2024 33rd International **Conference on Parallel Architectures and Compilation Techniques (PACT 2024)** Long Beach, California, USA 13 – 16 October 2024 **IEEE Catalog Number: CFP24073-POD** 979-8-3315-3398-4 ## Copyright © 2024, ACM All Rights Reserved *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP24073-POD ISBN (Print-On-Demand): 979-8-3315-3398-4 ISBN (Online): 979-8-4007-0631-8 ## Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com ## Contents | PipeGen: Automated Transformation of a Single-Core Pipeline into a Multicore Pipeline for a Given Memory Consistency Model | |---| | An Qi Zhang (<i>University of Utah</i>); Andrés Goens (<i>University of Amsterdam</i>); Nicolai Oswald (<i>Nvidia</i>); Tobias Grosser (<i>University of Cambridge</i>); Daniel Sorin (<i>Duke University</i>); Vijay Nagarajan (<i>University of Utah</i>) | | vSPACE: Supporting Parallel Network Packet Processing in Virtualized Environments through Dynamic Core Management14 | | Gyeongseo Park (<i>DGIST/ETRI</i>), Minho Kim (<i>DGIST</i>); Ki-Dong Kang (<i>ETRI</i>); Yunhyeong Jeon, Sungju Kim, Hyosang Kim (<i>DGIST</i>); Daehoon Kim (<i>Yonsei University</i>) | | MORSE: <u>Memory Overwrite Time Guided Soft Writes to Improve ReRAM Energy and Endurance 26</u> Devesh Singh, Donald Yeung (<i>University of Maryland</i>) | | Optimizing Tensor Computation Graphs with Equality Saturation and Monte Carlo Tree Search 40 Jakob Hartmann, Guoliang He, Eiko Yoneki (<i>University of Cambridge</i>) | | Toast: A Heterogeneous Memory Management System | | Maurice Bailleu (<i>Huawei Research</i>); Dimitrios Stavrakakis (<i>TU Munich / The University of Edinburgh</i>); Rodrigo Rocha (<i>Huawei Research</i>); Soham Chakraborty (<i>TU Delft</i>); Deepak Garg (<i>Max Planck Institute for Software Systems</i> (<i>MPI-SWS</i>)); Pramod Bhatotia (<i>TU Munich / The University of Edinburgh</i>) | | A Transducers-based Programming Framework for Efficient Data Transformation | | Activation Sequence Caching: High-Throughput and Memory-Efficient Generative Inference with a Single GPU | | Sowoong Kim, Eunyeong Sim (<i>UNIST</i>); Youngsam Shin, YeonGon Cho (<i>Samsung Advanced Institute of Technology</i>); Woongki Baek (<i>UNIST</i>) | | GraNNDis: Fast Distributed Graph Neural Network Training Framework for Multi-Server Clusters91 | | Jaeyong Song, Hongsun Jang, Hunseong Lim, Jaewon Jung (Seoul National University);
Youngsok Kim (Yonsei University); Jinho Lee (Seoul National University) | | Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems108 | | Yiwei Li, Boyu Tian (<i>Tsinghua University</i>); Mingyu Gao (<i>Tsinghua University / Shanghai Qi Zhi Institute</i>) | | BoostCom: Towards Efficient Universal Fully Homomorphic Encryption by Boosting the Word-wise Comparisons121 | | Ardhi Wiratama Baskara Yudha (<i>University of Central Florida / Advanced Micro Devices, Inc.</i>);
Jiaqi Xue, Qian Lou (<i>University of Central Florida</i>); Huiyang Zhou (<i>North Carolina State University</i>);
Yan Solihin (<i>University of Central Florida</i>) | | Leveraging Difference Recurrence Relations for High-Performance GPU Genome Alignment133 Alberto Zeni (<i>Politecnico di Milano / NVIDIA Corporation</i>); Seth Onken (<i>NVIDIA Corporation</i>); Marco Domenico Santambrogio (<i>Politecnico di Milano</i>); Mehrzad Samadi (<i>NVIDIA Corporation</i>) | | Chimera: Leveraging Hybrid Offsets for Efficient Data Prefetching | . 144 | |---|-------| | MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations | 156 | | NavCim: Comprehensive Design Space Exploration for Analog Computing-in-Memory Architectures | 169 | | Juseong Park, Boseok Kim (<i>Pohang University of Science and Technology</i>); Hyojin Sung (<i>Seoul National University</i>) | . 100 | | Mozart: Taming Taxes and Composing Accelerators with Shared-Memory | . 183 | | PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World | 201 | | Processing-In-Memory System Steve Rhyner, Haocong Luo (<i>ETH Zurich</i>); Juan Gómez-Luna (<i>NVIDIA</i>); Mohammad Sadrosadati (<i>ETH Zurich</i>); Jiawei Jiang (<i>Wuhan University</i>); Ataberk Olgun, Harshita Gupta (<i>ETH Zurich</i>); Ce Zhang (<i>University of Chicago</i>); Onur Mutlu (<i>ETH Zurich</i>) | .201 | | Parallel Loop Locality Analysis for Symbolic Thread Counts | .219 | | Improving Throughput-oriented LLM Inference with CPU Computations | .233 | | ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML | .246 | | ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs Sankeerth Durvasula, Adrian Zhao, Raymond Kiguru, Yushi Guan, Zhonghan Chen, Nandita Vijaykumar (University of Toronto) | .258 | | SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs | . 271 | | BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural | 20/ | | Networks Qidong Su (University of Toronto / Vector Institute / CentML); Jiacheng Yang (University of Toronto / Vector Institute); Gennady Pekhimenko (University of Toronto / Vector Institute / CentML) | .284 | | A Parallel Hash Table for Streaming Applications | .297 | | Magnus Östgren, Ioannis Sourdis (Chalmers University of Technology) | | | Recompiling QAOA Circuits on Various Rotational Directions | .309 | | Rethinking Page Table Structure for Fast Address Translation in GPUs: A Fixed-Size Hashed Page Table | 325 | |---|-----| | Sungbin Jang, Junhyeok Park, Osang Kwon, Yongho Lee, Seokin Hong (<i>Sungkyunkwan University</i>) | | | FriendlyFoe: Adversarial Machine Learning as a Practical Architectural Defense against Side Channel Attacks | | | Hyoungwook Nam (<i>University of Illinois at Urbana-Champaign</i>); Raghavendra Pradyumna Pothukuchi (<i>Yale University</i>); Bo Li, Nam Sung Kim, Josep Torrellas (<i>University of Illinois at Urbana-Champaign</i>) | | | Faster and More Reliable Quantum SWAPs via Native Gates | 351 | | Pranav Gokhale, Teague Tomesh (<i>Infleqtion</i>); Martin Suchara (<i>Microsoft</i>); Fred Chong (<i>University of Chicago</i>) | |