediction models for individual building energy systems have gained significant research 
attention. With the increasing installation of low-cost sensors, data-driven models hold the ability to 
exploit readily available monitoring data (Wang et al., 2019), while decreasing modeling cost and 
increasing prediction accuracy in comparison to physics-based models (Zhang et al., 2021). Data-driven 
modeling in building energy systems has mainly focused on the development of accurate models 
assuming stationary concepts. Yet, monitoring data is accessed in the form of continuous and potentially 
unbound data streams, that are closely associated with non-stationary behavior and dynamically 
changing concepts (Bayram et al., 2022), (Wares et al., 2019). This work addresses the challenge of 
non-stationary data streams in building energy systems, which can occur due to shifts in user behavior, 
equipment, regulations, or environmental factors, rendering previously trained models obsolete. 
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In general, data-driven models map a joint data distribution  of input features  and target 
features  and implicitly represent a data generating process or an underlying concept at a point in time 
 (Read and Žliobaitė, 2023). The term concept drift describes the dynamic and unexpected change of 

a concept over time (Gama et al., 2014). Concept drift is commonly defined in terms of Bayesian 
decision theory as the change of a joint data distribution  between two points in time  and . 
This change is either or both affected by differences in the prior probabilities  and the conditional 
probabilities  of the target feature, while a change in the prior probabilities of the input features 

 does not necessarily constitute a concept drift (Webb et al., 2016). Real concept drift is 
considered as a change that affects the conditional probabilities of the target feature  with or 
without an effect on the prior probabilities of the input features , whereas virtual drift only affects 
the prior probabilities of the input features  (Webb et al., 2016). The most common differentiation 
of concept drift is characterized by the temporal pattern of change as sudden drift, gradual drift, and 
recurring drift (Webb et al., 2016). 
Concept drift in timeseries forecasting is attributed to behavioral changes in populations, aging effects 
in technical devices, climate fluctuations and technological progress (Ditzler et al., 2015)., which are 
all to be expected in building energy systems. The occurrence of concept drift leads to model 
performance deterioration (Bayram et al., 2022). This circumstance creates a necessity for the 
utilization of dynamic model adaption to changing concepts in the practical application of load 
prediction models. 
To address concept drift handling in non-stationary environments, common approaches leverage 
traditional batch learning in single models, allowing the utilization of established machine learning 
models by retraining new models from scratch and replacing old, expired models (Hoi et al., 2021). The 
model adaption process is typically distinguished between passive- and active approaches. Passive 
model adaption approaches enforce blind model retraining at a fixed rate. Active model adaption 
approaches enforce an informed model retraining, that is triggered by explicit concept drift detection 
methods (Ditzler et al., 2015). 
Research on concept drift handling in non-stationary environments has been focused on classification 
tasks and was mainly conducted on artificial data sets (Bayram et al., 2022). Only a few recent studies 
have addressed this challenge for timeseries regression tasks, especially in the context of building 
energy systems. 
Mehmood et al. (2021) evaluated a selection of state-of-the art drift detection methods for active model 
adaption in regression tasks on two artificial and two real datasets. In artificial data sets the active 
approaches utilizing the Drift Detection Method (DDM) and Adaptive Windowing (ADWIN) as drift 
detectors, achieved the best average performances. Nevertheless, in the real datasets model adaption 
did not yield performance improvements compared to a static model. 
Ji et al. (2021) compared passive and active model adaption approaches on a Long-Short Term Memory 
network (LSTM) for load prediction using real power consumption data from an industrial park located 
in the Minhang district of Shanghai, China, spanning from June to December 2019. Initial training used 
data from the first month, with prequential evaluation spanning over the subsequent five months. 
Passive model adaption involved daily retraining rates with one week of training data size, while the 
active approach used ADWIN for concept drift detection. Both approaches showed comparable 
performance, with the active approach offering reduced processing times and memory usage. 
Mariano-Hernández et al. (2022) examined passive and active model adaption approaches on a selection 
of advanced machine learning models for multistep-ahead load prediction. They used real power 
consumption data from two single buildings at the University of Valladolid in Spain from 2016 to 2019, 
that reflected sudden user behavioral changes and gradual efficiency improvements. Initial training was 
carried out on the first three years with evaluation on the last year. The study compared static models 
with passive model adaption of daily retraining and active model adaption utilizing ADWIN and 
Kolmogorov-Smirnov Windowing (KSWIN) for concept drift detection. All adapted models 
outperformed the static model on average performance metrics, with the passive approach showing the 
best performance. The active approach applying KSWIN achieved comparable results while reducing 
retraining frequency by more than half. 
Three timeseries regression tasks within a single building were conducted, employing various model 
types, by Toquica et al. (2020). Initial training spanned one month, followed by evaluation of passive 
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model adaption methods with training data sizes ranging from 7 to 28 days, and active adaption 
approaches utilizing different concept drift detection methods over one year. The active approach, 
particularly with ADWIN, demonstrated superior performance, although average model performance 
exhibited minimal differences of 2 to 5% across approaches. Notably, the passive adaption method 
benefitted from smaller training data sizes. 
In summary, timeseries data in building energy systems often exhibit non-stationary behavior, and 
leveraging model adaption methods significantly enhances load prediction performance. However, 
research on non-stationary learning for regression tasks in building energy systems remains limited, 
mostly focusing on single buildings (Mariano-Hernández et al., 2022), (Toquica et al., 2020). While 
passive and active approaches show no clear performance preference, applying concept drift detectors 
developed for classification tasks, most notably DDM and ADWIN, effectively reduces retraining 
numbers (Mehmood et al., 2021), (Ji et al., 2021), (Mariano-Hernández et al., 2022), (Toquica et al., 
2020). Yet, crucial parameters such as retraining rate and training data size are not extensively discussed 
within these batch learning frameworks. Explicit concept drift occurrence is often overlooked, with 
some evaluations seeming to consider incomplete initial training data rather than necessarily actual 
concept drift instances (Ji et al., 2021), (Toquica et al., 2020). 
In our study, we analyze two real-world use cases for load prediction demonstrating non-stationary 
behavior in building energy systems with sudden drift in a single building and gradual drift in a district 
heating network. We demonstrate static model deterioration and compare passive and active model 
adaption solutions, focusing on average performance, but also on error distributions, retraining rates, 
and training data sizes. Additionally, we explicitly discuss drift occurrence and concept drift detection. 
The remainder of this paper is organized as follows: In Section 2, we outline the use cases, the data-
driven model, and the model adaption approaches. Section 3 presents the results of one year of 
prequential evaluation simulating the practical application of initially trained models. Finally, Section 
4 concludes with a summary. 
 

2 METHODOLOGY 
 
2.1 Use Cases 
Two real-world datasets were considered as use cases for data-driven load prediction with a forecast 
horizon of one hour, each covering a two-year timeframe at an hourly resolution and representing two 
different scales of building energy systems. The first dataset comprises power consumption monitoring 
data from a daycare building located in a large city in North Rhine-Westphalia, Germany from January 
2019 to December 2020. The second dataset consists of heat consumption monitoring data from a 
district heating network situated in Munich, Germany spanning over the timeframe from January 2020 
to December 2021. 
First, the daycare building demonstrates a strong correlation between power consumption and user 
behavior, influenced by daily and weekly schedules, as well as seasonal variations, particularly during 
vacation periods. Notably, the dataset captures sudden drifts in 2020 due to behavioral shifts in building 
usage, triggered by the closure of the daycare starting on March 16th and an emergency operation 
commencing on May 15th, following government regulations amid the COVID-19 pandemic outbreak 
(Stinner et al., 2021). 
Second, the district heating grid exhibits behavior strongly associated with seasonal changes on a larger 
scale. Over time, a gradual drift occurs, linked to the increasing heat demand within the city district 
supplied by the grid. This concept drift is particularly noticeable during the heating season, reflecting 
the expansion and connection of new buildings to the grid.  
 
2.2 Data-Driven Model 
The data-driven models are based on the standard implementation of the Random Forest Regressor (RF) 
in the python package scikit-learn (Pedregosa et al., 2018). The RF model was chosen due to the 
demonstrated effectiveness and robustness of tree-based algorithms in terms of hyperparameter tuning 
for complex timeseries regression tasks (Elsayed et al., 2021).  
For both use cases, equal input features were selected, to map their relationships with their respective 
target features of power consumption and heat consumption. These input features included weather data 
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as outdoor temperature, timestamp data as information on public holidays, information on school 
holidays, weekday, hour of the day and week of the year and target feature lags of one hour for the 
daycare building and three hours for the district heating network. Furthermore, the input features hour 
of the day and week of the year were cyclically encoded. The number of target feature lags was 
determined through a Partial Auto-Correlation Function (PACF) analysis. 
 
2.3 Model Adaption 
In both use cases, initial models were trained on the first year of available data instances. Subsequently, 
prequential validations were conducted for the remaining second year to simulate the practical 
deployment of the models in data stream settings. These initial models, without model adaption, served 
as static references. Furthermore, passive model adaption approaches were evaluated along with active 
model adaption approaches employing DDM and ADWIN as drift detection methods, within a single 
model batch learning framework. This framework allows for the utilization of any arbitrary traditional 
machine learning model, such as RF.  
 
2.3.1 Passive approach 
The passive model adaption approach involves periodically retraining a new model from scratch with a 
specified retraining rate and training data size based on sliding windows. To optimize this process, a 
grid search was conducted, exploring retraining rates ranging from 1 day to 28 days and training data 
sizes from 7 days to 182 days. The optimal configuration for load prediction in the daycare building 
and the district heating network was found to be a retraining rate of 1 day. For the daycare building, the 
optimal training data size was determined to be 56 days, while for the district heating network, it was 
28 days. 
In the subsequent evaluation, only these optimal configurations for passive model adaptation are further 
considered. However, it is noteworthy that across both use cases every combination of retraining rate 
and training data size for passive model adaptation outperformed static models in terms of average 
performance metrics during the validation period. 
 
2.3.2 Active approach 
The active model adaption approach encompasses informed retraining a new model from scratch upon 
explicit concept drift detection. Most concept drift detection methods assume that concept drift must 
arise in conjunction with model deterioration. Thereby, these supervised algorithms rely on the 
identification of statistical changes in model performance over time (Hu et al., 2020), (Gemaque et al., 
2020). DDM and ADWIN are widely regarded as state-of-the-art drift detection methods for learning 
in non-stationary environments and were further utilized in the active model adaption approach (Wares 
et al., 2019). 
 
2.3.2.1 Drift Detection Method 
DDM is founded on the assumption that model error rates remain stable or decrease over time for 
stationary concepts. Arriving data instances from a data stream are processed sequentially for each 
timestep  computing the error rate  and the standard deviation of the error rate  for a growing 
landmark window. Minima for error rate  and standard deviation  are continuously reevaluated 
and updated with each new data instance. Trigger conditions are established based on selected 
confidence intervals for the error rate statistics, with warning and drift levels corresponding to 
confidence levels of 95 % and 99 %, as respectively outlined in Equations (1) and (2). 
 
  (1) 
 
  (2) 
 
Upon detecting a drift, a context window is created, serving as a data buffer representing the current 
concept. This window includes a minimum number of historic data instances and all data instances that 
arrived between the warning and drift levels, used as training data for model retraining. (Gama et al. 
2004) 
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In both use cases, the minimum size of the context window was set to 7 days. Following drift detection 
and model retraining, the landmark window was reset. Additionally, the error threshold for error rate 
calculation was estimated using the Interquartile Range (IQR) Method on the Mean Absolute Error 
(MAE) of the most recent model. 
 
2.3.2.2 Adaptive Windowing 
ADWIN operates under the premise that the average model error remains stable over time for 
stationary concepts. New data instances from a data stream are sequentially processed, utilizing an 
adaptive window  of length  that extends with each arriving data instance until drift detection is 
triggered. This adaptive window is then partitioned into two sufficiently large sub-windows,  and 

, each with lengths  and , respectively. The expected values of the errors  and are 
calculated and their difference compared against a threshold  given in Equations (3). 
 
  (3) 
 
The threshold  is computed according to Equations (4) to (6) using the harmonic mean of the sub-
window lengths , the observed variance of performance metric values within the adaptive window 

, and the confidence value . 
 
  (4) 

 
  (5) 
 

  (6) 

 
Drift detection is triggered when the difference between the expected error values of the two sub-
windows exceeds the threshold, at which point the adaptive window  is replaced by and cut to the 
most recent sub-window  representing the new concept. The process of sub-window generation is 
repeated for all possible combinations of sub-windows data instance by data instance. The training data 
for model retraining is determined by the most recent sub-window at drift detection. (Bifet and Gavaldà, 
2007) 
The minimum window size was fixed to 7 days. Furthermore, grid search was performed for both use 
cases to determine the confidence value , with values ranging from 0.7 to 0.0001, and set to the optimal 
value of 0.001 in terms of average performance over the validation timeframe. 
 

3 RESULTS AND DISCUSSION 
 
For the evaluation of model adaption approaches, prequential validation was conducted over the most 
recent years of monitoring data for both the daycare building and the district heating network, 
respectively. Performance was accessed using Maximum Error (Emax) and average performance metrics 
including MAE, Coefficient of Determination (R2), and Coefficient of the Variation of the Root Mean 
Square Error (CVRMSE) and absolute error distributions. Additionally, the number of retrained models 
(nmodels) and the average training data size in terms of the timeframe (ttraining) in days were tracked over 
the validation timeframe. Finally, exemplary occurrences of detected drifts are thoroughly discussed in 
detail.  
 
3.1 Performance Evaluation 
The results of various model adaption approaches are summarized in Table 1 for power load prediction 
in the daycare building and in Table 2 for heat load prediction in the district heating network. 
The average performance metrics for power load prediction in the daycare building do not clearly 
indicate an advantage of the model adaption approaches over the static model. Although maximum 
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observed errors may tend to be higher and the MAE of the active model adaption approach applying 
DDM is slightly elevated, all model adaption approaches demonstrate improved ability to explain the 
variability of the energy systems behaviour, as evidenced by higher R2 values. Notably, only the passive 
model adaptation approach shows significant improvement in prediction performance, reducing the 
static model's CVRMSE by approximately 24 %. 
 

Table 1: Number of retrained models, average training data size, maximum error and average 
performance metrics of the load prediction for the daycare building for one year of model 

validation 
 

Model Adaption nmodels ttraining Emax MAE R2 CVRMSE 
Static 1 - 5,835 kW 0,479 kW 0,873 0,409 
Passive 365 56 d 6,078 kW 0,355 kW 0,926 0,312 
DDM 10 7,17 d 7,094 kW 0,503 kW 0,877 0,402 
ADWIN 27 10,38 d 6,28 kW 0,436 kW 0,895 0,371 

 
In contrast, average performance metrics for predicting heat load in the district heating network clearly 
demonstrate that all model adaption approaches lead to performance improvements. This underscores 
a more notable impact of the observed gradual drift, arising from the expansion of the city district, on 
the static model’s performance. 
 

Table 2: Number of retrained models, average training data timeframe, maximum error and 
average performance metrics of the load prediction for the district heating network for one year of 

model validation 
 

Model Adaption nmodels ttraining Emax MAE R2 CVRMSE 
Static 1 - 1.411 kW 124 kW 0,830 0,233 
Passive 365 28 d 1.353 kW 72 kW 0,923 0,159 
DDM 16 7,50 d 1.149 kW 97 kW 0,869 0,204 
ADWIN 34 7,75 d 1.305 kW 90 kW 0,897 0,181 

 
Overall, the comparison between the two use cases reveals that load prediction in the district heating 
network performed better, showcasing lower CVRMSE values. 
In both cases, the passive model adaption approach outperformed other models, followed by the active 
model adaption approach using ADWIN for concept drift detection, although the results were indistinct 
for the active model adaption approach utilizing DDM.  
Active model adaption substantially reduced retraining rates compared to passive model adaption over 
the one-year validation period, with DDM triggering retraining 53 to 63 % less frequently than ADWIN.  
The training data sizes determined by concept drift detection algorithms for model retraining are 
generally smaller than those selected by grid search for passive approaches and appear to approach the 
set minimum data instance buffers of 7 days. Notably, the average training data size of ADWIN reflects 
a trend towards shorter training timeframes for the district heating network compared to power load 
prediction in the daycare building. This observation is consistent with the results of the performed grid 
search for the passive model adaption approach, suggesting effective data usage. 
Figure 1 displays absolute error statistics for load predictions over the one-year validation period for 
both use cases over the model adaption approaches. 
The results confirm the observed behavior, highlighting the strong performance of the passive model 
adaption approach. Additionally, the greater benefit of model adaption approaches in predicting the heat 
load for the district heating network, where the static model exhibits a significantly wider range of 
absolute errors, is further emphasized. 
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Figure 1: Absolute error statistics of the load predictions for one year validation timeframes over the 

model adaption method 
 

3.2 Concept Drift Detection 
In Figure 2, the monitoring datasets spanning the entire two-year period for both the power consumption 
of the daycare building and the heat consumption of the district heating network are depicted. 
 

 

 
 

Figure 2: Overview of the monitoring data of the target feature over the first years of initial model 
training and the second years of model validation with occurrence drift detections for DDM and 

ADWIN in the active model adaption approaches 
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The first year was dedicated to initial model training, while the second year was utilized for prequential 
validation, simulating practical model deployment.
The occurrences of concept drift detections for both DDM and ADWIN are highlighted. The highlights
visualize the variations for the retraining rates of the active model adaption approaches applying DDM 
and ADWIN. The higher rates for both DDM and ADWIN in the district heating network compared to 
the daycare building can be attributed to differences in observed change characteristics, specifically
gradual drift versus sudden drift.
In the power consumption of the daycare building, both drift detection methods trigger retraining 
following the daycare closure on March 16th, 2020, during the COVID-19 pandemic outbreak as sudden 
drift. Subsequently, new drift occurrences are signaled continuously as the behavior appears to 
gradually change from spring to summer and especially ADWIN not fully recovering the change in the 
rest of the year missing discarded information on past concepts.
Throughout the 2021 heating seasons in the district heating network, characterized by increased heat 
demand compared to the previous year, both drift detection methods consistently trigger model 
retraining. However, during the summer period, both concept drift detection methods maintain a stable 
model.

3.2.1 Sudden Drift Occurrence
Exemplary data from the validation timeframe of the daycare building spanning the timeframe from 
March 9th to March 22nd, 2020, is presented in Figure 3. The figure displays monitoring data, alongside 
power load predictions for both the static model and the active model adaption approach using DDM.

Figure 3: Two weeks of power load predictions and drift detection with highlighted training data for 
a daycare building with closure starting on March 16th, 2020, during the COVID-19 pandemic 

outbreak within the validation timeframe

The closure of the daycare on March 16th during the COVID-19 pandemic outbreak and the detected 
concept drift on March 19th is marked. The highlighted training data also indicates the warning level, 
signalled by deviations in prediction performance in the preceding week and triggered retraining during 
the first week of the closure once the drift level was reached. Following retraining and model 
replacement, the adaptive model demonstrates improved estimation of daily load peaks compared to the 
static model. Additionally, the adaptive approach may provide valuable information, as behavioural 
changes were correctly identified. It is worth noting that also the static model shows adaptability within 
certain boundaries, potentially attributed to the utilization of lag features by the random forest regressor, 
while the new behaviour remains within the previously observed physical system's bounds.
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3.2.2 Gradual Drift Occurrence 
Figure 4 presents two weeks of exemplary data from the validation timeframe of the district heating 
network during the heating season from November 29th to December 12th, 2021. The showcased data 
includes the monitoring data of the heat consumption in the city district and the load predictions of both 
the static model and the active model adaption approach using ADWIN, with highlighted drift detection 
occurrences. During the first week of the observed timeframe, neither ADWIN nor the static model 
accurately match the heat demand level of the district heating network. ADWIN triggers model 
retraining, which visibly improves performance. However, another concept drift is detected during the 
second week, likely due to errors in the initial operation of the new model, highlighting instability for 
the selected minimum window size. Hence, high model retraining rates were observed. After the second 
model retraining, the model appears to accurately follow the measured heat load. 
 

 
 

Figure 4: Two weeks of heat load prediction and drift detections for a district heating grid with 
increased heat demand during the winter within the validation timeframe     

 
In contrast, the static model is deteriorated and demonstrates the inability to make meaningful 
predictions. The static model lacks information on the extended system bounds due to the addition of 
connected buildings to the district heating network and increased demand during the heating season. 
 

4 CONCLUSION 
 
Accurate load prediction models for the building sector form the basis of predictive optimized energy 
management. However, building energy systems are characterized by dynamic behavior and require 
model adaption in practical application. The active model adaption approach for data-driven models in 
single model batch learning is underexplored in research on load prediction and concept drift detection 
occurrences are usually not explicitly discussed. In our study, we evaluated both passive and active 
model adaption approaches using state-of-the-art concept drift detection methods, namely DDM and 
ADWIN, coupled with random forest regressors. Our analysis focused on load prediction tasks within 
two real-world building energy systems of distinct scales, a daycare building and a district heating 
network, each characterized by unique change characteristics. Both, DDM and ADWIN have been 
proven valuable in efficiently automating the model retraining rates and training data selections, 
reducing the retraining cost compared to passive model adaption while achieving similar performance. 
The district heating network exhibited gradual changes that led to altered system bounds, rendering 
static models ineffective, whereas model adaption approaches demonstrated significant performance 
improvements. Conversely, the static model adequately predicted power consumption in the daycare 
building on average, since the behavioral changes were sudden and temporary, while remaining within 
previous system bounds. This highlights the remaining challenges in single model-based batch learning 
model adaption approaches of recovering previous information for recurring concepts and retrieving 
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global concepts. To address these challenges, our future work will involve expanding our study on 
active model adaption approaches to include additional concept drift detection methods and to 
investigate ensemble models. 
 

NOMENCLATURE 
 
e error rate 
m harmonic mean 
n  number of a count 
p probability 
X input features   
y target features 

 threshold ADWIN 
 confidence value 
 standard deviation 

 expected value 
 
Subscript 
i timestep  
t time  
W window 
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