2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC 2024)

Austin, Texas, USA 2-3 November 2024

IEEE Catalog Number: CFP2428K-POD ISBN:

979-8-3315-0787-9

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2428K-POD

 ISBN (Print-On-Demand):
 979-8-3315-0787-9

 ISBN (Online):
 979-8-3315-0786-2

ISSN: 2474-0306

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC)

IGSC 2024

Table of Contents

ssage from the Conference General Co-Chairs, $$ Program Co-Chairs, and Publication Chair $$	ix
SC 2024 Conference Committees	x
SC 2024 Technical Program Committee	. xi
notes	xii
t Paper Awards	xiv
onsors	xv
chnical Session 1: Carbon-Aware Cloud Scheduling and Serverless otimization	5
SA: A Framework for SLO- and Carbon-Aware Autoscaling and Scheduling in Serverless Cloud mputing Sirui Qi (Colorado State University), Hayden Moore (Colorado State University), Ninad Hogade (Hewlett Packard Labs), Dejan Milojicic (Hewlett Packard Labs), Cullen Bash (Hewlett Packard Labs), and Sudeep Pasricha (Colorado State University)	
ergy-related Impact of Redefining Self-consumption for Distributed Edge Datacenters Wedan Emmanuel Gnibga (CNRS), Anne Blavette (CNRS), and Anne-Cécile Orgerie (CNRS)	7
DS: Power Budgeting with Diagonal Scaling for Performance-Aware Cloud Workloads	. 14
nductor: A Collaboration Framework for Multi-Data-Center Demand Response Fatih Acun (Boston University), Ioannis Ch. Paschalidis (Boston University), and Ayse K. Coskun (Boston University)	. 22
DUCT: Uncertainty-aware Dynamic Unified Carbon Modeling Tool for Datacenter Scheduling Wenkai Guan (University of Minnesota, Morris, USA), Yang Katie Zhao (University of Minnesota, Twin Cities, USA), and Cristinel Ababei (Marquette University)	. 29

A Framework for SLO, Carbon, and Wastewater-Aware Sustainable FaaS Cloud Platform
Management
Sirui Qi (Colorado State University), Hayden Moore (Colorado State
University), Ninad Hogade (Hewlett Packard Labs), Dejan Milojicic
(Hewlett Packard Labs), Cullen Bash (Hewlett Packard Labs), and Sudeep
Pasricha (Colorado State University)
Technical Session 2: Green Computing and Sustainable Software
Sustainable LLM Serving: Environmental Implications, Challenges, and Opportunities
Can LLMs Generate Green Code - A Comprehensive Study Through LeetCode
Jonas Tuttle (Texas State University, USA), Dayuan Chen (Texas State
University, USA), Amina Nasrin (Texas State University, USA), Noe Soto
(Texas State University, USA), and Ziliang Zong (Texas State
University, USA)
Dirty Electrons: On the Carbon Intensity of Stored Energy
Robin Ohs (Saarland University, Germany), Henry Janson (Saarland
University, Germany), Andreas Schmidt (Saarland University, Germany),
Luis Gerhorst (Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany), Benedict Herzog (Ruhr-Universität Bochum, Germany), and Timo
Hönig (Ruhr-Universität Bochum, Germany)
Alleviating Dataset Constraints through Synthetic Data Generation in Machine Learning
Driven Power Modeling
Mohammad Ali (Texas State University, USA) and Apan Qasem (Texas State
University, USA)
Reducing the Carbon Footprint of EdTech with Repurposed Devices
Jennifer Switzer (UC San Diego, USA), Subash Katel (UC San Diego,
USA), Jaemok Christian Lee (UC San Diego, USA), Ashwin Rohit Alagiri
Rajan (UC San Diego, USA), Ryan Kastner (UC San Diego, USA), and Pat
Pannuto (UC San Diego, USA)
Amortizing Embodied Carbon Across Generations
Shixin Ji (Brown University), Jinming Zhuang (Brown University),
Zhuoping Yang (Brown University), Alex Jones (Syracuse University),
and Peipei Zhou (Brown University)
Technical Session 3: Power Management and Hardware-Level Efficiency
Energy-Efficient Dataflow Design for Monolithic 3D Systolic Arrays with Resistive RAM
NeuroVM: Dynamic Neuromorphic Hardware Virtualization
Murat Isik (Stanford University), Jonathan Naoukin (University of
Texas at Austin), and I. Can Dikmen (Temsa Research&Development
Center)

(IMT Atlantique), and Georgios Z. Papadopoulos (IMT Atlantique)	30
Flexible Bit-Truncation Memory for Low-Power Quality-Adaptive Video and Deep Learning Storage	37
Alabama), and Na Gong (University of South Alabama)	
SRC: Sustainable Reactive Computing for Battery-free Edge Intelligence	13
Consolidating and Optimizing Embedded Processor IP Blocks for Area, Power, and	
Sustainability	99
Technical Session 4. Thermal-Aware Scheduling and Cooling Systems	,
Dynamic Thermal-Aware Scheduling Using Physics-Informed POD-Galerkin Thermal Simulation Model for Multi-Core Processors (Invited Paper))3
Promoting Green Coding in VS Code with GCPM: A Power Model for Heterogeneous Processors . 11 Amina Nasrin (Texas State University), Dayuan Chen (Texas State University), New Soto (Texas State University) and Ziliana Zono.	0
University), Noe Soto (Texas State University), and Ziliang Zong (Texas State University)	J
į e	
(Texas State University) Thermal Behaviors in Liquid Immersion Cooling under Various Workloads: a Case Study	16

Against the Current: Introducing Reversibility to Superscalar Processors via Reversible Branch Predictors
Technical Session 5: Sustainable Systems and Environmental Impact Monitoring
Datacenter Demand Response for Carbon Mitigation: From Concept to Practicality
Beyond the Surface: The Necessity for Detailed Metrics in Corporate Sustainability Reports
Leveraging an Urban Environmental Sensing Network to Improve Extreme Heat Resilience 151 Dana Habeeb (Indiana University, USA), Nick Polak (Indiana University, USA), and Rahul Devajji (Indiana University, USA)
Low-Power Register File for Tensor Cores
Fine-Grained Clustering-Based Power Identification for Multicores
R-DUCT: Robust Dynamic Unified Carbon Modeling Tool Under Severe Uncertainty
Author Index