2024 IEEE 35th International Symposium on Software **Reliability Engineering** Workshops (ISSREW 2024)

Tsukuba, Japan 28-31 October 2024

IEEE Catalog Number: CFP2479F-POD ISBN:

979-8-3503-6705-8

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2479F-POD

 ISBN (Print-On-Demand):
 979-8-3503-6705-8

 ISBN (Online):
 979-8-3503-6704-1

ISSN: 2375-821X

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 35th International Symposium on Software Reliability Engineering Workshops (ISSREW)

ISSREW 2024

Table of Contents

Message from the General Chairs	xvii
Message from the Industry Track Co-Chairs	xix
Industry Track Committee	
Message from the Doctoral Symposium Co-Chairs	
Doctoral Symposium Committee	
Message from the Fast Abstracts Co-Chairs	xxiii
Fast Abstracts Committees	
Message from the Special Session Chairs	xxv
Message from the Artifact Evaluation Chairs	xxvii
Message from the AI-Pattern Co-Chairs	xxviii
AI-Pattern Workshop Committee	xxix
AI-Pattern Workshop Keynote	xxx
Message from the AISQ Co-Chairs	xxxi
AISQ Workshop Committees	
AISQ Workshop Keynotes	xxxiii
Message from the AISTA Co-Chairs	
AISTA Workshop Committee	
Message from the ASSURE Co-Chairs	xxxvii
ASSURE Workshop Committee	xxxviii
Message from the HFSD Co-Chairs	
HFSD Workshop Committees	xl
HFSD Workshop Keynote	xli
Message from the IWSF & SHIFT Co-Chairs	xlii
IWSF & SHIFT Workshop Committee	xliii
IWSF & SHIFT Workshop Keynotes	xliv
Message from the ReSAISE Co-Chairs	xlvi
ReSAISE Workshop Committee	xlvii
ReSAISE Workshop Keynote	xlviii
Message from the WDMD Co-Chairs	
WDMD Workshop Committee	1i
Message from the WoSAR Co-Chairs	1ii
WoSAR Workshop Committee	1iii
WoSAR Workshop Keynotes	

Industry Track

A Global Operational Readiness Review Process: Improving Cloud Availability
A Language-Guided Acceleration Method for Smoke Testing of Game Quests
A Systematic Methodology for Specifying the Operational Design Domain of Automated Vehicles
An Exploration of Fuzzing for Discovering Use-After-Free Vulnerabilities
Auto-PIP: Real-Time Identification of Critical Performance Inflection Points in Software Stress Testing
CCBPS: A Hardware-Based Data Loss Prevention Approach
CrashChecker: A Fusion Method for Clustering Duplicate Crash Failures in SAP HANA Delivery 37 Yang Xu (SAP Labs China, China), Yong Li (SAP Labs China, China), Qiaoluan Xie (SAP Labs China, China), Xiaoxiao Zhang (SAP Labs China, China), Chao Liu (SAP Labs China, China), Thomas Bach (SAP, Germany), Sunghun Kim (SAP Labs Korea, Republic of Korea), and Sanghun Kang (SAP Labs Korea, Republic of Korea)
Dependability Modeling in an Industrial Environment

Early Bird: Ensuring Reliability of Cloud Systems Through Early Failure Prediction	49
Engineer Insights: The Challenges of Implementing Agile at Scale in Software Development	55
Enhanced Fine-Tuning of Lightweight Domain-Specific Q&A Model Based on Large Language Models Shenglin Zhang (Nankai University; Haihe Laboratory of Information Technology Application Innovation), Pengtian Zhu (Nankai University), Minghua Ma (Microsoft), Jiagang Wang (Tsinghua University), Yongqian Sun (Nankai University; Tianjin Key Laboratory of Software Experience and Human Computer Interaction), Dongwen Li (Nankai University), Jingyu Wang (Nankai University), Qianying Guo (China Mobile Research Institute), Xiaolei Hua (China Mobile Research Institute), Lin Zhu (China Mobile Research Institute), and Dan Pei (Tsinghua University; Beijing National Research Center for Information Science and Technology)	61
Fast and Precise Interval Analysis on Industry Code Bharti Chimdyalwar (TCS Research, India)	67
Multivariate Time Series Anomaly Detection based on Pre-Trained Models with Dual-Attention Mechanism Yongqian Sun (Nankai University; Tianjin Key Laboratory of Software Experience and Human Computer Interaction), Yang Guo (Nankai University), Minghan Liang (Nankai University), Xidao Wen (BizSeer), Junhua Kuang (Nankai University), Shenglin Zhang (Nankai University; Haihe Laboratory of Information Technology Application Innovation), Hongbo Li (Tencent), Kaixu Xia (Tencent), and Dan Pei (Tsinghua University; Beijing National Research Center for Information Science and Technology)	73
NICSDG: A Non-Intrusive Approach to Constructing Concise Service Dependency Graphs for Microservice Systems Weijie Hong (Peking University, China), Yong Yang (Peking University, China), Junqi Wu (Peking University, China), Dongdong Shangguan (Huawei, China), Yuanhao Lai (Huawei, China), Qiang Bai (Huawei, China), and Ying Li (Peking University, China)	79
On Enhancing Root Cause Analysis with SQL Summaries for Failures in Database Workload Replays at SAP HANA	85

Doctoral Symposium

Automated Interpretation of Fleet Incidents to Enable System Level Runtime Assurance <i>Tihomir Rohlinger (University of Stuttgart and Cariad SE, Germany)</i>	91
Search-Based White-Box Fuzzing of Web Frontend Applications	95
Reliable Online Log Parsing Using Large Language Models with Retrieval-Augmented Generation	99
Hansae Ju (Hanyang University, Republic of Korea)	
Fast Abstracts	
How Maintainable is Proficient Code? A Case Study of Three PyPI Libraries Indira Febriyanti (Nara Institute of Science and Technology, Japan), Youmei Fan (Nara Institute of Science and Technology, Japan), Kazumasa Shimari (Nara Institute of Science and Technology, Japan), Kenichi Matsumoto (Nara Institute of Science and Technology, Japan), and Raula Gaikovina Kula (Osaka University, Japan)	103
Coding Pitfalls: Demystifying the Potential API Compatibility Risk of Variadic Parameters in Python Shuai Zhang (Nanjing University of Aeronautics and Astronautics, China), Gangqiang He (Nanjing University of Aeronautics and Astronautics, China), and Guanping Xiao (Nanjing University of Aeronautics and Astronautics, China)	105
Linking Code and Documentation Churn: Preliminary Analysis	107
Initial Investigation of Behavioral Changes of Obfuscated Programs Caused by Code Optimization Tetsuya Kitaoka (Nara Institute of Science and Technology, Japan), Yuichiro Kanzaki (National Institute of Technology, Kumamoto College, Japan), Takashi Ishio (Future University Hakodate, Japan), Kazumasa Shimari (Nara Institute of Science and Technology, Japan), and Kenichi Matsumoto (Nara Institute of Science and Technology, Japan)	109
On Applying Bandit Algorithm to Fault Localization Techniques Masato Nakao (Kindai University, Japan), Kensei Hamamoto (Kindai University, Japan), Masateru Tsunoda (Kindai University, Japan), Amjed Tahir (Massey University, New Zealand), Koji Toda (Fukuoka Institute of Technology, Japan), Akito Monden (Okayama University, Japan), Keitaro Nakasai (OMU College of Technology, Japan), and Kenichi Matsumoto (NAIST, Japan)	111

Dynamic Testing for Mobile Privacy Compliance
Assuring Data Integrity on Commercial Gamification Software Considering Productivity: an Industrial Case Study
n-Pipeline Log Anomaly Detection Drift Mitigation
Towards N-Version Quantum Software Systems for Reliable Classical-Quantum Computing 11 Shinobu Saito (NTT Computer and Data Science Laboratories, Japan), Suguru Endo (NTT Computer and Data Science Laboratories, Japan), and Yasunari Suzuki (NTT Computer and Data Science Laboratories, Japan)
AI-Pattern 2024 Workshop
Toward Pattern-Oriented Machine Learning Reliability Argumentation
A Process Pattern for Cybersecurity Assessment Automation: Experience and Futures
Toward Extracting Learning Pattern: A Comparative Study of GPT-4o-Mini and BERT Models in Predicting CVSS Base Vectors

AISQ 2024 Workshop

Session I: Testing and Debugging

TLFL: Token-Level Fault Localization for Novice Programs via Graph Representation Learning 135 Yong Liu (Beijing University of Chemical Technology, China), Ruishi Huang (Beijing University of Chemical Technology, China), Jizhe Yang (Beijing University of Chemical Technology, China), Binbin Yang (Beijing University of Chemical Technology, China), and ShuMei Wu (Beijing University of Chemical Technology, China)	;
Towards Mutation Testing of Embedded Software: A Framework and Case Study	•
Impact of V2V Communication on Robustness of Autonomous Driving Systems	-
A Web-Based Tool for Predicting Software Development Effort	;
Data Augmentation for Vulnerability Detection Based on Code Refactoring and Mixup	-
DynTrackr: A Robust Two-Stage Framework with Attribute Enhancement for KPI Anomaly Detection)
Meixian Zhang (Baidu Group, China), Xue Shi (Baidu Group, China), Jiaxin Huang (Baidu Group, China), Lide Su (Baidu Group, China), and Yanan Zhang (Baidu Group, China)	,

AISTA 2024 Workshop

University, China), Yuanhui Zhang (Xi'an Jiaotong University, China),	177
Xitao Li (Xi'an Jiaotong University, China), Hao Ŵu (Xi'an Jiaotong University, China), Ming Fan (Xi'an Jiaotong University, China), and Ting Liu (Xi'an Jiaotong University, China)	
HyWE: A Hybrid Word Embedding Method for Smart Contract Vulnerability Detection	. 179
EMI Testing of Large Language Model (LLM) Compilers	187
ASSURE 2024 Workshop	
Session I: Assurance and Dependability Standards	
The SOTIF Meta-Algorithm: Quantitative Analyses of the Safety of Autonomous Behaviors Carmen Cârlan (Edge Case Research GmbH, Germany), Noah Carlson (Edge Case Research Inc, US), Chris Dwyer (Edge Case Research Inc, US), Manoja Hirannaiah (Edge Case Research GmbH, Germany), and Michael Wagner (Edge Case Research Inc, US)	191
Session II: Assurance of Artificial Intelligence (AI) and Machine Learning (MI) – 1
Session II: Assurance of Artificial Intelligence (AI) and Machine Learning (MI Models are Central to AI Assurance	
Models are Central to AI Assurance	199
Models are Central to AI Assurance Robin Bloomfield (University of London, UK) and John Rushby (SRI International, USA) Supporting Change Impact Assessment with LLMs Torin Viger (University of Toronto, Canada), Logan Murphy (University of Toronto, Canada), Simon Diemert (Critical Systems Labs, Inc., Canada), Claudio Menghi (University of Bergamo, Italy), and Marsha	199

Session III: Assurance Cases and Processes

SynBioTrace: Integrating Safety and Security Artifacts to Build Assurance Cases for Synthetic Biology Applications	16
Using Boundary Objects for Continuous Compliance in Automotive Development	24
A Digital Assurance Framework	32
Generating Understandable and Reusable Safety Assurance Cases using Workflow+	36
Session IV: Assurance of Artificial Intelligence (AI) and Machine Learning (ML)	– 2
Session IV: Assurance of Artificial Intelligence (AI) and Machine Learning (ML) - Towards the Certification of an Evacuation Assistance System Utilizing AI-Based Approaches2. Georg Hägele (ASSA ABLOY Entrance Systems, Sweden), Abdelbaki Bouguerra (University of M'sila, Algeria), and Arezoo Sarkheyli-Hägele (Malmö University, Sweden)	
Towards the Certification of an Evacuation Assistance System Utilizing AI-Based Approaches 2-Georg Hägele (ASSA ABLOY Entrance Systems, Sweden), Abdelbaki Bouguerra (University of M'sila, Algeria), and Arezoo Sarkheyli-Hägele	40
Towards the Certification of an Evacuation Assistance System Utilizing AI-Based Approaches 2-Georg Hägele (ASSA ABLOY Entrance Systems, Sweden), Abdelbaki Bouguerra (University of M'sila, Algeria), and Arezoo Sarkheyli-Hägele (Malmö University, Sweden) Quantifying Lower Reliability Bounds of Deep Neural Networks	47
Towards the Certification of an Evacuation Assistance System Utilizing AI-Based Approaches	47
Towards the Certification of an Evacuation Assistance System Utilizing AI-Based Approaches	440

Session II: Human Errors in Software Dependability
Taking into Account Human Error when Assessing the Impact of Dependability on Usability 271 Camille Fayollas (Toulouse Capitole University, France), Célia Martinie (University Toulouse 3, France), and Philippe Palanque (University Toulouse 3, France)
Human Error Scenario Analysis of Software Defects
Session III: Human Factors for Software Reliability and Safety
State Diagram Extension and Test Case Generation Based on Large Language Models for Improving Test Engineers' Efficiency in Safety Testing
Failing and Learning: A Study of What is Learned About Reliability From Software Incidents 295 Jonathan Sillito (Brigham Young University) and Matt Pope (Brigham Young University)
IWSF-SHIFT 2024 Workshop
Session I
Toward CPS Security Monitoring: Employing Multi-Agent Systems and Digital Twins
An Empirical Study on Predicting Software Development Bugs Using Dynamic Bayesian Networks 307
Kiyoshi Honda (Osaka Institute of Technology, Japan), Hironori Washizaki (Waseda University, Japan), Yoshiaki Fukazawa (Waseda University, Japan), Masahiro Taga (e-Seikatsu Co., Ltd., Japan), Akira Matsuzaki (e-Seikatsu Co., Ltd., Japan), Kazuyuki Nakagawa (e-Seikatsu Co., Ltd., Japan), and Yusuke Sakai (e-Seikatsu Co., Ltd., Japan)
A Novel Fuzzing Mutation Scheduling Method based on Evolutionary Strategy

Session II

Energy Bugs in Object Detection Software on Battery-Powered Devices	313
C Source Code Generation from IR Towards Making Bug Samples to Fluctuate for Machine Learning	321
Yuto Sugawa (Nihon University, Japan), Chisato Murakami (Nihon University, Japan), and Mamoru Ohara (Tokyo Metropolitan Industrial Technology Research Institute, Japan)	
ReSAISE 2024 Workshop	
Session I: Safety and Reliability of Autonomous Systems	
Better and Safer Autonomous Driving with Predicted Object Relevance	329
Safety-Aware Weighted Voting for N-Version Traffic Sign Recognition System	337
Towards Improved Perception System's Generalization Through Generative Artificial Intelligence	345
Session II: Testing and Security of AI and Robotic Systems	
Enhancing Neuron Coverage of DNN Models for Adversarial Testing Zimu Tang (Beihang University, China), Jun Ai (Beihang University, China), and Jie Wang (Beihang University, China)	353
A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems	361

WDMD 2024 Workshop

World Models: The Safety Perspective
Developing a Dependable Multi-Agent Rover Swarm Using cFS
Toward Deterministic Wireless Communication: Latency Prediction Using Network Measurement Data 383
Data
Reliability Analysis of Man-Machine Systems Considering Imperfect Error Coverage Model 385 Chuqi Guo (Wuhan University of Technology, China), Yu Lin (China Electronic Product Reliability and Environmental Testing Research Institute, China), Ling Dong (Shenglong Electric Group Co., Ltd., China), Zhijie Feng (Wuhan University of Technology, China), Luyao Ye (Wuhan Textile University, China), Wenhua Hu (Wuhan University of Technology, China), Siwei Zhou (Guangdong Ocean University, China), and Jianwen Xiang (Wuhan University of Technology, China)
Training Overhead Ratio: A Practical Reliability Metric for Large Language Model Training Systems
WoSAR 2024 Workshop
Session I
A CTMDP Modeling for Multi-Stage Software Aging and Rejuvenation

Quantitative Evaluation of Software Rejuvenation of a Pool of Service Replicas
Session II
Measurements and Models for Resiliency Assessment of VM Clusters under Aging and Rejuvenation
Splitting Application Input into Batches as a Countermeasure Against Software Aging
Evaluation of Software Aging in Hyperledger Fabric
Author Index 435