2024 IEEE Real-Time Systems Symposium (RTSS 2024)

York, United Kingdom 10-13 December 2024

IEEE Catalog Number: CFP24092-POD ISBN: 979-8-3315-4027-2

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24092-POD

 ISBN (Print-On-Demand):
 979-8-3315-4027-2

 ISBN (Online):
 979-8-3315-4026-5

ISSN: 1052-8725

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE Real-Time Systems Symposium (RTSS) RTSS 2024

Table of Contents

Message from the Program, Track, and General Chairsxi
Hot Topic Dayxiii
Organizing Committeexiv
Program Committeesxvi
Keynote Speech (Invited) xix
Industry Session (Invited Panels) xxi
Secondary Reviewersxxvi
Scheduling for Heterogeneous Resources
MESC: Re-Thinking Algorithmic Priority and/or Criticality Inversions for Heterogeneous
MCSs
Energy-Efficient Real-Time Job Mapping and Resource Management in Mobile-Edge Computing 15 Chuanchao Gao (Nanyang Technological University, Singapore), Niraj Kumar (Nanyang Technological University, Singapore), and Arvind Easwaran (Nanyang Technological University, Singapore)
Response-Time Analysis for Limited-Preemptive Self-Suspending and Event-Driven Delay-Induced Tasks
Srinidhi Srinivasan (Eindhoven University of Technology, The
Netherlands), Mario Günzel (TU Dortmund, Germany), and Geoffrey
Nelissen (Eindhoven University of Technology, The Netherlands)
Real-Time Stream Processing
Argus: Real-Time HQ Video Decoding with CPU Coordinating on Consumer Devices
Response-Time Analysis of a Soft Real-Time NVIDIA Holoscan Application

BOXR: Body and Head Motion Optimization Framework for eXtended Reality	0
Real-Time for AI/ML	
IDK Cascades for Time-Series Input Streams	3
Deadline-Safe Reach-Avoid Control Synthesis for Cyber-Physical Systems with Reinforcement Learning	6
DuoJoule: Accurate On-Device Deep Reinforcement Learning for Energy and Timeliness	9
Networking	
Optimizing Quantum Assignment for DRR in TSN: A Network Calculus-Based Method	:3
An Improved Worst-Case Response Time Analysis for AVB Traffic in Time-Sensitive Networks 13 Daniel Bujosa (Mälardalen University, Sweden), Julian Proenza (University of the Balearic Islands, Spain), Alessandro V. Papadopoulos (Mälardalen University, Sweden), Thomas Nolte (Mälardalen University, Sweden), and Mohammad Ashjaei (Mälardalen University, Sweden)	5
Burst-MAC: A MAC Protocol for Handling Burst Traffic in LoRa Network	:8

Real-Time Control Systems

Exploring Real-Time Satellite Computing: From Energy and Thermal Perspectives
ROTA-I/O: Hardware/Algorithm Co-Design for Real-Time I/O Control with Improved Timing Accuracy and Robustness
Performance Optimization and Stability Guarantees for Multi-Tier Real-Time Control Systems 187 Yehan Ma (Shanghai Jiao Tong University, China), Ruijie Fu (Shanghai Jiao Tong University, China), An Zou (Shanghai Jiao Tong University, China), Jing Li (New Jersey Institute of Technology, USA), Cailian Chen (Shanghai Jiao Tong University, China), Chenyang Lu (Washington University in St. Louis, USA), and Xinping Guan (Shanghai Jiao Tong University, China)
SCENIC: Capability and Scheduling Co-Design for Intelligent Controller on Heterogeneous Platforms
Dealing with Uncertainty
A Distribution-Agnostic and Correlation-Aware Analysis of Periodic Tasks
In Search of Butterflies: Exceedance Analysis for Real-Time Systems Under Transient Overload
Drawing Lines for Measurement-Based Probabilistic Timing Analysis

Towards Principled Budget Enforcement in Real-Time Systems	.56
Autonomous Systems	
RT-BEV: Enhancing Real-Time BEV Perception for Autonomous Vehicles 2 Liangkai Liu (University of Michigan, USA), Jinkyu Lee (Sungkyunkwan University, Republic of Korea), and Kang G. Shin (University of Michigan, USA)	.67
Jigsaw: Taming BEV-Centric Perception on Dual-SoC for Autonomous Driving	.80
Yuhang Xu (Shanghai Jiao Tong University), Zixuan Liu (Shanghai Jiao Tong University), Xinzhe Fu (Massachusetts Institute of Technology), Shengzhong Liu (Shanghai Jiao Tong University), Fan Wu (Shanghai Jiao Tong University), and Guihai Chen (Shanghai Jiao Tong University)	94
Memory/Resource Contention	
Interference-Free Operating System: A 6 Years' Experience in Mitigating Cross-Core Interference in Linux	808
Coherence-Aided Memory Bandwidth Regulation	322
Per-Bank Bandwidth Regulation of Shared Last-Level Cache for Real-Time Systems	36

Multiprocessor Systems

FRAP: A Flexible Resource Accessing Protocol for Multiprocessor Real-Time Systems	49
Mixed-Criticality Federated Scheduling for Relaxed-Deadline DAG Tasks	62
Job-Level Batching for Software-Defined Radio on Multi-Core	75
Optimization for System Constraints	
Subtask-Level Elastic Scheduling	888
Priority Optimization for Autonomous Driving Systems to Meet End-to-End Latency Constraints	.02
Partial Context-Sensitive Pointer Integrity for Real-Time Embedded Systems 4 Yujie Wang (Washington University in St. Louis), Cailani Lemieux-Mack (Vanderbilt University), Thidapat Chantem (Virginia Tech), Sanjoy Baruah (Washington University in St. Louis), Ning Zhang (Washington University in St. Louis), and Bryan C. Ward (Vanderbilt University)	15
Work-in-Progress	
Work-in-Progress: Real-Time Neural Network Inference on a Custom RISC-V Multicore Vector Processor	127

Work-in-Progress: Dynamic Modeling and Real-Time Simulation for Performance Analysis of Electric Vehicle Powertrain
Hajin Byeon (Yonsei Univerity, South Korea), Jaeyoung Lim (Hyundai Motor Company, South Korea), Yongha Han (Hyundai Motor Company, South Korea), and Jongsup Hong (Yonsei University, South Korea)
Work-in-Progress: Using Interaction Between Vehicles to Reduce Deadline Tardiness from a
Route Assignment Perspective
Work-in-Progress: Utilizing Probabilistic Analysis to Fine-Tune Optimal IDK Cascades
Work-in-Progress: Towards Real-Time Collaborative 3D Object Detection Systems with Request-Free Communication
Work-in-Progress: Exploring Limited Preemption Approaches for the Phased Execution Model 447 Thilanka Thilakasiri (KTH Royal Institute of Technology, Sweden) and Matthias Becker (KTH Royal Institute of Technology, Sweden)
Work-in-Progress: Multi-Deadline DAG Scheduling Model for Autonomous Driving Systems 451 Atsushi Yano (Saitama University, Japan; TIER IV Incorporated, Japan) and Takuya Azumi (Saitama University, Japan; TIER IV Incorporated, Japan)
Work-In-Progress: Energy and Thermal-Aware Scheduling Based on HMARL for OpenMP DAG Workloads
Mohammad Pivezhandi (Wayne State University, USA), Aakriti Jain (Wayne State University, USA), Abusayeed Saifullah (Wayne State University, USA), and Ali Jannesari (Iowa State University, USA)
Work-in-Progress: Response-Time Analysis of Partitioned and Clustered Systems with the Schedule-Abstraction Framework
Work-in-Progress: Analyzing Worst-Case DDoS Traffic Scrub Effect and Recovery Delay via Attack Vector Combination
Author Index