2024 33rd International **Conference on Parallel Architectures and Compilation Techniques (PACT 2024)**

Long Beach, California, USA 13 – 16 October 2024

IEEE Catalog Number: CFP24073-POD

979-8-3315-3398-4

Copyright © 2024, ACM All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24073-POD

 ISBN (Print-On-Demand):
 979-8-3315-3398-4

 ISBN (Online):
 979-8-4007-0631-8

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Contents

PipeGen: Automated Transformation of a Single-Core Pipeline into a Multicore Pipeline for a Given Memory Consistency Model
An Qi Zhang (<i>University of Utah</i>); Andrés Goens (<i>University of Amsterdam</i>); Nicolai Oswald (<i>Nvidia</i>); Tobias Grosser (<i>University of Cambridge</i>); Daniel Sorin (<i>Duke University</i>); Vijay Nagarajan (<i>University of Utah</i>)
vSPACE: Supporting Parallel Network Packet Processing in Virtualized Environments through Dynamic Core Management14
Gyeongseo Park (<i>DGIST/ETRI</i>), Minho Kim (<i>DGIST</i>); Ki-Dong Kang (<i>ETRI</i>); Yunhyeong Jeon, Sungju Kim, Hyosang Kim (<i>DGIST</i>); Daehoon Kim (<i>Yonsei University</i>)
MORSE: <u>Memory Overwrite Time Guided Soft Writes to Improve ReRAM Energy and Endurance 26</u> Devesh Singh, Donald Yeung (<i>University of Maryland</i>)
Optimizing Tensor Computation Graphs with Equality Saturation and Monte Carlo Tree Search 40 Jakob Hartmann, Guoliang He, Eiko Yoneki (<i>University of Cambridge</i>)
Toast: A Heterogeneous Memory Management System
Maurice Bailleu (<i>Huawei Research</i>); Dimitrios Stavrakakis (<i>TU Munich / The University of Edinburgh</i>); Rodrigo Rocha (<i>Huawei Research</i>); Soham Chakraborty (<i>TU Delft</i>); Deepak Garg (<i>Max Planck Institute for Software Systems</i> (<i>MPI-SWS</i>)); Pramod Bhatotia (<i>TU Munich / The University of Edinburgh</i>)
A Transducers-based Programming Framework for Efficient Data Transformation
Activation Sequence Caching: High-Throughput and Memory-Efficient Generative Inference with a Single GPU
Sowoong Kim, Eunyeong Sim (<i>UNIST</i>); Youngsam Shin, YeonGon Cho (<i>Samsung Advanced Institute of Technology</i>); Woongki Baek (<i>UNIST</i>)
GraNNDis: Fast Distributed Graph Neural Network Training Framework for Multi-Server Clusters91
Jaeyong Song, Hongsun Jang, Hunseong Lim, Jaewon Jung (Seoul National University); Youngsok Kim (Yonsei University); Jinho Lee (Seoul National University)
Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems108
Yiwei Li, Boyu Tian (<i>Tsinghua University</i>); Mingyu Gao (<i>Tsinghua University / Shanghai Qi Zhi Institute</i>)
BoostCom: Towards Efficient Universal Fully Homomorphic Encryption by Boosting the Word-wise Comparisons121
Ardhi Wiratama Baskara Yudha (<i>University of Central Florida / Advanced Micro Devices, Inc.</i>); Jiaqi Xue, Qian Lou (<i>University of Central Florida</i>); Huiyang Zhou (<i>North Carolina State University</i>); Yan Solihin (<i>University of Central Florida</i>)
Leveraging Difference Recurrence Relations for High-Performance GPU Genome Alignment133 Alberto Zeni (<i>Politecnico di Milano / NVIDIA Corporation</i>); Seth Onken (<i>NVIDIA Corporation</i>); Marco Domenico Santambrogio (<i>Politecnico di Milano</i>); Mehrzad Samadi (<i>NVIDIA Corporation</i>)

Chimera: Leveraging Hybrid Offsets for Efficient Data Prefetching	. 144
MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations	156
NavCim: Comprehensive Design Space Exploration for Analog Computing-in-Memory Architectures	169
Juseong Park, Boseok Kim (<i>Pohang University of Science and Technology</i>); Hyojin Sung (<i>Seoul National University</i>)	. 100
Mozart: Taming Taxes and Composing Accelerators with Shared-Memory	. 183
PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World	201
Processing-In-Memory System Steve Rhyner, Haocong Luo (<i>ETH Zurich</i>); Juan Gómez-Luna (<i>NVIDIA</i>); Mohammad Sadrosadati (<i>ETH Zurich</i>); Jiawei Jiang (<i>Wuhan University</i>); Ataberk Olgun, Harshita Gupta (<i>ETH Zurich</i>); Ce Zhang (<i>University of Chicago</i>); Onur Mutlu (<i>ETH Zurich</i>)	.201
Parallel Loop Locality Analysis for Symbolic Thread Counts	.219
Improving Throughput-oriented LLM Inference with CPU Computations	.233
ZeD: A Generalized Accelerator for Variably Sparse Matrix Computations in ML	.246
ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs Sankeerth Durvasula, Adrian Zhao, Raymond Kiguru, Yushi Guan, Zhonghan Chen, Nandita Vijaykumar (University of Toronto)	.258
SZKP: A Scalable Accelerator Architecture for Zero-Knowledge Proofs	. 271
BOOM: Use your Desktop to Accurately Predict the Performance of Large Deep Neural	20/
Networks Qidong Su (University of Toronto / Vector Institute / CentML); Jiacheng Yang (University of Toronto / Vector Institute); Gennady Pekhimenko (University of Toronto / Vector Institute / CentML)	.284
A Parallel Hash Table for Streaming Applications	.297
Magnus Östgren, Ioannis Sourdis (Chalmers University of Technology)	
Recompiling QAOA Circuits on Various Rotational Directions	.309

Rethinking Page Table Structure for Fast Address Translation in GPUs: A Fixed-Size Hashed Page Table	325
Sungbin Jang, Junhyeok Park, Osang Kwon, Yongho Lee, Seokin Hong (<i>Sungkyunkwan University</i>)	
FriendlyFoe: Adversarial Machine Learning as a Practical Architectural Defense against Side Channel Attacks	
Hyoungwook Nam (<i>University of Illinois at Urbana-Champaign</i>); Raghavendra Pradyumna Pothukuchi (<i>Yale University</i>); Bo Li, Nam Sung Kim, Josep Torrellas (<i>University of Illinois at Urbana-Champaign</i>)	
Faster and More Reliable Quantum SWAPs via Native Gates	351
Pranav Gokhale, Teague Tomesh (<i>Infleqtion</i>); Martin Suchara (<i>Microsoft</i>); Fred Chong (<i>University of Chicago</i>)	